Real Time Solving of Discrete
Optimization Problems

Yair Nof

Real Time Solving of Discrete
Optimization Problems

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Information

Management Engineering

Yair Nof

Submitted to the Senate
of the Technion — Israel Institute of Technology
Adar 5778 Haifa March 2018

This research was carried out under the supervision of Prof. Ofer Strichman, in the

Faculty of Industrial Engineering & Management.

Acknowledgements

I would like to thank my adviser, for showing me the right way. Thanks to my parents,
who encouraged me to learn. Thanks to my kids, wife and her parents who supported

the thesis completion, with their patience.

Contents

List of Figures

List of Tables

Abstract

Abbreviations and Notations

1 Introduction

2 Preliminaries
2.1 Stochastic Search Algorithms

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6

Random Search oL
Random Walk o o
Stochastic Hill Climbing
Tabu Searcho
Simulated Annealing L 0 Lo
The Cross-Entropy Method

3 Problem Formulation
3.1 The Resource Allocation with Forbidden Pairs (RAFP) Problem
3.2 Examples

3.2.1
3.2.2

Computer Aided Dispatch for Medical Services
Automated Trading System

3.3 The Fixed Time Variant of RAFP

4 RAFP’s Complexity
4.1 The Maximum k-Colorable Subgraph Problem
4.2 The Decision Variants of RAFP and k-MCSP
4.3 The Decision Variant of RAFP is NP-Complete

5 Algorithms for RAFP
5.1 Local Search
5.2 Beyond Local Search

17
17
18
18
19
20

21
21
21
21

5.3 A Unifying Approach For Algorithms 25

5.3.1 Fixed-Time Search 26
5.3.2 The Procedure Generate RandomNeighbor 26
5.3.3 The Procedure EvaluateSolution 27
5.4 Instances of Fixed-Time Search 27
5.4.1 Random Search, 27
54.2 Random Walk 0 L 28
5.4.3 Stochastic Hill Climbing 28
54.4 Tabu Search 29
5.4.5 Simulated Annealing o0 30
5.4.6 The Cross-Entropy Method 31
5.4.7 A Greedy Algorithm 0L 32
5.5 Leveraging the Greedy Algorithm 33
5.5.1 Tterated Greedy 33
5.5.2 Hybrid: Greedy + Search 34
5.5.3 Hybrid for the Cross-Entropy Method 34
Empirical Results: Individual Algorithms 35
6.1 Implementation 35
6.1.1 Inputs 35
6.1.2 Anytime behavior L 36
6.2 Automatic Parameters Tuning 36
6.2.1 Automatic Parameters Tuning for RAFP 36
6.2.2 Tuning of a Single Algorithm 39
6.2.3 Comparison of Algorithms During Tuning 39
6.3 Validation of Final Configurations 44
6.4 Harder Problems 45
6.5 Algorithms Configurations, 45
Constructing The Best Portfolio 53
7.1 Constructing a Portfolio as an Optimization Problem 54
7.2 K-Algorithms Cover Problems 54
7.2.1 Definitions 54
7.2.2 Examples 55
7.3 Minimum Algorithms Cover Problems 57
7.3.1 Definitions 57
7.3.2 Examples o7
7.4 Modeling the K-Algorithms Cover Problem with SMT 59

7.4.1 Modeling the K-Algorithms Max-Sum Problem with QF_LRA . . 59
7.4.2 Modeling the K-Algorithms Min-Max-Gap Problem with QF_LRA 60

8 Empirical Results: Portfolios
81 SMT Modeling
82 SMT Solving
8.3 Portfolios Construction — Tuned Algorithms
8.3.1 Three Portfolio Models
832 Results

9 Conclusion
9.1 Contributions
9.2 Future Work
9.2.1 Individual Algorithms
9.2.2 Automatic Parameters Tuning . . .
9.2.3 Better Portfolio Construction
9.2.4 Exploring More Real Time Issues . .

A Appendix

A.1 Defining RAFP using Weighted Constraint Satisfaction Problems

A.1.1 Constraint Satisfaction Problem . .

A.1.2 Valued Constraint Satisfaction Problem
A.1.3 Weighted Constraint Satisfaction Problem
A.1.4 The Resource Allocation with Forbidden Pairs Problem

A.2 Portfolios Construction — Random Matrices

Hebrew Abstract

63
63
63
63
64
64

73
73
74
74
74
75
76

77
7
7
78
79
79
80

List of Figures

1.1
1.2

21
2.2
2.3
2.4
2.5
2.6
2.7
2.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

8.1
8.2
8.3
8.4

Al

Quality vs. Time of Anytime Algorithms
Quality vs. Worst Computation Time of Algorithmic Strategies

Search Illustration
Search Hlustration - Steepest Ascent Hill Climbing
Search Illustration - Random Search
Search Hlustration - Random Walk
Search Illustration - Stochastic Hill Climbing
Search Illustration - Tabu Search
Search Illustration - Simulated Annealing
Search Hlustration - The Cross-Entropy Method

Anytime Behavior of Algorithms - Before Tuning
Anytime Behavior of Algorithms - After Tuning
Automatic Parameters Tuning
Automatic Parameters Tuning, Greedy Initialization
Automatic Parameters Tuning, Algorithms Ranking 1
Automatic Parameters Tuning, Algorithms Ranking 2
Automatic Parameters Tuning, Ranking’s Validation
Automatic Parameters Tuning, Hard Problems
Automatic Parameters Tuning, Hard Problems, Greedy Initialization . .
Automatic Parameters Tuning, Hard Problems, Algorithms Ranking 1 .
Automatic Parameters Tuning, Hard Problems, Algorithms Ranking 2 .

Automatic Parameters Tuning, Hard Problems, Ranking’s Validation . .

Max-Sum Portfolios, General Problems
Max-Sum Portfolios, Hard Problems
Min-Max-Gap Portfolios, General Problems
Min-Max-Gap Portfolios, Hard Problems

Max-Sum Portfolios, Random Matrices

List of Tables

6.1 Automatic Parameters Tuning - Random Walk Parameters 51
6.2 Automatic Parameters Tuning - Stochastic Hill Climbing Parameters . . 51
6.3 Automatic Parameters Tuning - Tabu Search Parameters 51
6.4 Automatic Parameters Tuning - Simulated Annealing Parameters 52

6.5 Automatic Parameters Tuning - The Cross Entropy Method Parameters 52

8.1 Max-Sum Optimal Portfolios - Part 1 69
8.2 Max-Sum Optimal Portfolios - Part 2 69
8.3 Max-Sum Optimal Portfolios - Part 3 69
8.4 Max-Sum Optimal Portfolios, Hard Problems - Part 1 70
8.5 Max-Sum Optimal Portfolios, Hard Problems - Part 2 70
8.6 Min-Max-Gap Optimal Portfolios - Part 1 71
8.7 Min-Max-Gap Optimal Portfolios - Part 2 71
8.8 Min-Max-Gap Optimal Portfolios - Part 3 71
8.9 Min-Max-Gap Optimal Portfolios, Hard Problems - Part 1. 72

8.10 Min-Max-Gap Optimal Portfolios, Hard Problems - Part 2 72

Abstract

Many hard real-time systems have a desired requirement which is impossible to fulfill:
to solve a computationally hard optimization problem within a short and fixed amount
of time. For such a task, the exact, exponential algorithms are out of scope. Polynomial-
Time Approximation Schemes guarantee a 1 — € approximation with a polynomial
run-time, but this run-time can easily exceed the short and fixed requirement. In this
thesis we define the ‘fixed-time variant’ of a hard optimization problem, based on giving
weights to the hard constraints. In practice only any-time algorithms are relevant for
such tasks.

We define a concrete optimization problem that we call RAFP and prove that its
decision variant is NP-complete. We then study the performance of several probabilistic
algorithms (most of them are local-search) that we fit to RAFP’s fixed-time variant,
with very short time bounds. We study the practical impact of automatically tuning
the parameters of those algorithms. In addition, we consider the problem of optimizing
a parallel portfolio of algorithms. Specifically, we study the problem of choosing k
algorithms out of n, for a machine with k& computing cores, and the related problem
of detecting the minimum number of required cores to achieve an optimal portfolio,
with respect to a given training set of benchmarks. The thesis includes the results of

numerous experiments that compare the various methods.

Abbreviations and Notations

PTAS
CSP
WCSP
VCSP
COP
SAT
FT
RAFP
k-MCSP
RS

RW
SHC
TS

SA

CE
SMT
QF _LRA

Polynomial Time Approximation Scheme
Constraint Satisfaction Problem
Weighted CSP

Valued CSP

Constraint Optimization Problem
Satisfiability

Fixed Time

Resource Allocation with Forbidden Pairs
Maximum k-Colorable Subgraph Problem
Random Search

Random Walk

Stochastic Hill Climbing

Tabu Search

Simulated Annealing

Cross Entropy

Satisfiability Modulo Theories

Quantifier Free Linear Real Arithmetic

Chapter 1

Introduction

Hard real-time systems frequently have a seemingly impossible requirement: To solve
within a short, fixed amount of time T (e.g., T" = 0.5 second), a computationally
hard optimization problem!. For some hard optimization problems there are known
polynomial approximations, which may seem to meet this challenge. Such algorithms,
known by the name Polynomial-Time Approximation Schemes (PTAS) [WS11], can
guarantee a 1 — e proximity to the optimal solution?. For example, they can guarantee
a solution with an objective value which is not lower than 0.5 the value given by the
(exponential) exact algorithm. But PTAS are not necessarily relevant for hard real time

systems, for two main reasons:

e They only guarantee a polynomial bound on the run-time, whereas the hard real
time system requires a fixed bound. Moreover, this bound increases when the

precision parameter € becomes smaller.

e The guaranteed upper-bound on the distance from the optimal value, as implied
by the precision parameter ¢, is frequently less important than the average quality

of the solution.

! In many real time systems there are other issues that we do not address in this thesis: The input
might be a stream of problems with inaccuracies or uncertainties, with a cost for a late delivery of a
solution

2 Throughout this work we refer to maximization problems. The definitions for minimization problems
are similar: in this case it will be a 1 4+ € proximity.

We focus on optimization problems that their decision variant is complete in NP
(henceforth, NP-optimization problems); By definition, those can be reduced to the NP-
complete Constraint Satisfaction Problem (CSP)3, which gives us a unified starting point
in the discussion that follows. CSP has an optimization variant called the Constraint
Optimization Problem (COP), in which the goal is to satisfy the constraints while
maximizing (or minimizing) some objective function. It is common to distinguish
between hard and soft constraints in COP, where each of the latter is associated with
a weight that reflects the ‘reward’ for satisfying it. Every solution has to satisfy the
hard constraints, and an optimal solution has to additionally maximize the reward by
satisfying soft constraints. The problem may also have an objective other than the soft
constraints, but soft constraints and the objective are reducible to one another, if we
assume that the objective function is a linear function. Hence for convenience we can
talk about a constraints system with hard and soft constraints only, without an explicit
objective function.

We use COP to define a fized-time variant of an NP-optimization problem. Given
the fixed time bound T our goal is to find algorithms that their solution is as good
as possible at time T'. This, by definition, implies that we cannot guarantee that our
solution satisfies all the hard constraints of the original optimization problem, and we
therefore need to prioritize them by giving them weights. In other words, we need to
turn the hard constraints into soft constraints (in doing so, it is reasonable to assign
those constraints larger weight than those associated with the original soft constraints).

This gives rise to the following definition:
Definition 1.0.1 (The fixed-time variant of an NP-optimization problem). Given a
e NP-hard optimization problem P cast as a COP, and

e weights to the hard constraints, reflecting their importance relative to each other

and the original soft constraints (if there are any),

let soft(P) denote a problem identical to P except that all the hard constraints are
turned into soft constraints with the given weights. Given a time limit T, the fized-time

variant of P, denoted FT(P), is the problem of finding a solution within time 7" to
soft(P).

Note that the time limit is given in absolute terms, which means that the best solution

may depend also on the hardware.

3 CSP generalizes the propositional satisfiability problem (SAT), but is still in NP. It allows variables
with any finite discrete domain (rather than SAT’s restriction to the Boolean domain), and a rich
modeling language.

Anytime Vs. Regular Al gorithm

Anytime Al gorithm

141 .
— Regul ar Al gorithm

12—

10—

Quality

0

I I I I I I I I I]
0 10 20 30 40 50 60 70 80 90 100
Ti me

Figure 1.1: Quality vs. time of an anytime and a regular algorithm

Anytime algorithms

To satisfy the requirement of a fixed-time bound, in practice the algorithm has to be
an anytime algorithm [DB88]. Anytime algorithms maintain intermediate sub-optimal
results, and hence if interrupted, they can emit some solution. This solution is not likely
to be optimal, but is better than nothing. Figure 1.1 illustrates the difference between
the quality over time of an anytime algorithm and an algorithm which is not any-time.
The diagram demonstrates a case in which the anytime algorithm is worse in the long
run; this reflects the fact that sacrifices may be necessary for achieving the anytime
property. Another family of algorithms are heuristic methods. Generally, these methods
do not guarantee anything: Their run-time might exceed the fixed bound, and they
have no upper-bound on their distance from the optimal value. Some of the heuristic
methods, in practice, reach high quality solutions (although not optimal) relatively fast,

and hence are good candidates as anytime algorithms.

For our purpose, the value of the algorithm is measured by the quality of the so-
lution that it is able to produce at time T'. Most of the work in anytime algorithms that
we found, e.g., [BBNP04], [Lou03], [CZ06], [OD12], [SBLI12], [Cla99], [WC00] did not
try to measure empirically their success after a fixed and short amount of time. One of
the goals of this thesis is to do just that for a particular problem that we will define in
the next chapter.

Figure 1.2 summarizes the quality /time trade-off according to the strategies discussed

so far.

Optimal t Exact

PTAS

1 — ¢ Approximationt

Quality

Sub-optimal | o Anytime

Fixed Polynomial Exponential
Worst case computation time

Figure 1.2: Quality vs. Worst computation time of various algorithmic strategies

In this thesis we focus on one particular hard optimization problem which we call
RAFP, and give two examples of using it. We define its fixed time variant, and then
study the performance of over 7 different algorithms in solving its fixed-time variant
with low values of the time bound 7. Most of these algorithms are adaptation of
known stochastic search algorithms (such as Tabu Search, Stochastic Hill Climbing, The
Cross-Entropy Method and Simulated Annealing) and their combinations. We then
address the problem of optimizing a parallel portfolio of algorithms, for a given number
k of available computing cores, and also study the related problem of convergence: what

is the lowest value of k for which we can get an optimal portfolio?

The structure of the thesis

The thesis continues in the next chapter by defining a hard optimization problem called
RAFP, demonstrate its use, and define its fixed-time variant. In chapter 4 we prove
that the decision variant of this problem is NP-complete. In chapter 5 we describe a
set of anytime algorithms that cope with the fixed time-variant of RAFP. In chapter
6 we describe empirical results based on 500 random inputs for RAFP, some general
and some with a focus on hard instances. In chapter 7 we suggest methods to construct
optimal parallel portfolios of the algorithms, which will enable us to benefit the most
from a computing environment with multiple cores. In chapter 8 we describe empirical
results of building a parallel portfolio for our concrete problem. Chapter 9 summarizes

our work.

Chapter 2

Preliminaries

In Chapter 5 we will formally define several search algorithms (including pseudo-code)
that we use in this work. These meta-heuristics have many variants, and here we only
describe the essence, informally, of the common variant. We explain the principles of
these algorithms by using the maximization problem in figure 2.1. The figure describes
a problem in one dimension, where the x-axis represents the solution space, and the
y-axis represents the quality. Although the graph looks continuous, we refer to a discrete
set of solutions. For the purpose of these preliminaries (and opposed to Chapter 5),
the solution space is assumed to be ordered, which allows us to depict the x-axis. For
this reason a ‘neighbor’ is simply the next or previous value in that order. In the more
general case, which is relevant to this thesis, the solutions are not ordered but there are
multiple dimensions. When there are multiple dimensions, a ‘neighbor’ means that only
a few dimensions (i.e., variables) change. In the following figures, we will describe a
solution as a point on the graph, where the goal is to detect the global maximum. The

numbers on a point corresponds to its visit time, starting in point '1’.

Quality

0.
Sol ution

Figure 2.1: Search Hlustration - A maximization problem in one dimenstion

First, we show an example of a very simple search algorithm.

Steepest Ascent Hill Climbing

The steepest ascent hill climbing algorithm [Broll] simply examine all neighboring
solutions, and moves to the best neighbor. In our setting, if we define a step of 1 unit,
each solution has two neighbors — the right and the left. We move to the solution that
has a higher quality. Figure 2.2 describes this process where point 1’ is our initial
solution, and we are going up-hill until we stop in the top of the hill. At this stage,
both our neighbors are worse than the current solution, and the steepest ascent hill

climbing algorithm cannot continue. The local maximum that we found is our solution.

10—

Current &
Best Sol ution

-10 -8 -6 -4 -2

Figure 2.2: Search Illustration - Steepest Ascent Hill Climbing

10

2.1 Stochastic Search Algorithms

Stochastic algorithms use randomness in the search process, which might help to escape
local maxima or accelerate the progress. We show several examples of stochastic search

algorithms.

2.1.1 Random Search

Random search [Bro58] is a very simple algorithm. It chooses uniform random solutions
iteratively, evaluates their quality and maintains the best solution. When it reaches
its timeout, the best solution is returned. Figure 2.3 describes this process, where we
can see a random sampling of solutions, the last is marked as Current solution, and the

Best solution is the output.

2.1.2 Random Walk

Random walk [Yan10] iteratively and randomly chooses one of the current solution’s
neighbors. In our setting, with a step of 1 unit, random walk uniformly chooses between
the current solution’s right and left neighbors, and makes the chosen neighbor its current
solution. Figure 2.4 describes this process, where we can see a more local sampling of
solutions than we saw in random search, the current solution is the last solution, and

the best solution is the output.

11

Current Sol ution

Figure 2.3: Search Ilustration - Random Search. We can see a wide
sampling

Sol ution

0.
Sol ution

Figure 2.4: Search Illustration - Random Walk. We can see a local and uniform random

12

and uniform random

sampling

2.1.3 Stochastic Hill Climbing

Stochastic hill climbing [FM93] iteratively and randomly samples one of the current
solution’s neighbors, and accepts it if its quality is higher than the current solution’s
quality. As opposed to random search and random walk, we do not accept any solution.
Figure 2.5 describes this process, where we can see hollow circles in sampled solutions
which we did not accept, because their quality was lower than the current solution’s
quality. We can see the local sampling of solutions. The filled circles show the hill-

climbing behavior of this method.

10 T

Best Sol ution

> —20(—

50—

0, 2 4 6 8 10
Sol ution

Figure 2.5: Search Illustration - Stochastic Hill Climbing. We can see two solutions (3,5) that

were not acceptable since they were worse than the current solution, and acceptable solutions
which improve with time

13

2.1.4 Tabu Search

Tabu search [Glo86] iteratively chooses (deterministically or stochastically) the best
neighboring solution, which is not forbidden. A forbidden solution might be a recently
visited solution. The forbidden solutions are handled using a constant size tabu list.
When the tabu list reaches its maximum size, the oldest items are removed. Accepting
worse solutions and avoiding last visited solutions help to escape local maxima. Figure
2.6 describes this process, where we can see a tabu list with the last three items, which

are temporarily forbidden.

10 T

Tabu item N

x X

Sol ution

> —20(—

Current
Sol ution

50—

0 2 4 6 8 10
Sol ution

Figure 2.6: Search Illustration - Tabu Search. We can see that the last three solutions (5,6,7)
are temporarily forbidden (there is an 'x’ above them)

14

2.1.5 Simulated Annealing

Simulated annealing [JV83] iteratively and randomly samples one of the current solution’s
neighbors. There is a probability of accepting a neighbor solution. If it is better than the
current solution, it is chosen with probability 1. If it is worse than the current solution,
the probability of choosing it is lower as the differences in qualities between the current
and the candidate solution. A temperature parameter also influences the probability
of choosing a neighbor solution. At the beginning of the search the temperature is
high, and the probability of accepting worse solutions is high too. When time passes, a
temperature reduction leads to a lower acceptance probability of worse solutions. This
method enables a wide exploration of solutions at the beginning of the search, and a
more local exploration of solutions later. Figure 2.7 describes this process, where we
can see late candidate solutions that were not chosen because their value is too low to

accept in the last period of the search.

10 T

-10

Best
Sol ution

Cur r ent
Sol ution

5ol
Candi dat e
Sol ution

0_ 2 4 6 8 10
Sol ution

Figure 2.7: Search Illustration - Simulated Annealing. We can see that there are two solutions
(6,7) which we do not accept, since their quality is too low at their visit time

15

In what follows, we do not use the above maximization problem for illustration any

more.

2.1.6 The Cross-Entropy Method

The cross-entropy method (CE) [RKO04], in its basic form, is parameterized by N € N,
0<p<l,0<a<1land0<e<]1 (typical values could be p = 0.2,a = 0.1, = 0.01).
The role of these parameters will be clear momentarily.

CE maintains a probability distribution, initially uniform, for the values in the
domain of each variable. It samples N solutions using this distribution, and then
evaluates them. The best [p* N| samples is called the elite set. Based on this set,
CE recomputes the distribution, so it becomes more biased towards the elite set. For
example, suppose that a = 0.2, the probability of x to be assigned the value 12 is
currently 0.1, and that x = 12 appears in 30% of the solutions in the elite set. Then the
new probability of = being assigned 12 will be 0.2 % 0.3 + (1 —0.2) x 0.1 = 0.14. After
recomputing the distribution in this way, the process is reiterated. Each time a sample
is made, if its evaluation is the highest so far from all samples, it is saved. In the end of
the process, the best observed sample is returned.

This process can converge, which means that for each variable, there is one value
with probability larger than 1 —e. With a small value of ¢, this indicates that there
is no point reiterating since the results will stay the same with high probability. If
convergence occurs, CE can either be terminated or restarted with a different seed,
provided that there is enough time.

Figure 2.8 describes this process, where the x-axis represent the values of one
variable, the y-axis represent the iteration of the algorithm, and the z-axis represent

the probability for each value. We can see a convergence of the algorithm to one of its

values.
I |
. | _
- — 0.9
/7 ‘I R _7__7_7_7__7_ 0.8
—] — 07
— H ‘ T 0.6
I 05
— 0.4
— O 0.3
0.2
0.1
_ .
=
Series35 % >

Series18 .\,
Series1 ="

—

-

Figure 2.8: Search Illustration - The Cross-Entropy Method

16

Chapter 3

Problem Formulation

We begin by formulating a hard optimization problem. The rest of the thesis will focus

on solving its fixed-time variant.

3.1 The Resource Allocation with Forbidden Pairs (RAFP)
Problem

RAFP is defined by

o A={Ay,.., A} is a set of variables.
e D is a set of tactics indices (henceforth ‘tactics’).

e Res is a set of available resources {ri,ro, ..., 7m }.

D; C D is the domain of tactics available for A;, for i € [1..n].
e R: D +— Res maps a tactic d to a resource in Res.
e U : D+ [0..1] is a unary utility function.

e U:D x D [0..1] is a binary utility function.

F:D x D~ {0,1} is a matrix of Boolean values, indicating the forbidden pairs

of tactics.

e By, By, ..., B, € N are bounds on the resources of Res.

A solution to RAFP is an assignment aq, as, ..., a, to the variables in A, where a; € D;
for i € [1..n]. The hard constraints on the solution are implied by the forbidden-pairs

matrix F', and the bound on the resources Bi, ..., By,:

e For each pair of variables A;, A;, their selected tactics a; € D; and a; € D; satisfy
F(ai, ij) =0.

17

e For each i, € Res, [{R(a:)}r(a;)=r,| < Br-

The objective is to maximize the utility:

max ZU(CM‘)+ Z Uai,aj) | - (3.1)
i=1

i.j=1,ij

We note that RAFP can be defined using an existing framework for hard and soft
constraints called Weighted Constraint Satisfaction Problem. Appendix A shows this

formulation.

3.2 Examples

The RAFP is a rather general discrete optimization problem, which includes binary
constraints, some form of cardinality constraints and a utility function with unary and
binary factors. Several other general, but more specific known problems, can be derived
from RAFP, including the Binary Constraint Satisfaction Problems. Here we present

some real world problems which are natural to represent using RAFP.

3.2.1 Computer Aided Dispatch for Medical Services

An emergency control center might use a recommendation system that should react
very fast. When medical resources are limited, deciding to send a vehicle for a specific
task might cause a delay in other task and risk lives or cause more pain to someone.

The following details suggest a RAFP representation for this kind of a system:

o A={A,.., A,} are emergency medical tasks received at the control center; e.g.,
An injury of a worker in a construction site, a car accident in a specific junction,

etc.

e D are the set of emergency medical solutions; e.g., medication, first-aid, evacuation,

CPR, surgery, etc.

e D; C D is the set of solutions that fits each emergency medical task; e.g., For
a specific car accident first-aid or medication is enough. For some injuries an
evacuation over ambulance van or a CPR using an ambulance motorcycle are the

only options.

e U(d) for d € D is the unary utility of using a single solution to an emergency
medical task: e.g., the utility of using a well-equipped ambulance van for CPR

might be higher than using an ambulance motorcycle for the same task.

e U(d;,d;) for d;,d; € D is the binary utility of using two solutions simultaneously:
Performing a surgery at the stationary intensive care unit for task d; delays another

task d; which we should carry out at the same unit, thus reducing U(d;, d;).

18

e F(d;,d;) for d;j,d; € D is the binary matrix which indicates the pairs of tasks
that are impossible to accomplish simultaneously; e.g. we cannot send away a
helicopter with medical experts while handling a mass-casualty incident. In these

cases we have F'(d;,d;) = 1, which prevents d;, d; from being performed together.

e Res is the set of the mobile and stationary resources types; e.g. Ambulance van,

ambulance motorcycle, helicopter, intensive care unit, etc.
e R(d) for d € D maps a single medical solution to its medical resource.

e By, Bs,..., By, € N are bounds on the medical resources.

3.2.2 Automated Trading System

An automated trading system performs buying and selling orders in the stock market.
The short system response time and quality of solution is critical for positive and high
revenue. The more profitable orders might be carried out only by few machines, special
times, have high correlation to other orders, or are forbidden to perform together. The

following details suggest a RAFP representation for this kind of a system:

o A={A,..., A} is a batch of buying/selling orders to decide in the next trading

period.

e D; C D is a financial product (stock, bond, option etc.), a buy / sell order and a

discrete amount.

e U(d) for d € D is the expected revenue for order d. Some orders are more profitable

than others.

e U(d;,dj) for d;,d; € D is the inverse of correlation between orders d;, d;. Low

correlations are preferred.

e F(d;,d;) for d;,d; € D is a binary matrix which indicates which pairs of orders
are forbidden together in the same trading period. If d;, d; is a forbidden pair we
have F'(d;,d;) = 1.

e Res is a set of types of trading machines: Different sizes of servers and clusters

that are available to perform our orders.
e R(d) for d € D maps a single buying/selling order to a trading machine type.

e By, By, ..., B, € N are bounds on the number of available trading machines of

each type, for the next trading period.

19

3.3 The Fixed Time Variant of RAFP

soft(RAFP) is defined as RAFP with a weight of 0 on the hard constraints. Given a
time limit 7', the fized-time variant of RAF P, denoted FT(RAFP), is the problem of
finding a solution within time 7" to soft(RAFP).

20

Chapter 4

RAFP’s Complexity

We prove the NP-completeness of RAFP by a reduction from the following problem.

4.1 The Maximum k-Colorable Subgraph Problem

The Maximum k-Colorable Subgraph Problem (k-MCSP) is defined as follows.
e G=(V,E) is a graph
e k is a positive integer, which defines a set of colors C' = {c1,..., ¢}

A solution to k-MCSP is the largest vertex set V/ C V which induces a k-colorable
graph, i.e. there is an assignment of colors to the vertices such that no two adjacent
vertices are assigned the same color.

For k=1, k-MCSP becomes the Maximum Independent Set problem, which is known to
be NP-hard [GJ79]. Therefore k-MCSP is NP-hard.

4.2 The Decision Variants of RAFP and £i-MCSP

First we define the decision variants of RAFP and k-MCSP.

We add to k&-MCSP an integer h € [1..n], where |V| = n and ask whether there is a
solution to k-MCSP with h or more vertices.

We add to RAFP a value u € R and ask whether there is a solution to RAFP with

> i Ulai) + ZZj:l,i;éj Ulas, a;) = u.

4.3 The Decision Variant of RAFP is NP-Complete

Theorem 4.1. The decision variant of RAFP is NP-Hard

Proof. We will show that k-MCSP <p RAFP.
Given an instance of k-MCSP, we will construct an instance of RAFP.
Given G = (V, E), k, h, we define RAFP’s elements:

21

A =V ie., the set of variables is the set of vertices.

D = {dyc}vevieecr, where C' = C' U {cp}. Tactics are all possible colorings of

vertices, with the possibility of a vertex without a color, marked by cy.

o D; = {d;c}cecr, variable i’s tactics are all possible colorings of the i-th vertex,
with the possibility that it has no color. Note that D = |J D;.
i

e For each v € V,c € (', the unary utility is defined as:

U(d)_ 0 ifCiZCO (41)
s 1 otherwise .

e For each 4,5 € V, and p,q € C' we have d;p,dj; € D and the binary utility is
defined as:

—oo if (i,5) € E,p=q,p # c0,q # ¢o

(4.2)
0 otherwise

U(dipvdjq) = {

o F = {1}IPIXIPl _ There are no forbidden pairs of tactics

e Res = {r1},R(d) = r; for d € D, and B; = n. There is only one resource type

with n items.

e We define u = h, the utility value of RAFP should be equal to the size of the
subgraph in k-MCSP.

Since |D| = |V| - |C'| = n(k + 1),|D;| = k + 1, the unary domain size is |D|, the binary
domain size for the binary utility function and the forbidden pairs matrix is |D|? and
|Res| = 1, the construction is done in a polynomial time in the size of the k-MCSP

instance.

Now we show that the answer for the original instance of k--MCSP is yes if and only if

the answer for the RAFP instance we created is yes.

(<) Suppose k-MCSP has a k-colorable subgraph G’ = (V', E') with |V'| > h, for
h €N, h <|V]. Let ¢; € C' denote the color of i € V on G. For each i € V' we have
U(dic;) = 1 and for each i ¢ V' we have ¢; = ¢y and U(d;.,) = 0. Since we have a

coloring with at least h vertices we have:

> Uldie) = > Uldic) + > Uldic,) = h+0> h. (4.3)

eV eV’ gV’

22

Regarding the binary utility we have:

n
Z U(dicia dej) = Z U(dicia dej) + Z U(dicw djcj) (4'4)
i,j=1,i#j (1,5)EE,ci=c; (6.4)EEVei#e;V

ci,cjgéco cj=coVej=cq

Since we have a coloring, the following sum is over an empty set, thus it is equal to zero:

> Udie, dje,) =0 (4.5)
(ivj)eE;fi:Cj
CiHCiFCQ

According to (4.2) we have:

> Uldie,dje;) =0 (4.6)

(i,j)¢E\/C¢7ﬁC]‘\/
c;=cq Vc]' =cq

Thus, (4.4) becomes

i.j=1,i#j
From (4.3) and (4.7) we have
> Uldie)+ Y. Uldie,dje;) =h+0>h (4.8)
i€V ij=1,i#j

as needed for the utility.

Regarding the resource constraints we have for each i € V and ¢; € C: {R(dic,) } r(dy.)=r: | =
n < Bj. The binary hard constraints are trivially met because F = {1}/PI*IPl This

concludes this side of the proof.

(=) Now suppose that the assignment {d;, }ic[1.., i a solution to the constructed
RAFP instance, with

Z U(dwz) + i U(diciv djc]-) > h (4.9)

i=1 i=Lii#

for h € [1..n]. From (4.9) we infer U(d;,,djc;) # —o0, which implies U(d;c;,djc;) = 0,
according to (4.2), for each ¢,j € V and ¢;,¢; € C'. Thus,

n

Z U(dici, dej) =0 (410)
i,j=1,i#£j

23

From (4.9) and (4.10) we have

> Uldie,) = h (4.11)

According to (4.1), this is equivalent to a k-coloring in V' with at least h vertices,

different than cy. The coloring is legal since U (dc;, djc;) # —oc and according to (4.2).00
Theorem 4.2. The decision version of RAFP is in NP

Proof. Let ay,ao,...,a, be a solution to RAFP, with a utility larger or equal to u. To
validate the binary constraints, U(a;, aj) # —00,i # j, we have O(n?) operations. To
validate the resource constraints, [{ R(a;)}g(a;)=r,| < Bk, for each rj, € Res, we have n
operations. To validate Y 7, U(a;) + 37—, ;z; Ulai, a;j) > u we have O(n?) operations.
Totally, we have O(n?) operations to validate that a1, as,...,a, is a solution to RAFP,

a polynomial number of operations, which implies RAFP € NP. O
Theorem 4.3. The decision version of RAFP is NP-Complete

Proof. From theorems 4.1 and 4.2 we get that the decision version of RAFP is in NPC.[J

24

Chapter 5

Algorithms for RAFP

5.1 Local Search

Local search is a heuristic framework for solving hard decision and optimization problems.
Local search is relatively simple to implement, output a stream of solutions without
a setup time, and contains a rich toolbox of parametrized algorithms. Local search
meta-heuristics might be easily adapted to many problems and solutions’ structures
[HS04]. Local search moves from one solution to a neighbor solution in the space of
candidate solutions using an evaluation function, and stops if an optimal solution is
found or the time bound is reached. The Random Walk, Stochastic Hill-Climbing, Tabu
Search and Simulated Annealing that we present later in this chapter are local search

algorithms.

5.2 Beyond Local Search

When the candidate solutions are sampled using a guidance which is different from a
neighboring relation, the search is not local. The Random Search, Greedy and the Cross
Entropy Method that we present later in this chapter are search algorithms which are

not considered as local search.

5.3 A Unifying Approach For Algorithms

Algorithm 5.1 describes the meta-heuristic that we used, which we call Fized-Time
Search. Each derived algorithm implements parts of Fized-Time Search, and adapted to
RAFP, when necessary. By using a single framework for all variations of the algorithm,
we achieve a relatively fair comparison between them. In all the following references to
RAFP, we refer to RT(RAFP).

25

5.3.1 Fixed-Time Search

Algorithm 5.1 FizedTimeSearch(Initial Solution Init, Timeout T')

Current < Init
Best < Current
while not (StopCriterionReached() or timeout T reached) do
Candidate < ChooseCandidate(Current)
if AcceptanceCriterionReached(Candidate) then
Current < Candidate
if EvaluateSolution(Best) < EvaluateSolution(Current) then
Best < Current
end if
end if
if RestartCriterionReached() then
Current < Restart()
end if
end while

return Best

Next, we describe common definitions and procedures of all algorithms, in order to fit
Fized-Time Search to RAFP.

Definition 5.3.1 (Distance between solutions). Let S = (a1, ag, ..., a,) and S” = (by, ba, ...

be two solutions to a RAFP instance. The distance between the solutions is defined as
the number of different elements between them : D(S,S") = [{i | a; # bi }|.

Definition 5.3.2 (K-Neighborhood of a solution). The K-Neighborhood of S, is the set
of all solutions that their distance from S is no more than K: Ng(S) = {S'|D(S,S") <

5.3.2 The Procedure Generate RandomN eighbor

The procedure Generate RandomN eighbor is used by most of the stochastic algorithms
that follow, in order to generate a single neighbor of the current solution. The neighbor

is in the K-Neighborhood of the current solution. Procedure 5.2 describes this process.

26

,bn)

Procedure 5.2 GenerateRandomN eighbor(Solution Current, Neighborhood Size K)

Neighbor < Current

for K times do
i < a variable’s index chosen uniformly at random
v <— a value chosen uniformly at random from the domain of Neighbor.Var;
Neighbor.Var; < v

end for

return Neighbor

5.3.3 The Procedure EvaluateSolution

FEvaluateSolution is a procedure tailored for the RAFP problem. It computes the

objective value described in Chapter 3, given a full assignment.

5.4 Instances of Fixed-Time Search

In what follows, we describe how to derive specific search algorithms from Fized-Time

Search, using the procedures GenerateRandomN eighbor and EvaluateSolution.

5.4.1 Random Search

Random Search or Pure Random Search [Bro58] is the simplest algorithm of Fixed-Time
Search: Generate a series of random solutions of IV variables and choose the best one
according to the objective function. Procedures 5.3-5.7 describe the random search
algorithm for RAFP. Random search is not likely to be competitive, and we only include

it for reference.

Procedure 5.3 StopCriterionReachedgs()

return false

Procedure 5.4 ChooseCandidate rs(Solution Current)
GenerateRandomN eighbor(Current, N)

Procedure 5.5 AcceptanceCriterionReachedrs(Solution Candidate)

return true

Procedure 5.6 RestartCriterionReachedrs()

return false

Procedure 5.7 Restartprs()

return empty solution

27

5.4.2 Random Walk

Random Walk [Yan10] is a simple local search algorithm which moves between random
neighbor solutions, according to some neighboring relation. Procedures 5.8-5.12 describe
the random walk algorithm for RAFP.

Procedure 5.8 StopCriterionReachedpw ()

return false

Procedure 5.9 ChooseCandidate gy (Solution Current, Neighborhood Size K)
GenerateRandomN eighbor(Current, K)

Procedure 5.10 AcceptanceCriterionReached gy (Solution Candidate)

return true

Procedure 5.11 RestartCriterionReachedrw ()

return false

Procedure 5.12 Restartrw ()

return empty solution

5.4.3 Stochastic Hill Climbing

Stochastic Hill Climbing [FM93] is a simple local search algorithm which only adds
a simple acceptance criterion to random walk: Move to the neighbor if and only if it
is better than the current solution. Procedures 5.13-5.17 describe the stochastic hill
climbing algorithm for RAFP.

Procedure 5.13 StopCriterionReachedsc()

return false

Procedure 5.14 ChooseCandidatesc(Solution Current, Neighborhood Size K)
Generate RandomN eighbor(Current, K))

Procedure 5.15 AcceptanceCriterionReachedspyc(Solution Current, Solution Candidate)

return FvaluateSolution(Current) < EvaluateSolution(Candidate)

Procedure 5.16 RestartCriterionReachedspc()

return false

28

Procedure 5.17 Restartspc()

return empty solution

5.4.4 Tabu Search

Tabu Search [Glo86] is a local search algorithm which uses constant memory in order to
avoid visiting the same solutions, and escapes from local maxima. In the tabu search for
RAFP, we maintain a tabu list of variables. The list contains variables which changed
their value recently. A variable in the tabu list will not change its value unless it yields
a better solution than the best solution!. Procedures 5.18-5.24 describe the tabu search
algorithm for RAFP.

Procedure 5.18 StopCriterionReachedrs()

return false

Procedure 5.19 ChooseCandidaters(Solution Current, Neighborhood Size K)
Generate RandomN eighbor(Current, K)

Procedure 5.20 TabuF orbidSolution(Solution Candidate, Solution Current)

for each variable index ¢ do
if Candidate.Var; # Current.Var; and TabuList.Contain(i) then
return true
end if
end for

return false

Procedure 5.21 TabuUpdate(Solution Candidate, Solution Current)

for each variable index ¢ do
if Candidate.Var; # Current.Var; then
TabuList.InsertFront (i)
end if
if TabuList.Size() > Maximum allowed tabu list size then
TabuList. RemoveBack()
end if

end for

! Here we deviate from the common implementation of tabu search since a-priori it seemed to be
better. In our variant, instead of choosing the best neighbor that is not forbidden, we choose some
neighbor which is not forbidden.

29

Procedure 5.22 AcceptanceCriterionReachedrg(Solutions Best, Current, Candidate)
if EvaluateSolution(Best) < EvaluateSolution(Candidate) or not
TabuForbidSolution(Candidate, Current) then
TabuUpdate(Candidate, Current)
return true
end if

return false

Procedure 5.23 RestartCriterionReachedrs()

return false

Procedure 5.24 Restartrs()

return empty solution

5.4.5 Simulated Annealing

Simulated Annealing [JV83] is a local search algorithm which uses the concept of
temperature in order to change its behavior during the search. The acceptance criterion
of a neighbor solution might approve a solution which has a lower quality than the
current solution. The probability of accepting worse solutions is a function of its relative
quality and the temperature. There is an initial temperature and a cooling rate, where
low temperatures yield low acceptance probabilities of worse solutions. Procedures
5.25-5.29 describe the simulated annealing algorithm for RAFP.

Procedure 5.25 StopCriterionReachedg ()

return false

Procedure 5.26 ChooseCandidateg a(Solution Current, Neighborhood Size K)
Generate RandomN eighbor(Current, K)

Procedure 5.27 AcceptanceCriterionReachedga(Solution Current, Solution Candidate)

T« RZte
A + FEvaluateSolution(Candidate) — EvaluateSolution(Current)
if A >0 then

P+1

else

P« AT

end if
return true with probability P

return false

30

Procedure 5.28 RestartCriterionReachedg ()

return false

Procedure 5.29 Restartsal()

return empty solution

5.4.6 The Cross-Entropy Method

The Cross-Entropy Method [RK04] is a stochastic algorithm used for simulation of
rare events and for optimization. The Cross-Entropy Method for RAFP maintains a
probability distribution function for the domain values of each variable. Initially, the
probability distributions are uniform. In each iteration, we sample n solutions from the
current distribution, and evaluate them. We take the best [p x n] solutions, for some
0 < p < 1, to shape the distribution for the next iteration, using a smoothing factor

and the current distribution. Procedures 5.30-5.34 describe the cross entropy method.

Procedure 5.30 StopCriterionReachedcg()?

return false

Procedure 5.31 ChooseCandidatecr(Sample size n, Smoothing factor «, Elite ratio p)

Samples < an empty list
for n times do
for each variable index ¢ do
Current.Var; < Random value according to pdf;
end for
Current.Val < EvaluateSolution(Current)
Samples.Insert(Current)
end for
Elite < [p x n| best samples in Samples
for each variable index ¢ do
pdf! < distribution according to Elite
pdfi < a x pdf] + (1 — a) x pdf;
end for

return best sample in Samples

Procedure 5.32 AcceptanceCriterionReachedc g (Solution Candidate)

return true

2 In our current implementation of the cross-entropy method, the StopCriterionReached() contains
what is under RestartCriterionReached() and the Restart() procedure returns an empty solution

31

Procedure 5.33 RestartCriterionReachedcg(Convergence constant €)

return Vimaxpdf; > 1 —¢

Procedure 5.34 Restartcp()

Initialize pdf]s as uniform distributions biased by the initial solution’s values

Set a new random seed

5.4.7 A Greedy Algorithm

The greedy method described here is a natural one for RAFP: For some variable ordering,
pick the value of each variable as the one which optimizes the objective function of
RAFP, while satisfying all constraints derived from previous variables assignments.
Procedures 5.35-5.39 describes the greedy algorithm for RAFP.

Procedure 5.35 StopCriterionReachedgreedy()

return CurrentVar > n

Procedure 5.36 ChooseCandidatecreedy(Solution Current, Variable CurrentVar)

Candidate < Current
BestCandidate < Worst solution
for Value in CurrentVar.Values do
Candidate.CurrentVar < Value
if BestCandidate.Value < EvaluateSolution(Candidate) then
BestCandidate + Candidate
end if
end for
CurrentVar < CurrentVar + 1

return BestCandidate

Procedure 5.37 AcceptanceCriterionReachedgreeday(Solution Current, Solution Candidate)

return true

Procedure 5.38 RestartCriterionReachedcreedy()

return false

Procedure 5.39 Restartgreedy()

return empty solution

32

5.5 Leveraging the Greedy Algorithm

All algorithms above, except the greedy algorithm, yield a series of solutions, terminated
by the timeout. The greedy algorithm yields one solution and stops. Greedy’s run time
might be below the timeout, and it might be useful to use the remaining run time for

other computations.

5.5.1 Iterated Greedy

First, We can use the greedy algorithm to produce a series of solutions by using several
variable orderings, since it may produce a different solution for each variable ordering.
Procedures 5.40-5.44 describes the greedy loop algorithm for RAFP.

Procedure 5.40 StopCriterionReachedgreedyLoop()

return false

Procedure 5.41 ChooseCandidategreedyroop(Solution Current, Variable CurrentVar)

Candidate + Current
BestCandidate < Worst solution
for Value in CurrentVar.Values do
Candidate.CurrentVar <+ Value
if BestCandidate.Value < EvaluateSolution(Candidate) then
BestCandidate < Candidate
end if
end for
CurrentVar < CurrentVar + 1

return BestCandidate

Procedure 5.42 AcceptanceCriterionReachedreedyrLoop(Solutions Current, Candidate)

return EvaluateSolution(Current) < EvaluateSolution(Candidate)

Procedure 5.43 RestartCriterionReachedgreedy()

return CurrentVar > n

Procedure 5.44 Restartgreedy()

Produce a random variable ordering
CurrentVar + 1

return empty solution

33

5.5.2 Hybrid: Greedy + Search

Another way of using the greedy algorithm is to start with its solution as an initial
solution for any of the other algorithms above. For most of the algorithms above it allows
a local search in the neighborhood of the greedy solution, hopefully a neighborhood
with high-quality solutions.

5.5.3 Hybrid for the Cross-Entropy Method

For The Cross-Entropy Method, running the greedy algorithm first returns a solution
that we can use in another way: Initially, the probability distributions have the weight
0 < w < 1 for the initial solution’s values, and uniform distribution for the rest of the
values. This biases the distribution towards the values of the greedy solution, that have

high qualities, we believe.

34

Chapter 6

Empirical Results: Individual

Algorithms

6.1 Implementation

We implemented all algorithms from chapter 5 in C++ under Windows 10. We ran the
algorithms serially on a Dell Vostro 3360 with Core i7-3517U at 1.9-2.4Ghz, using the
same timeout.

6.1.1 Inputs

We generated random inputs, using the following values for RAFP:
e Random number of variables — n € [1..200]
e Constant set of tactics — |D| = 6000
e Derived variables domain — D; = [1 + % x(1—1),..., |qu x i|, for i € [1..n]
e Random unary utility — U : D — [0..1]

e Random binary hardness parameter — L € [1..10]

e Random binary utility with L 4 1 values, equally distributed in the range [0, 1] —
U:DxDw[0,1,%,...,1]
e Random forbidden pairs matrix, each value is 0 with probability L%H -

1 U(d;,d;i) >0
F(d;, dj) = (di, d;)

0 otherwise

e Random number of resource types — m € [1..20]
e Random resource mapping — R : D +— [1..m]

e Random bounds over each resource type — B; € [1..30], for i € [1..m]

35

6.1.2 Anytime behavior

Figure 6.1 shows a comparison of the performance profile of the algorithms [Zil96], using
a timeout of 1 second, over 50 random inputs. We can see that there is a cluster of
similar anytime behavior of hybrid algorithms, i.e., algorithms that used the greedy as
an initial solution. The cluster’s quality is high, but there is a low improvement trend
long before it reaches the timeout. Algorithms which do not use the greedy as an initial
solution have diverse qualities. Simulated Annealing and Stochastic Hill Climbing reach
the highest score among the non-hybrid algorithms. Our basic Random Search and

Random Walk are inferior to the other algorithms, as expected.

6.2 Automatic Parameters Tuning

An algorithm’s parameters have a significant impact on its performance, and a systematic
tuning is less prone to biases. There are several efficient methods and tools for automatic
parameters tuning (or algorithm configuration): GGA [AST09] uses genetic algorithms
to search the configurations space. irace [LIDLCT16] uses iterated racing i.e. maintains
a distribution from which it samples configurations and update the distribution according
to the samples’ performance. SMAC [HHLB11] iterates between learning a model from
algorithm’s runs, selecting configurations from the model and comparing them to the
best known configuration. ParamILS [HHLBS09] uses iterated local search in the space
of configurations. ParamILS is probably the most widely used and cited state-of-the-art
tool for parameter tuning. It has been used mainly to reduce the run time of algorithms.
It has dozens of academic applications e.g.,[HBHHO07|, [HHLB10], [VFG'11] and several
industrial applications, on which it yielded significant speed-ups over state-of-the-art

solvers.

6.2.1 Automatic Parameters Tuning for RAFP

We used ParamlILS for automatic tuning of the parameters of the algorithms that we
implemented. Since we are solving in real-time, the objective of the tuning is to get the
best quality at a given timeout. One benefit of a real-time algorithm is that for a given
offline time budget, it can be tuned much more than regular algorithms.

First, we used the same 50 random inputs that we used before, with a tuning process of
1500 seconds, in order to tune the parameters of the algorithms for the best quality at a 1
second timeout. RandomSearch, Greedy, Greedy + RandomSearch and Greedyroop
did not participate in the tuning process since they have no parameters to tune. Figure
6.2 shows an anytime behavior which is comparable to the behavior we saw in figure
6.1. We can see that all the non-hybrid algorithms improve their quality more than
the hybrid algorithms. Simulated Annealing and Stochastic Hill Climbing now reach a
quality which is higher than the hybrid cluster. The Cross-Entropy Method has a quite

low quality at the timeout but the biggest improvement trend.

36

T 60 80 L0 90

S1-
OHS -
VS ==
\<E||
Sq=- =

dOOTAdTTLD —o—
S1+AQTITRD —o—
OHS+AQETD —o—

VS+AQIRDO

Suruny a1ojoq ‘syndur WOPURI ()G ISA0 UBSN - IOIARYSQ SWIIAUY :T°Q 9INSI

[08S] aw 1L NdD
S0
M M M M M M M M M M

MA+AQTITLD —o—
SH+AJIRLO —o—

FO+AATRD

AQTRO —o—

0

¥'0 €0 ¢0 T0 0

1sIom 0} dAle|dYy — Anend swnAuy

9T

K11 end

37

Quality

16—

14—

12

10¢

CE
—e— GREEDY
CREEDY+CE
el P : ; : : : : . | —e— GREEDY+RS
'y) ; A . " : o | —*— GREEDY+RW
: : : : : : : . | —e— GREEDY+SA
——o— GREEDY+SHC
—e— GREEDY+TS
—o— GREEDYLOOP
-=-=RS
- = =RW
- ==GA
= = =SHC
-==TS

P acS-acacececanen eSSt

e -

== Q0
s o

W W W W W W W W W |

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
CPU Ti ne [Sec]

Figure 6.2: Anytime behavior - Mean over 50 random inputs, after tuning

In order to focus on real-time scales, we now shift out focus to the quality of the
algorithms at timeouts of 0.1 seconds. In the tuning process, we used 10 random inputs,

a tuning time of 1500 seconds, and a timeout of 0.1 seconds for each algorithm.

6.2.2 Tuning of a Single Algorithm

The results of the algorithms’ tuning are shown in figures 6.3 (no initial solution) and 6.4
(hybrid). In each figure we can see the quality of one algorithm normalized to its initial
quality, over two separate runs. Each run of ParamILS finds a different configuration
by using a different seed. The two versions of each tunable algorithm will help us create
a diverse set of algorithms for the later build of a portfolio. We ran all algorithms for
the same tuning time, and the graphs end at the last time of improvement. We can see
that the tuning process yields a quality improvement of up to 35%, which is a significant

improvement.

6.2.3 Comparison of Algorithms During Tuning

After we saw each algorithm’s improvement by itself, we want to see the comparison
between algorithms, including the untunable ones. The results of algorithms comparison
are shown in figures 6.5 (First version of all algorithms) and 6.6 (Second version of all
algorithms). Both figures include the untunable algorithms which have only one version.
We can see that the ranking between algorithms is changing during the tuning process,
and that it is a similar ranking when comparing all first versions and all second versions
of the algorithms. The leading algorithms at the end of the tuning are Greedy+SA,
Greedy+SHC and Greedy+CE.

39

Run Seed 1 Run Seed 1

1.02 Run Seed 2 12 Run Seed 2
1.0151- 1151

> >
g 1.01F g 11f
1.005 - 1.05-
ir ir
I i i i i i i i i i i I i i i i
25 30 35 40 50 60 65 70 75 0 100 2 400 500

Quality during ParamlLS tuning - RW Quality during ParamlLS tuning — SHC

45 55 00 300
CPU Ti ne [Sec] CPU Ti ne [Sec]

(a) Random Walk (b) Stochastic Hill Climbing

Quality during ParamILS tuning - TS Quiality during ParamILS tuning — SA

Run Seed 1 Run Seed 1 s
118 - Run Seed 2 12 Run Seed 2
116F
114F
1150
112
>
11 Z
T 11f
1.08F 3
1.06F
1.04 1051
102f
1+ 1+
0 500 } 1000 1500 0 100 200 300 400 500 600 700 800
CPU Tine [Sec] CPU Ti ne [Sec]
(c) Tabu Search (d) Simulated Annealing

Quality during ParamiILS tuning - CE

Run Seed 1| :
Run Seed 2
13

11r

0 50

0) 1000 1500
CPU Tinme [Sec]

(e) The Cross Entropy Method
Figure 6.3: Automatic Parameters Tuning: Initial solution = None, Benchmarks = 10, Tuning
time = 1500 sec, Timeout = 0.1 sec, L € [1..10]

40

Quality during ParamlILS tuning - GREEDY+RW Quality during ParamILS tuning - GREEDY+SHC

Run Seed 2 i Run Seed 2
1+1.8e-08 1.018
1+1.6e-08 Lower
1+1.4e-08 |- 1014
> 1+1.2e-08[- > 1.012-
= L = 1.01p
= 1+1.0e-08 <
3 148.06-00] 3 1.008F
1+6.0e-09 1.006
1+4.0e-09 1.004
1+2.0e-09 1.002
1+0.0e+00 s
\ i i i i i i i i i i \ i i i i i i
0 50 100 150 200 250 300 350 400 450 500 0 100 200 300 400 500 600
U Ti ne [Sec] CPU Ti ne [Sec]
(a) Random Walk (b) Stochastic Hill Climbing
Quiality during ParamILS tuning - GREEDY+TS Quality during ParamILS tuning - GREEDY+SA
E i k==
148.0e-09 Run Seed 2 Run Seed 2
: L . AN [Lozsk
1+6.0e-09 1.02+
> >
= Z 1015
1+4.0e-09 -
o] o]
1.01
1+2.0e-09
1.005
1+0loe+oo 7\ L L L L L L l L L
0 200 400 600 800 1000 1200 0 500 . 1000 1500
CPU Ti ne [Sec] CPU Ti ne [Sec]
(c) Tabu Search (d) Simulated Annealing
Quality during ParamILS tuning - GREEDY+CE
1.021
Run Seed 1
1.018 Run Seed 2| :
1.016f
1.014f
1.012f
>
— 1.01-
®
3 1.008F
1.006
1.004
1.002
1k
\ i i i i i

0 50 100 150 200 250
CPU Tine [Sec]

(e) The Cross Entropy Method
Figure 6.4: Automatic Parameters Tuning. Initial solution = Greedy, Benchmarks = 10, Tuning
time = 1500 sec, Timeout = 0.1 sec, L € [1..10]

41

Quality

00}

5 -8D
LA o ________________________ ___________
T S O PR PP
. % % % % | %
&
200 400 600 800 1000 1200 1400

CPU Ti ne [Sec]

—S-RW
—~E-sHC
-©-Ts
—©-sA
CE
-(© - GREEDY+RW
~(©) - GREEDY+SHC
-~ GREEDY+TS
-(© - GREEDY+SA
GREEDY+CE

—-©-RS

-(®- GREEDY, oP

-(®- GREEDY+RS
GREEDY

Figure 6.5: Automatic Parameters Tuning - Ranking Version 1: Benchmarks = 10, Tuning time = 1500 sec, Timeout = 0.1 sec, L € [1..10]

42

[0T'T] 2 77 00s T°(0 = INOLWIL], ‘Dos (OG] = oW} SUMUNT, ‘)] = SYIRWYOUOY :g UOISIoA SUIfuey] - SUIUN], SIojowRIRd OIJRWOINY :9'Q 0IMS3I]

[08S] au 1L NdD
00¥T 00¢T 000T 008 009 (010)74 00¢

@ ! ! ! ! ! ! ,

____________ UV 0000 OO0 OO WO OO 00000 SO 00L OO FUT PP SO0 OTS S 00 OO TS OO SOTS SO0 OO OSSO OTE OO OB SO O s 1

AJQTRD
SY+AQIRD - -

Ohaamp -O-
-
‘I+AQTRD
VS+AQTIRD =% -
‘SL+AQTRD =% -
OHS+AQIRD ~ % -
Wd+AQTRD =% -

‘D

o = |
Nm._. —— ®. - II - - II - - II - - IIXI - =)= - II - Y - - II - W e I% c

. _
OHS ¢ D R I i i R K= m == mm - - ==X=
wSN_ % W= m m m im m P o e e o - XI..W.lIIXIIIIIIIIvW;.uIIIIhXIIh.Il*IW.!Il*.,

1SI0M 0} BAIR|aY — Buluny Sjweled buunp Auend

43

Ayiend

1.2

&

Al gorithm Qualities

@3‘» < & & & L ezow (52@ Fr F &k ~kX<29 \\;@ <O <Z~$'”4x 4X(‘SV & v L

X & L8 P
fﬁffo@@@fﬁé@ﬁfffé@
Al gorithm

Figure 6.7: Automatic Parameters Tuning - Validation Qualities: Benchmarks = 10, Tuning
time = 1500 sec, Timeout = 0.1 sec, L € [1..10]

6.3 Validation of Final Configurations

The validation is the process of a deeper evaluation of the final configuration. Here we
used 500 random inputs, in the same timeout of 0.1 second. The results of the validation
are shown in figure 6.7. We can see that the two versions of the leading algorithms at
the end of the tuning process (Greedy+SA, Greedy+SHC and Greedy+CE) are leading
in the validation process too. This is a sign that the training problems represented well
the test problems. We can also see that the quality of the best algorithms is about 2.2

times than the quality of the worst algorithm, Random Search.

44

6.4 Harder Problems

The random inputs described in 6.1.1 are very diverse. Next, we focus on problems
which we created using L = 1. This makes the forbidden pairs matrix F' get uniform
random values from {0,1}. Thus, we have a probability of 0.5 that any pair of tactics is
possible in a solution. This is our heuristic method of creating harder problems. We
repeated the tuning and comparison process for these problems, and the results are
shown in figures 6.8-6.12. Generally, we can see in figures 6.8 and 6.9 that the maximum
tuning profit is about 19%, less than the tuning profit over general problems, but still
significant. Figures 6.10 and 6.11 show a ranking of algorithms over hard problems in
which several non-hybrid algorithms take the first places during the tuning process. In
figure 6.12 we can see the quality of the various algorithms in the validation process.
We can see a smaller span of qualities when comparing to general problems: a factor of
1.6 between the best and the worst quality of algorithms. Several non-hybrid algorithms
are better than some hybrid algorithms, and the the non-hybrid simulated annealing is

not far from the best algorithm.

6.5 Algorithms Configurations

Tables 6.1-6.5 describe for each algorithm its tunable parameters, their range and initial
configuration. Then for each version of algorithm and problem set (general or hard) we

can see the final tuned configurations.

45

Quality

Quality

Quality during ParamILS tuning - RW Quality during ParamlLS tuning — SHC

Run Seed 1 Run Seed 1
1.06 Run Seed 2 B Run Seed 2
‘ 11
1.05F
1.08-
1.04
>
Lo3l = 1.06
©
1.02F a 1.04-
1.01p 102F
1k
1k
0.99 i i i i i i I i i i i i i i i i i
0 100 200 . 300 400 500 600 0 50 100 150 200 250 300 350 400 450 500
CPU Ti ne [Sec] CPU Ti ne [Sec]

(a) Random Walk (b) Stochastic Hill Climbing

Quality during ParamILS tuning - TS Quiality during ParamILS tuning — SA

Run Seed 1 : Run Seed 1
B b . RRE Srpe
B : 1.08F -
1154 Lo7r
1.06 /
2105t - = -
11F has g ‘
T 1.04F
1.03F
1.05F
1.02F
1.01F
s
e
; \ \ \ ; \ 09911 ; ; ; ; ;
200 400 600 800 1000 1200 0 200 400 600 800 1000
CPU Time [Sec] CPU Ti ne [Sec]
(c) Tabu Search (d) Simulated Annealing

Quality during ParamiILS tuning - CE

Run Seed 1
11 Run Seed 2
1.08-
Z106F
©
8‘ 1.04
1.02-
1k
1 i i 1 I i i i 1 i
0 100 200 300 400 500 600 700 800 900

CPU Tinme [Sec]

(e) The Cross Entropy Method
Figure 6.8: Initial solution = None, Benchmarks = 10, Tuning time = 1500 sec, Timeout = 0.1
sec, L=1

46

Quality

Quality

Quality during ParamlILS tuning - GREEDY+RW

Run Seed 1 . B : s 1.06
Run Seed 2 : : : EE
1.0151 : : : : : : : ’ 1.05
1.04
1.01 -
+~ 1.03
<
1.005 S 102
1.01
1+ <O O
: ! 1
1 i i i i i i i 0.99
0 20 40 100 120 140 160

6(():PU Ti8n(r)e [Sec]
(a) Random Walk

Quality during ParamILS tuning - GREEDY+TS

Quality during ParamlILS tuning - GREEDY+SHC

Run Seed 1
Run Seed 2

Run Seed 1
i S
1034 ‘ 1.04
1.025F :
1.03
1.02F
>
-
1.015+ 102
©
1.01+ 8’
1.01
1.005+
1k
1
0.995-
0.99 - - . : L L 0.99
0 100 200 500 600 700

300 400
CPU Ti ne [Sec]

(c) Tabu Search

i i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500
U Ti ne [Sec]

(b) Stochastic Hill Climbing
Quality during ParamILS tuning - GREEDY+SA

Run Seed 1
Run Seed 2

| i | | ; i i i |
0 100 200 300 400 500 600 700 800 900
CPU Ti ne [Sec]

(d) Simulated Annealing

Quality during ParamILS tuning - GREEDY+CE

1.06 Run Seed 1
Run Seed 2

0.99
0 200 400 600 800

CPU Tinme [Sec]

1000 1200

(e) The Cross Entropy Method

Figure 6.9: Automatic Parameters Tuning. Initial solution = Greedy, Benchmarks = 10, Tuning

time = 1500 sec, Timeout = 0.1 sec, L=1

47

I
1000

Quality

Quality during ParamlILS tuning MJ_um_m:<m to worst

13b NN VRN S SR I Lo Ldide i SRR SN S SEY
HN R B I I T B I T R B I
L | S S SOUUUTE SRS P ISP SO T SR I ST O TS S P O L
AI : : : : : :
- o
k W W W W W W
200 400 600 800 1000 1200 1400

CPU Ti ne [Sec]

-©O-RwW
- sHC
-©-Ts
—©-sA
CE
- - GREEDY+RW
-(©) - GREEDY+SHC
-(®- GREEDY+TS
-(© - GREEDY+SA
GREEDY+CE
-O-Rs
-(@- GREEDY
- - GREEDY+RS
GREEDY

Figure 6.10: Automatic Parameters Tuning - Ranking Version 1: Benchmarks = 10, Tuning time = 1500 sec, Timeout = 0.1 sec, L =1

48

T = ‘99S T°() = JNOSWILT, ‘D9s (JOG] = owl) SUIUNT, ‘)] = SYIRWPUSY :7 UOISIOA SULURY - SUIUN], SI9joueIed JIIRWOINY :T'Q 9IN3Ig

[08S] aw 1L NdD

0ovT 00ZT 000T 008 009 ooy 002 o
M M M M M M 4
% = Se—¢
____________ L T
... —2'T
(@)
<t
.. —e'T
AQTRD
SH+AQIRD - -

Clhazze -O-
S —O—
‘D+AaIRD
‘YS+AQaRD % -
‘SL+AQTIRD =% -
OHS+AQIRD ~ % ~
M+AQTmD — % -

‘D

oy —¥—
Nm._.lvT
NOlevT
g ——

1SIOM 01 8AlTe|aY — Buiun) gTjweled Buunp Aiend

K11 end

Quality

Al gorithm Qualities

g T ﬁmfﬁm v& W

,@mé\;\% P (520'» N 620 J’L\\x&} & r o e
O & 9 O L
& & & & 8@6’ 6839 &

Al gorithm

Figure 6.12: Automatic Parameters Tuning - Validation Qualities: Benchmarks = 10, Tuning
time = 1500 sec, Timeout = 0.1 sec, L =1

50

sIojourered YoIeog NQR], - SUIUNT, SI0JoWRIR] JJRWOINY €9 9[qR],
01T 00T 0sT 0sT 01T 0¢ 08T 08T 00T 00z ‘""" ‘0z ‘0T ozIs NqE],
71 91 L1 1T 8 6 6 6 01 0z ""‘e'1 pooyioqySIoN
preq preq preq prey
SL+Apoord SL+4Apoatn SL SL .
QI +Apoain) QI +Aposin) SL SL > > . . Syuoo Tenmuy a8uey IojouwrereJ
¢ Byuoo reurq | -Syuoo [eurg g Syuoo eurg | -Syuod [eurq Z 'Syuod [eur [‘Syuoo [eul g ‘Syuoo [eur | ‘SYuod [eulqg
sIojouwrered Surquil) [T Ol3sLY001§ - SUTUN], sIojouered dI)RWOINY :g'9 S[qR],
T 61 €T 9 1 1 v (e 01 0g‘ " ‘g1 pooyIoquSLN
preq preq preq prey
DHS+Apo91n DHS+Apsarn OHS OHS .
OHS+Apoain) DHS+Apoa1n) DHS DHS Syuoo renruy a3ury Iojowrereq
7 Sguoo (eurg | ‘Sguoo purg z Sguoo emig | ‘Sguco [euLd ¢ 'Syuoo [eury T ‘Syuoo [eul g ‘Syuod [eur{ [‘SYUOD [eUl]
SIojomreIR [RA\ WIOPURY - SUIUN], SIdJOWRIR] JI)RWOIMY 19 S[(R],
9 6 ST 02 L C 0T 91 01 0z‘ "'z pooyioquSN
preq preq preq preq
MY +Apoar) MY +Apoard NI M .
MY +Apooin) MY+Apoosin) MY MY) - . . Syuoo Tenmuy a8uey IojouwrereJ
7 ‘Syuoo [eurq | -Syuoo eurq g Syuoo [eurg | -Syuod [eurq ¢ 'Syuoo [eur [‘Syuoo [eul g ‘Syuood [eur] ‘SYuod [eulqf

51

Final config. 1

Final config 2

Final config. 1

Final config. 2

Parameter Range Initial config. Final mwﬂmm. 1 Final mw}:mm. 2 WNHmMoHuWMVH MWWM@MOHUW%VM SA SA Greedy+SA Greedy+SA
y y hard hard hard hard
Neighborhood 1,2,...,20 10 2 3 1 3 4 5 18 16
Init. Temperature 100, 10,...,0.0001 0.1 0.01 100 0.0001 1 0.1 0.0001 0.0001 0.001
Temperature Step 11,1.1,...,1.000001 1.001 11 11 1.1 1.1 1.1 11 11 1.01
Table 6.4: Automatic Parameters Tuning - Simulated Annealing Parameters
N
Yoo
. . . . Final config. 1 Final config 2 Final config. 1 Final config. 2
Parameter Range Initial config. Final Munm_mm. 1 Final Muom%mm. 2 HUMWH& MOWHW_%WH WMMHWH Moﬂwn%wum CE CE Greedy+CE Greedy+CE
eedy eedy hard hard hard hard
#Samples 10, 20, ..., 100 50 70 40 90 50 90 90 90 40
Initial Solution’s Weight 0.0,0.1,0.2,...,0.9 0.5 0.0 0.0 0.5 0.9 0.0 0.0 0.5 0.9
Smoothing Factor («) 0.1,0.2,...,0.9 0.5 0.5 0.7 0.7 0.1 0.4 0.4 0.7 0.1
Elite Factor (p) 0.1,0.2,...,0.9 0.5 0.1 0.4 0.5 0.1 0.2 0.1 0.2 0.3
Convergence distance (€) 0.1,0 ,0.00001 0.001 0.00001 0.1 0.00001 0.0001 0.1 0.01 0.1 0.0001

Table 6.5: Automatic Parameters Tuning - The Cross Entropy Method Parameters

Chapter 7

Constructing The Best Portfolio

Using a parallel portfolio of algorithms [HLH97| can significantly improve the perfor-
mance relative to a single algorithm [GSO01]. The idea of a static portfolio [PZ06] is to
run several algorithms in parallel, on separate cores, and after the time bound T has
elapsed, take the best result achieved by any of those algorithms. The same portfolio is
used for all inputs. A dynamic portfolio is a portfolio that can adapt per input [MS12].
Two automated methods for constructing a static portfolio are described in [HLBSS12].
These methods integrate the tuning process with the construction of the portfolio,
and was used to reduce the computation time of SAT-solving. The first method was
to treat a portfolio of algorithms as one algorithm with a configuration space of all
its components and tune this one algorithm to get the best quality. The second and
less exhaustive method, was a greedy method of using a highly parameterized single
algorithm, start with an empty portfolio and tune one algorithm instance at a time, to
find the best parameters we can, in order to improve the quality of the growing portfolio.
As any greedy method for a computationally hard problem, it is not optimal since the

results depend on the order of tuning.

We will focus on static parallel portfolios, composed of different algorithms, which
are already tuned. We also assume that the algorithms do not communicate during
their run. This process is modular and easily allows to get the best out of a given set
of algorithms. As before, our portfolio measure relates to the quality of the portfolio
when reaching the short and fixed timeout, and it cannot be based on an on-line time
consuming process like pre-runs, in order to keep the real-time requirements. We are
now interested in the following problem: Given a set of n algorithms, k& < n cores
and a set of benchmarks, how to choose the best parallel portfolio of k algorithms
according to some performance measure. This parallel portfolio is called wvirtual best

solver [XHHLB12]. We suggest a general method of solving this problem optimally.

53

7.1 Constructing a Portfolio as an Optimization Problem

Choosing a bounded subset of algorithms in order to achieve optimum for a given
performance measure is a special case of the subset selection problem [QYZ15]. We

define several variants of this problem.

7.2 K-Algorithms Cover Problems

7.2.1 Definitions

Definition 7.2.1. (K-Algorithms Cover Problem). An instance of the k-algorithms
cover problem is a 5-tuple (S, I, M, m,k), where:

e S is a set of n algorithms
e [is a set of inputs for S

e M : S x I~ Ris the quality of solution that each algorithm in S returns with

each input in 1

my : P(S) — R is a portfolio measure over I, of a parallel portfolio s C S, which
satisfies the property my; ({A}) = M(A,i),forie I, A€ S

e k < n is the number of algorithms to choose from S

A solution to the instance (S, I, M, m, k) is a parallel portfolio of k algorithms from S

with the best performance, according to mj:
s* = argmaxSCS:|s|=k(mI(5)) (71)

or

st = argminsCS:\s\:k(m](s)) (72)

Definition 7.2.1 allows to define the best performance measure m; as a maximum or
minimum, according to the context. In the follwing definition the performance measure

has to be maximized.

Definition 7.2.2. (K-Algorithms Max-Sum Problem) An instance of the k-algorithms
max-sum problem is an instance of the k-algorithms cover problem with the following
portfolio measure:

mr(s) = ZEZI (I}qlg;(M(A, z)> (7.3)
In words, the objective of a k-algorithms cover problem with this measure is to maximize

the portfolio’s sum of qualities across benchmarks.

In the follwing definition the performance measure has to be minimized.

54

Definition 7.2.3. (K-Algorithms Min-Max-Gap Problem) An instance of the k-algorithms
min-max-gap problem is an instance of the k-algorithms cover problem with the following

portfolio measure:

mr(s) = max (r{glggl Gap(A, 1, S)> (7.4)
Where
Gap(a,i, S) = IE?%((A i) — M(a,i) (7.5)

In words, the objective of a k-algorithms cover problem with this measure is to minimize
the portfolio’s worst gap to the optimal algorithm in .S, across benchmarks.
7.2.2 Examples

Ezample 7.2.4. Let (S,I, M, m,k) be an instance of the K-Algorithms Cover Problem,
with its first three components S, I, M defined as follows:

e 5= {Al,AQ,Ag}, thus n =3
o [= {iy,i2,13,14,15,1%6,%7}

e M is defined using the following table:

11 tp 13 14 U5 lg 7

A1 4 3 4 3 4 3

Now, for the K-algorithms max-sum problem, my(s) is given in (7.3).

if kK =1 we have:

mi({A1}) = Z(max M (A w) = M(Ay,i) =22 (7.6)

A
e \Actal iel

mr({As}) = Z(max M (A z)) = M(Ag,i) =22 (7.7)

iel Ae{Az} iel
A M A = M(As,1) =21 .
mi({As}) = ZGZI(A%}) > M (78)

Thus {A;} or {As} is the best 1-portfolio in this case.
If k =2, we have:

mi({A1, Ag}) = <Ae?}x?XA2} M(A, 2‘)) =14+4+4+44+4+4+4=25 (7.9)
i€ ’

55

my({Ar, Ag}) =) <AGI{I}3XA3}M(A,Z')> =3+4+34+44+3+4+3=24 (7.10)

el

my({Az, Az}) = <A€?}‘%3}M(A,z’)> =3+3+4+3+4+3+4=24 (7.11)
i€l ’

Thus {A;, A2} the best 2-portfolio in this case. For the K-algorithms min-max-gap,
mp(s) is computed according to (7.4), where Gap(A4,1,S) is computed from M using
(7.5):

11 1y 13 14 I35 ig It

A, 2 1 0 1 0 1 0
A3 0 1 1 1 1 1

if £k =1 we have:

mr({A1}) = max (min Gap(A,1, S)) = max{2,0,1,0,1,0,1} =2 (7.12)
iel \A€{A}

Ag}) = in Gap(A,i,S) | = 2,1,0,1,0,1,0} =2 7.13

m[({ 2}) I?Galx (AIEI}SAnz} CLp(Iz)) maX{ y Ly Yy Ly Uy Ly } ()

my({As}) = max (Ag%}Gap(A,z, S)) =max{0,1,1,1,1,1,1} = 1 (7.14)

Thus {As} is the best 1-portfolio in this case.

if K =2, we have

= i) = =2 1
my({A, As}) Hz‘lealx (Aegllr}Az}Gap(A,z,So max{2,0,0,0,0,0,0} (7.15)

Ay As)) = in Gap(A,i,S))| = 0,0,1,0,1,0,1Y =1 (7.16
mr({A1, As}) I?E%X<Ae?411r,lx43} ap(A, i,)) max{0,0,1,0,1,0,1} (7.16)

Ay, A3}) = in Gap(A,i,S)) = max{0,1,0,1,0,1,0} =1 (7.17
(e Aa}) = mae (| i Gap(4,0.5)) = max{0.1,0.1,0,1,0) =1 (1.7

Thus {41, Az} or {A2, A3} is the best 2-portfolio in this case.

56

7.3 Minimum Algorithms Cover Problems

For a given k, it is possible that the same performance can be achieved with k' < k.
A multi-core machine should use &’ cores to achieve maximum performance. More cores
do not contribute at all and might be used for other purposes. Another conclusion might
be that we should develop more diverse algorithms in order to utilize the multi-core
machine.

We define now the problem of finding the smallest best portfolio of algorithms. It is
equivalent to definition 7.2.1, except that k is a property of the solution and not a

parameter, and we allow k£ = n.

7.3.1 Definitions

Definition 7.3.1. (Minimum Algorithms Cover Problem). An instance of the minimum

algorithms cover problem is a 4-tuple (S, I, M, m), where:
e S is a set of n algorithms
e [is a set of benchmarks for S

o M : S x I — Ris the quality of solution that each algorithm in S returns with

each input in 1

e my:P(S) — R is a portfolio measure over I, of a parallel portfolio s C S, which
satisfies the property my; ({A}) = M(A,i),fori e [,A€ S

A solution to the instance (S, I, M, m) is a parallel portfolio of algorithms from S with

the best performance, and |s*| of minimal size, where
s* = argmaxscs(mr(s)) (7.18)

or

s* = argmingcs(my(s)) (7.19)

Minimum Algorithms Cover Problem can be defined with portfolio measures according
to definitions 7.2.2 and 7.2.3, to get the Minimum Algorithms Max Sum Problem and
the Minimum Algorithms Min-Max-Gap Problem, respectively.

7.3.2 Examples

Ezample 7.3.2. Let (S,I, M, m) be an instance of the Minimum Algorithms Cover

Problem, with the following properties:
o S={A;, Ay, As}, thusn =3

o [={iy,iz}

o7

e M is defined using the following table:

11 12
A1 0
A2 0O 1
As; 08 0.7

° m](s) = Zie[(maXAEs M(A, 1))

For k =1 we have
mr({Ai1}) =14+0=1
m]({AQ}) =0+1=1
mr({As}) =0.84+0.7=15
Thus {43} is the optimal solution.

For &k = 2 we have
m[({Al,AQ}) =14+1=2

m[({Al,Ag}) =14+07=1.7

m]({AQ,Ag}) =08+1=138

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

Thus, {41, A2} is the optimal solution. As we can see, since {43} ¢ {A;, A2}, the

solutions are not monotonic.
For k£ = 3 we have
m]({Al, AQ, Ag}) =14+1=2

(7.26)

Thus we can conclude that the minimum & for maximum portfolio measure is 2, and

the minimum portfolio is {Aj, As}.

Generally, the fact that two portfolios with consecutive sizes share the same quality (in

our example 2-portfolio and 3-portfolio), does not imply that the portfolio has reached

its optimum quality, as we will see in chapter 8.

58

7.4 Modeling the K-Algorithms Cover Problem with SMT

The Satisfiability Modulo Theories problem (SMT) [KBS10] is to decide the satisfiability
of a first-order formula over some decidable theories. Among theories in use we find:
Arithmetics [DDMOG6], the theories of bit-vectors [BDLI8]|, arrays [McC62] and equality
of uninterpreted functions [Ack]. There is an extensive research in the field of SMT, and
SMT solvers that participate in contests manage to solve large problems within reasonable
run times. Next, we represent our algorithms cover problems using SMT with the theory
of Quantifier-Free Linear Real Arithmetic (QF_LRA). This theory enables representation
of Boolean formulas of inequalities between linear polynomials, using real variables. For
example, consider the following QF_LRA formula: F' = (z > -2)V (y > -1 Ay <5).
F contains two real variables = and y, that are used in predicates within a Boolean

formula. The set of solutions to this formula is a union of two areas in the x-y plane.

7.4.1 Modeling the K-Algorithms Max-Sum Problem with QF LRA

The following encoding is the SMT representation of the K-Algorithms Max-Sum Prob-

lem.

The real variables are V; for ¢ € I ,which represent the quality of the portfolio over

benchmark 7.

The Boolean decision variables are A; for i € [1..n], which represent whether algo-

rithm A; is chosen for the optimal k-portfolio.

The objective is to maximize the sum of qualities across the benchmarks and is defined

as:

max Z Vi (7.27)
i=1
Constraints (7.28)-(7.30) below are connected by a logical and (A).

The wvalue choice constraints allow a choice of quality for each benchmark, accord-

ing to a chosen algorithm, using M:
Viel: (Vi=M(A,i)V (Vi=M(A1)V...V(Vi=M(Ap,1)) (7.28)

The implied algorithm constraints connect between the chosen quality of a benchmark

and the algorithms that return this quality:

Vie LV e{M(Aj,i)}ieprny: (Vi=V) = \V A (7.29)
A€S:M(Ag)=V

59

The algorithms cardinality constraints make sure that the number of chosen algorithms

of a portfolio will be &k, when we take true=1 and false=0:
n
d A=k (7.30)
i=1

Such constraints are not allowed in QF_LRA, but they can be reduced to propositional
logic, which is allowed in QF_LRA. We used the encoding suggested in [Sin05] for this

purpose.

In the above SMT representation, 7.28-7.30 allow the choice of exactly k algorithms,
with values from M. When combined with 7.27, the maximum sum of k-subsets will be

produced when V; = maxes M (A, 1), thus the model expresses measure 7.3.

7.4.2 Modeling the K-Algorithms Min-Max-Gap Problem with QF _LRA

The following encoding is the SMT representation of the K-Algorithms Min-Max-Gap
Problem.

The real variables are V; for i € I ,as in subsection 7.4.1.

In addition, the single real variable V is used to hold the maximum of V;’s.
The Boolean decision variables are A; for i € [1..n], as in subsection 7.4.1.
The objective is to minimize the worst gap across benchmarks, marked by V:
min V' (7.31)

Constraints (7.32)-(7.35) below are connected by a logical and(N).
The maximum constraints ensure that V' is the maximal (worst) gap across benchmarks:

Viel:V >V, (7.32)
The value choice constraints role and encoding is identical to (7.28):
Viel: (V;=Gap(A1,i,S))V (V; = Gap(A2,i,S)) V...V (V; = Gap(Ay,i,S)) (7.33)
The implied algorithm constraints role and encoding is identical to (7.29):

Vie I,V € {Gap(A;,i,9)}jeqmy : (Vi=V) — \/ A (7.34)
A€eS:Gap(A,i,S)=V

60

The algorithm cardinality constraints role and encoding is identical to (7.30):

d A=k (7.35)

In the above SMT representation, 7.33-7.35 allow the choice of exactly k algorithms,
with values defined by 7.5. When combined with 7.32; V' becomes the maximum of V;
values. The minimum of maximum gaps from the optimal solution over all k-subsets
algorithms values will be produced when V; = minges Gap(A4,i,S), thus the model
expresses the measure 7.4.

61

Chapter 8

Empirical Results: Portfolios

8.1 SMT Modeling

We implemented an SMT modeling program with the following interface, as described

in chapter 7:
e Input:

— A matrix M, where M;; represents the quality of the solution that algorithm

i € [1..n] returns over input j

— A number k < n of algorithms to choose
e Output:

— SMT encoding of the k-Algorithms Max-Sum problem
— SMT encoding of the k-Algorithms Min-Max-Gap problem

8.2 SMT Solving

Some of the most competitive SMT solvers are CVC4 [BCD'11], Yices [Dutl4] and
Z3 [dMBO08]. We chose to use Z3. Z3 is a high-performance SMT solver developed by
Microsoft Research. It is used in various software verification applications [CDH'09],
[Leil0], [WPF110]. Z3 supports various theories, including the quantifier-free linear
real arithmetic (QF_LRA) theory in our setting.

8.3 Portfolios Construction — Tuned Algorithms

We built the matrix M from the results of the 24 tuned algorithms over the inputs that

we described in chapter 6, for both portfolio measures that we described in chapter 7.

63

8.3.1 Three Portfolio Models

We built three portfolios, for each k € [1..24]:
1. Optimal — Uses the program-generated SMT encoding for k£ and solves with Z3
2. Greedy — Chooses the best algorithm to complete a partial portfolio, for k iterations
3. K-Best — Sorts the algorithms by quality, and takes the first k algorithms.

The greedy portfolio is a natural choice since we have a special case of the subset
selection problem. The K-Best portfolio is one which does not use the information
about the quality of each algorithm per-instance, thus we expect it to be inferior to the
two other portfolios. Obviously any method of portfolio construction eventually reaches

the optimum if £ = n.

8.3.2 Results

The results of the three portfolios are shown in figures 8.1-8.4. In the Max-Sum
figures the qualities sum, which have to be maximized, is normalized to the best single
algorithm’s quality. In the Min-Max-Gap the qualities max-gap, which have to be
minimized, is normalized to the best non-zero quality. This normalization influences
the improvement factors that we describe, since we are using percents. Each figure
describes the number of benchmarks, the timeout for a single algorithm’s run, and L,

the hardness parameter that we used and described in chapter 6.

64

Qualities Sum

1.02

1.015

1.01

1.005

Benchmar ks = 500
Timeout = 0.1 Sec

LO[1. . 10]

—>— KBest Portfolio
—@— Optimzed Portfolio
—O— G eedy Portfolio

10)) 15 20
#Al gorithms in portfolio

Figure 8.1: Max-Sum portfolios. The optimal portfolio reaches its maximum improvement
of about 2% at a portfolio size of 17, with a decreasing rate of improvement. This does not
guarantee convergence, and as far as we know convergence is identified only when a partial
portfolio reaches the quality of the full portfolio. The greedy portfolio’s quality is almost identical
to the optimal portfolio. The K-Best portfolio’s quality is lower as expected, and it reaches the
optimum quality at a portfolio size of 19.

65

Benchmar ks = 500
Timeout = 0.1 Sec
L=1

—»— KBest Portfolio

L12| @ optimized Portfolio ||/

—O— G eedy Portfolio

11

1.08

1.06

Qualities Sum
I
:

0 e R B I B S B L B B Y PR FE I R L RERE SORE BT PR PR PR L E R P R T SR R

0.98—

10) . 15 20
#A gorithnms in portfolio

Figure 8.2: Max-Sum portfolios for hard problems (L=1).The optimal portfolio reaches its
maximum improvement of 11% at a portfolio size of 15. This is not apparent from the graph
but can be seen in the numerical results. The 11% improvement is higher than the improvement
we saw in the portfolio over general problems. Again, the greedy portfolio almost coincide with
the optimal portfolio, and the K-best portfolio is inferior, and it reaches the optimal portfolio
only at a portfolio size of 13.

66

Qualities Max—gap

15

[y

0.5

Benchmar ks = 500
Timeout = 0.1 Sec

LO[1. . 10]

—¢— KBest Portfolio
—®— Optimized Portfolio

—EO— Greedy Portfolio

| | | |

10)) 15 20
#Algorithms in portfolio

Figure 8.3: Min-Max-Gap portfolios. The optimal portfolio is of size 17. The best portfolio with
non-zero quality gap is the one in size 16 and it is more than 2 million times better than using
the single best algorithm, as we can see at a portfolio size of 1, for all the portfolio construction
methods. In the optimum size of the optimal portfolio (17), the cost is 0, by definition. This
shows that using less cores than the minimum number for optimal performance has a high cost
in the min-max-gap measure, more than it has in the max-sum measure. We can also see that
the greedy portfolio is not meeting the optimal cost for two portfolio sizes, and it fits less to
this measure. Last, we can see that the K-best portfolio is far from the optimal performance,
reaching the optimum only at a portfolio size of 20.

67

25

Qualities Max—gap

2000

1800

1600

1400

1200

1000

800

600

400

200

Benchmar ks = 500
Timeout = 0.1 Sec
L=1

: : : —— KBest Portfolio
""" —@— Optimized Portfolio
—O— Greedy Portfolio

10]] 15 20
#Algorithms in portfolio

Figure 8.4: Min-Max-Gap portfolios for hard problems (L=1). The optimal portfolio is reaching
optimum in a portfolio size of 15. This is not apparent from the graph but can be seen in the
numerical results. For the min-max-gap over hard problems, the best portfolio with non-zero
quality gap is about 2000 times better than the best single algorithm, which is a very significant
result. The greedy portfolio is following the optimal portfolio, except for a portfolio size of 2.
The K-best portfolio is far from the optimum and reaching it only in a portfolio size of 21.

Tables 8.1-8.10 describe the algorithmic components of the optimal portfolio, for the
max-sum and min-max-gap measures, for general and hard problems. One example for
the lack of monotonicity in the optimal portfolios can be found in portfolio’s sizes of 1
and 2 in table 8.4. In Appendix A we describe a computation of an optimal max-sum
portfolio that we conducted using random matrices. The results in the appendix are
not comparable to the results that we showed in this chapter, since the quality axis in

the appendix is normalized to the range [0,1].

68

25

¢ 1IeJ - sorojriod rewrnyd() wWNG-Xey :¢°'g o[qe],

My IT\M\MWMNLUU Sy + @ﬁmw&@ MY + Mﬁwm&@ a0+ @ﬁmwkg
s % 9.4 MY + fip22.45 d0 + fipaoun g.I, + fipaousn
M+ AP O + fipaa.4) 2G.I + fipaasn mrmm
HOFIPOID g 4 hipasap) SOHS e
NWEM\WMWMQLU CHHS DHS NUEM.QLWM@@;U
OHS CHHS + fipaaun e
OHS COHS + fipaaun eI .
COHS + fipaaun eS. I, DHS + fipasun OHS + lip22.45 SIOqUISM OT[0J310]
¢S.L fipaau, Vs
HS + lipaa.45
DHS + fipasun 1Y) Vg - .W\.Wﬁmwg@ 2y G + fipaaun
(4 H\%ﬁmw:@@ VS + fipaaan Sz mOOW\%meU
Vs S.L d00Tfipaaur) g
moo%mrmmwsﬁ d00Tfipa3.45 ty s e + fAipaaun
. Vs e + fipaaun VS + fipaaio
45 e + fipoaun VS + fipaais
ey + fipoaur) Vg -+ Apasin
VS + fipoaup) o
971G OI[OJ).I
T 91 o1 " >
g e d - sofopaod rewnd(wWng-Xey (7’8 9[qeL,
2Q .1, + fipoour) OIS
4 OHS THHS + fipaa.n
DD%% Dm% COHS + 12215 i eSL waﬁ 29.4 DHS + ipo24)
CHHS + fipaaun) COHS + p224D tSL DHS + fipaaurn) DHS + p224D Vs
0 ol wam DS + fipraun Ve . W\% o ey g + fipaaun
OHS + fipaaur VS 14 P4 ST O1110
DHS + fipaaun Vs ey + fipran ty s JW WEEU SI d00Tfipooupy ~ SPAWOU OlOpIOd
(4% ‘W\%ﬁmwsﬁ VS + 19245 S, dOO0Tfipoaur) moommﬁww;,@ v s
v Sl S.L dOOTfipaaur) e T@% e + fipaaun
EY
dO0O0Tfipaaury lOOMWMmm;U mﬂ%‘ e + fipaaun MW%M.@%MM&% VS + fiposun
4 99.4
eys wo+hpoup OO Ty ipaou
e + fipaaun VS + fipasus 14
VS + fipaaun) 6 Q 971G 01[0J110J
€1 4 I ot
T 318 - Sor[oj3I0J rewrjd() wng-xejy :1'| 9[qET,
Vs ey S + fipasun)
S.L
Yy S+ Qﬁwu&@ S QQQ\NQ%mw@sU mQOQ@ﬁwm&U S e + \Mﬁmw&g D994 SIOQqUIBW OT[0J110g
S.L dOO0Tfipaaur) v s e + fipaaun VS + fipaaun :
P 439 A HO VS + fipaaun
dOOTfipas.r) e S0 + fipooap [rde) ._.\“M PIILE) VS -+ Apasin
vs 4 fipaa VS + fipaaun
HO + fipaoa
e + fipoaus) VS + fipasun) VS + fipaaun
VS + fipasun . z 1 921G OI[0J}I0]
L 9 g v

69

Portfolio Size 1 2 3 4 8
Greedyroop
Greed
Greedyroo Greedyroor Qﬁmmwm@ Whmomw Greedy + SHC,
GreedyrLoop Loop Greedy + SHC, 2 TS>
Greedyroop Greedy + SHC> TS,
Portfoli b Greed S4s Greedy + SHC, ~ CTeety + 542 TS TS, SHC: SHG,
ortfolio members reedyroop Greedy + SHC» w\)m 2 TS, MEM‘ SHC, o 2 SA
2 2
SA SA SAs
SA SAs
SAs Greedy + SAs Qﬂmm&%w_. SAs
Table 8.4: Max-Sum Optimal Portfolios, Hard Problems - Part 1
Portfolio Size 9 10 11 12 13 14 15
Q%mm&@h@@ﬁ
GreedyrLoop
GreedyrLoop Greedyroop Greedy + SHC> Greedy + SHC3
GreedyrLoop Greedy + SHC> TS,
Greedyroop Greedy + SHC, TS>
Greedyroop Greedy + SHC> TS> SHC5
Greedy + SHC, ~CTeedy +SHC: TS TS5 SHC, SHC: SA
SHC, 2 SA SAy 2 Greedy 4+ SA;
. SA SAs Greedy + SAs
Portfolio members SA SAs Greedy + S A2 TS
SAs Greedy + S A2 TS
SAs Greedy + SA Greedy + SAs TS TS Greedy + CE Greedy + CFE
Greedy + SA; reedy 2 TS Greedy + CE reedy SHC
TS Greedy + CE SHC
TS Greedy + CE SHC Greedy + SHC
Greedy + CFE SHC Greedy + SHC
Greedy + CE SHC Greedy + SHC Greedy + SA
SHC Greedy + SHC Greedy + SA
Greedy + SHC Greedy + SA Greedy + CE»
Greedy + SA Greedy + CE»
Greedy + CE» Greedy + RS RS
reedy CE»

Table 8.5: Max-Sum Optimal Portfolios, Hard Problems - Part 2

70

SOHS + fipaan

MY + fipooun)
SY + fipasur)
gJ0 + fipoour)
CAMY + fipasup)
28 1, + fipaoun)
COHS
OHS + fipgo.sn
S + fipoour)
S.L
OHS
¢S.L
COHS + fipaa.un

€ 31e(- sotjopyaod [eund(den-Xey-u\ :g'g o[qeL

SY + fipasur)
g + fipoour)
CMY + fipoaur)
2Q.[, + fipoour)
COHS
OHS + fippasn
Sy S + fipasun)
S.L
OHS
¢S\
TOHS + fipaasn

HO + fipaaur)
CMY + fipoour)
SG. I + fiposusn)
SOHS
OHS + fippasn
ey S + fiposun)
S.L
OHS
¢S.L
EOHS + fipeaun
ey + fipoour)

CAY + fipaour)
S.L + fipoour)
COHS
OHS + fipaaur)
Sy G + fipoour)
S.L
OHS
tor sIoquew o1[0J310d A-T (1)
COHS + fiposur)
e + fipoour)

4 + fipaou, dOO0Tfipaa.,
e + fipaour) W%Oqaﬁﬂws% dOOThipas.r) A\M 2
dOO0Tfipao.r) VS 4 ey g
Vs v s
Vs Mﬂmmmg VS + fipaa.n VS + ipo24o
VS +hpooan VS TIPOD
LT 9T ST it 971G OI1[0J}10]
¢ M - sor[opyrod reumnd(den-xe-ury :L'g 9[qeL,
Q. [, + fipoourn) z
OHS
4 + fipaau
H Wﬁm‘wmg DHS + fipoo.15) _Wmm‘.f A ﬁwmi 5 VS + fipoaan N
OHS PI2LH T/ C + fipaod 45 P24 S
ey + fipooun VST PO S oL DHS Qus
ST S DHS OHS gl eS.L
OHS z s . Vhipooun COHS tfipaeun
QHS %L 5L SOHS + fippaup DS TIPTI e+ fipoaun
¢S\ L CHHS + fipaoaur) a1 + fipaosur) sIoquIoul OI[0J3I0J
CHHS + fipoour) ey + fipoour) dO0Tfipas.r)
COHHS + fipoaur) z P ey + fipoaur) JOOTh dOO0Tfipaaur)
&0 + fippau ao t pooo d001fipaa.4 pooto) Ve
dOO0Tfipaa.r) S ey s
d00Tfipasury VS 14 ey S 4
Vs eyS VS + fipaa.uo
& VS VS + fipaa.o
ey s VS + fipaaun
ey s VS + fipooun VS + fipaaun
VS + fipooun
€1 ¢l 1T 01 6 8 971§ Ol[0J310d
T Med - soroppiod [ewndQ den-xey-uty 9'g d[qR,
5L

EOHS + fipaa.n

ey + fipasurn)

e D + fipoaupn NW‘OODM@\MNMMNLU d00Tfipaaur) d00Tfipaa.;) Vs .
dO0Tfipaa.L5) i VS Vs ey s Ve e + fipeaur sIdqUIaW OT[0J}I0J
VS c VS ; V'S + fipoaup
VS z VS i VS + fipasun
VS VS + fipasun
ey S VS + fipaaun
VS + fipaaun
VS + fipoour)
L 9 G i4 € 4 1 971G OI[0J110]

71

Portfolio Size 1 2 3 4 5 6 7 8
Greedyroop
Q%mm&@h@@ﬁ
GreedyrLoop GreedyLoop Greedy + CE» Greedy + CE
Greedyroop Greedy + CE> SHC
Greedyroopr Greedy + SHC SHC
. Greedyroop Greedy + SHC, SHC SHC>
Portfolio members Greedy + CE SHC SHC SHC,
SHC SHC SHC, TS,
Greedy + CE TS TS>
TS, SA TS5 A SA
A H
S Greedy + SHC, Qﬁm@&@ﬂ.m SHC,
Table 8.9: Min-Max-Gap Optimal Portfolios, Hard Problems - Part 1
Portfolio Size 9 10 11 12 13 14 15
Greedyroop
Greedyroop
Greedyroor GreedyrLoop Greedy + CE Greedy + CE
Greedyroop Greedy + CFE SHC
Greedyroop Greedy + CE SHC
Greedyroop Greedy + CE SHC SHC,
Greedy + CE SHC SHCo
Greedy + CE SHC SHC> TS>
SHC SHC, TS5
SHC SHC SHC, TS TS, A SA
SHC, ? TS, 2 SA Greedy + SHCo
. TSs SA Greedy + SHC>
Portfolio members TS> SA Greedy + SHC> TS
SA Greedy + SHC, TS
SA Greedy + SHC, TS Greedy + SHC
Greedy + SHC> TS Greedy + SHC
Greedy + SHCy TS Greedy + SHC SAs
TS Greedy + SHC SAs
TS Greedy + SHC SAs Greedy + S A2
Greedy + SHC SAs Greedy + S A2
Greedy + SHC SA, Greedy + SAs Greedy + CFE»
SAs Greedy + SAs Greedy + CE>
Greedy + SA; Greedy + CE» Greedy + SA
Greedy + CE» Greedy + SA
Greedy + SA Greedy + RS
Greedy + RS CE
2
Table 8.10: Min-Max-Gap Optimal Portfolios, Hard Problems - Part 2

72

Chapter 9

Conclusion

We summarize the thesis with a concise list of its contributions:

9.1

Contributions

We described the problem of solving computationally hard problems in a short
and fixed amount of time, and defined the notion of a fized-time variant of a hard

computational problem.

We defined a particular optimization problem called Resource Allocation with
Forbidden Pairs (RAFP) and showed that its decision variant is NP-complete.

The rest of the thesis was dedicated to solving its fixed-time variant.

We defined Fized-Time Search as a heuristic framework for solving RAFP and
similar discrete optimization problems in real-time. We presented over ten different
known algorithms, most of which are based on local search (but also cross-entropy

and a deterministic greedy algorithm), and their adaptation for solving RAFP.

We used automatic tuning of parameters to get the best quality in a real-time
setting, and showed empirically that it significantly improves the quality of all the

algorithms.

We defined Algorithms Cover problems. The first is the problem of choosing k
out of n algorithms, k < n, to create the best parallel static portfolio with k cores,
where a given set of inputs serve as the training set. The second is the problem
of finding the smallest k for the best parallel static portfolio. These problems
can be instantiated with a measure. We defined and used the Maz-Sum and

Min-Maz-Gap measures.

We suggested an SMT encoding for solving all the Algorithm Cover Problems
optimally. We also compared the optimal result to one that is computed via a
greedy polynomial method, which turned out to be, with our benchmarks, close to

optimal for the max-sum measure, but sub-optimal for the min-max-gap measure.

73

e All the algorithms, their tuned versions and optimized portfolios, were tested
empirically with hundreds of random instances with varying difficulty. The thesis
contains a comprehensive empirical study of their effectiveness in solving RAFP

in a short amount of time.

9.2 Future Work

We intend to explore several directions for improving the empirical results:

9.2.1 Individual Algorithms

Adding search algorithms From the algorithms that we implemented and described
in Chapter 5, the Cross-Entropy Method and the Tabu Search can benefit from a re-
design of the implementation. Specifically, the cross-entropy method may converge
before time-out, and so far we did not use the extra time for restarting it. In the tabu
search, the current conditions for a forbidden solution are still naive, and we intend
to explore other variants. In addition, there are more anytime algorithms than we
implemented, which are relevant for solving our problem, such as Variable Neighborhood
Search [MHI7], Ant-Colony Optimization [DMC96], Genetic Algorithms [Mit98] and
Monte Carlo Tree Search [BPWT12]. An anytime method that was used for Weighted
Constraint Satisfaction Problems (see in appendix A) and is worth exploring is Depth-
First Branch and Bound [Zha00]. Using this method will require a fast way to compute

upper bounds on the quality of solutions that agree with a given partial solution.

9.2.2 Automatic Parameters Tuning

e Tuning for a portfolio So far we tuned each algorithm separately, despite the
fact that our end goal is to find an optimal portfolio. To that end, we can let the
choice of algorithms be a tunable parameter as well. This will require us to use
the conditional parameters of ParamILS in order to tune only the parameters that

correspond to the currently chosen algorithm.

74

e Improving parameters tuning In Chapter 6 we described our process of tuning
the parameters of the algorithms. We use the same tuning time of 1500 seconds
for each algorithm in ParamlILS, with the BasicILS option of ParamILS. The
BasicILS option compares between two configurations by their quality over the
same number of runs. The objective of this uniform tuning is a fair tuning across
algorithms. In order to achieve a better performance, it might be useful to use a
tuning time which is proportional to the number of configurations. This way a large
configuration space will get more tuning time. Moreover, the FocusedILS option
of ParamILS might improve the results of the tuning process. The FocusedILS
option compare between two configurations using a dominance concept which
allows a different number of runs for each configuration. A last improvement

might be achieved by a longer tuning period.

e Tuning for anytime: In Chapter 5 we described a tuning of parameters which
is based on the quality at a specific timeout. Another approach for tuning will be
to tune in order to improve the anytime behavior. One such tuning method is
described in [RLIS13], where a measure similar to the area under the performance
profile is the scalar value which guides the tuning process. This process cannot
yield better performance for a specific timeout, but it might improve the overall

behavior in a real-time interval of 1 second, for example.

e Tuning & constructing portfolios In Chapter 7 we described our serial process
of tuning the algorithms and then constructing a portfolio. The greedy portfolio
construction in [HLBSS12], which we also described in chapter 7, might lead to a

better performance in our real-time setting.

9.2.3 Better Portfolio Construction

e Dynamic portfolios In Chapter 7, we described a construction of a static
portfolio. A dynamic portfolio, i.e., a per-instance portfolio [MS12], might be
better than a static one. This requires identifying features of problem instances,
that on the one hand predict well the performance of various algorithms, and
on the other are cheap to compute. To that end we may use machine learning

methods in order to identify such features.

e Collaborative portfolios In Chapter 7, we focused on algorithms that do not
communicate during their run. Communicating algorithms might be efficient in
portfolios [BSS15], [SS12]. In our real-time setting, this can be relevant only if the
cost of communication is low. Algorithms can share their best solutions, allowing

others to use them as a starting point for further improvements.

75

9.2.4 Exploring More Real Time Issues

e Flexible timeouts Our algorithms can be tuned and analyzed with several
different timeouts. Moreover, the model can be replaced with another reasonable
model: We can add to the input of the problem a function which defines the
utility of a specific computation time. This function can be combined with the
quality of the solution to create a new combined quality. The combined quality
has a maximum value, the point of the best trade-off between quality and its
computation time. We can tune the algorithms in order to maximize the combined

quality.

e Considering Input’s Noise To consider uncertainty and inaccuracy of inputs,
we suggest two ways: In the first, instead of representing the inputs as real
numbers, we represent them as ranges of real numbers. Then we might be able
to solve a worst-case scenario of each problem. The second way of dealing with
noise in the inputs is to get a probability distribution of each input, and trying to

maximize the expectation of the utility function.

76

Appendix A

Appendix

A.1 Defining RAFP using Weighted Constraint Satisfac-

tion Problems

In what follows, we define RAFP using the Weighted Constraint Satisfaction Problem.
We follow the definitions of CSP, WCSP and VCSP of [Lar02] and [SFV195] with

slight changes for a unified format.

A.1.1 Constraint Satisfaction Problem

Definition A.1.1 (Constraint Satisfaction Problem). A constraint satisfaction prob-
lem is a triple P = (V, D, C'), where:

o V={W,..,V,,} is a set of n variables
e D is a set of values for the variables
e D; C D is the set of values for variable V;, i € [1..n]

e (' is a set of constraints, which defines the allowable values that the variables can

have simultaneously.

Definition A.1.2 (CSP Tuple). Given a CSP P = (V, D, C), An assignment tuple t is

an ordered set of values assigned to the ordered set of variables V! C V

Definition A.1.3 (CSP Tuple Consistency). Given a CSP P = (V, D, C), A tuple t is

consistent if it satisfies all constraints whose scope is included in V*.

Definition A.1.4 (CSP Tuple Global Consistency). Given a CSP, A tuple is globally

consistent if it can be extended to a consistent complete assignment.

Definition A.1.5 (CSP Solution). Given a CSP, A solution is a consistent complete

assignment

[

Definition A.1.6 (Binary Constraint Satisfaction Problem). A binary constraint sat-

isfaction problem is a triple P = (V, D, C'), where:
o V={W,..,V,,} is a set of n variables
e D is a set of values for the variables
e D; C D is the set of values for variable V;, i € [1..n]
e (is a set of unary and binary constraints:

— An unary constraint C; C D; contains the permitted assignments to V;

— A binary constraint Cj; € D; x D; contains the permitted simultaneous

assignments to V; and V;

A.1.2 Valued Constraint Satisfaction Problem

Definition A.1.7 (Valuation Structure). A wvaluation structure is a triple S = (E, ®, =),

where:

e I is a set of costs, totally ordered by >, with maximum element noted T, and

minimum element noted L

e ® is a commutative, associative closed binary operator on F, used to combine

costs, with the following properties:

— Identity: Vae F,a® 1L =a
— Monotonicity: Va,b,c € E,(a = b) = ((a®c) = (b®c))
— Absorbing element: Va € E,(a® T) =T

Definition A.1.8 (Valued Constraint Satisfaction Problem). A wvalued constraint sat-

isfaction problem is a 5-tuple P = (V, D, C, S, ¢), where:
e (V,D,C) is a constraint satisfaction problem
e S=(E,®,) is a valuation structure
e ¢ :(C — E is a valuation function
Definition A.1.9 (VCSP Tuple Valuation). Given a VCSP P = (V,D,C, S, ¢) and a

tuple t, the valuation of t with respect to the VCSP is defined by:

Y= & () (A1)
t violates ¢

Definition A.1.10 (VCSP Tuple Consistency). Given a VCSP P = (V, D, C, S, ¢), a
tuple t is consistent if V(t) < T

Definition A.1.11 (VCSP Solution). Given a VCSP, a solution is a consistent tuple

Definition A.1.12 (VCSP Objective). Given a VCSP, the objective is mtinV(t)

78

A.1.3 Weighted Constraint Satisfaction Problem

Definition A.1.13 (S(k) Valuation Structure). S(k) is the valuation structure S =
([0,...,k],®,>), where:

e kell,..., o0
e @ is the sum over the valuation structure defined as a ® b = min{k,a + b}

e > is the standard order among naturals

Definition A.1.14 (Weighted Constraint Satisfaction Problem). A weighted constraint
satisfaction problem is a valued constraint satisfaction problem, with S(k) as a valuation
structure, i.e. P = (V,D,C,S(k),)

Definition A.1.15 (WCSP Valuation Function). Givena WCSP P = (V, D, C, S(k), ¢)

and a tuple ¢, the valuation function is defined using the S(k) valuation structure:

V= & (¢(0) (A2)
t violates c

Definition A.1.16 (Binary Weighted Constraint Satisfaction Problem). A binary weighted
constraint satisfaction problem is a weighted constraint satisfaction problem P =
(V,D,C,S(k),p), where (V, D,C) is a binary constraint satisfaction problem

Definition A.1.17 (BWCSP Valuation Function). Givena BWCSP P = (V, D, C, S(k), ¢)

and a tuple ¢, The valuation function is defined using the S(k) valuation structure:

Vi)=Y ele)e Y el (A.3)

c,eC CijEC

t violates ¢; t violates cij

A.1.4 The Resource Allocation with Forbidden Pairs Problem

Definition A.1.18 (The Resource Allocation with Forbidden Pairs Problem). RAFP
is a weighted constraint satisfaction problem P = (V, D, C, S(>0), ¢) with the following

properties:
o V={V,..,V,} is a set of n variables
e D is a set of [values for the variables. Each value d € D is a 2-tuple (a,r), where:

— a € [1..1] is the tactic in use

— r € [1..m] is the resource in use
e D; C D is the set of values for variable V;, i € [1..n]

e (is a set of constraints, ¢ is a valuation function where:

79

— An unary constraint C; C D; contains costly (0 < ¢(¢;) < 0o) assignments

to V;
— A binary constraint Cj; C D; x D; contains costly (0 < ¢(c;j) < 00) simulta-
neous assignments to V; and Vj

— A resource constraint Cpr is a constraint with a non-constant arity defining

forbidden resource consumption:
((a1,71),...,(as,7s)) € Cp = Fj € [L.m]|{r;|rs = j}| > B;

where Bj € N for j € [1..m] are bounds on the resources

— Valuation function

0<g< o0 CECZ'UCZ'j
plc)=¢0<h<oo ceCpr

0 otherwise

Definition A.1.19 (RAFP Valuation). Given a RAFP P = (V,D,C,S(k),¢) and a

tuple ¢, The valuation is defined using the S(k) valuation structure:

Vi) = Y. wle)e Y eleg® Y eler) (A.4)

c;eC ci;€C creC

t violates c; t violates c;; t violates cp

A.2 Portfolios Construction — Random Matrices

In what follows, we describe an empirical evaluation that we conducted using random

matrices as an input for the optimal construction of max-sum portfolios.

We created two 10-row matrices with uniformly distributed random numbers in [0..1].
We used these matrices as the input to the modeling program we described in section
8.1, with k£ € [1..10]. This setting simulates a quality matrix of 10 algorithms, with a
low correlation. We solved the SMT modeling using Z3. The results are shown in figure
A1l In A.la we simulated 15 inputs (matrix columns) and we can see several examples
that a non-increasing portfolio does not imply convergence (e.g. points 3.4 and 5,6,7).
In A.1b we simulated 40 inputs and we can see a smoother graph, with a slowing rate of
increase. Notice that the quality axis is not comparable to the one in figure 8.1, where

the results are normalized to the 1-portfolio quality.

80

1.6

15

1.4

13

Quality

1.2

11

T

T

T

1.6

15

14

1.3

Quality

1.2

11

Figure A.1: Max-Sum Portfolios, Random Matrices

i i i i

4 6 8
Portfolio Size

(a) 10 Algorithms, 15 Inputs

i i i i i

4 6 8
Portfolio Size

(b) 10 Algorithms, 40 Inputs

81

Bibliography

[Ack]

[AST09]

[BBNPO4]

[BCD+11]

[BDLYS]

[BPW+12]

[Bro58]

[Broll]

[BSS15]

Wilhelm Ackermann. Solvable cases of the decision problem.

Carlos Ansétegui, Meinolf Sellmann, and Kevin Tierney. A gender-
based genetic algorithm for the automatic configuration of algorithms.
In International Conference on Principles and Practice of Constraint

Programming, pages 142-157. Springer, 2009.

Edmund Burke, Yuri Bykov, James Newall, and Sanja Petrovic. A
time-predefined local search approach to exam timetabling problems.

IIE Transactions on Operations Engineering, 36:1-19, 2004.

Clark Barrett, Christopher Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovié, Tim King, Andrew Reynolds, and Cesare Tinelli.

Cvcd. In Computer aided verification, pages 171-177. Springer, 2011.

Clark W Barrett, David L Dill, and Jeremy R Levitt. A decision
procedure for bit-vector arithmetic. In Proceedings of the 35th annual
Design Automation Conference, pages 522-527. ACM, 1998.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M
Lucas, Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego
Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte
carlo tree search methods. IFEE Transactions on Computational
Intelligence and Al in games, 4(1):1-43, 2012.

Samuel H. Brooks. A discussion of random methods for seeking
maxima. Operations Research, 6:244-251, 1958.

Jason Brownlee. Clever algorithms: nature-inspired programming

recipes. Jason Brownlee, 2011.

Tomas Balyo, Peter Sanders, and Carsten Sinz. Hordesat: a massively
parallel portfolio sat solver. arXiv preprint arXiv:1505.03340, 2015.

83

[CDH*09]

[Cla99]

[CZ06]

[DB8S]

[DDMO6]

[dMBOS]

[DMC96]

[Dut14]

[FM93]

[GJT79]

[Glo86]

[GSO1]

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach,
Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan
Tobies. VCC: A Practical System for Verifying Concurrent C, pages
23-42. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

Jens Clausen. Branch and bound algorithms-principles and examples.
Dept. Comput. Sci., Univ. Copenhagen, [Online/, 1999.

Sharlee Climer and Weixiong Zhang. Cut-and-solve: An iterative
search strategy for combinatorial optimization problems. Artificial
Intelligence, 170(8-9):714-738, 2006.

T.L Dean and M.S. Boddy. An analysis of time-dependent planning.
AAAI 17:49-54, 1988.

Bruno Dutertre and Leonardo De Moura. A fast linear-arithmetic
solver for dpll (t). In International Conference on Computer Aided

Verification, pages 81-94. Springer, 2006.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An Efficient SMT
Solver, pages 337-340. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system:
optimization by a colony of cooperating agents. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1):29—
41, 1996.

Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem,
editors, Computer-Aided Verification (CAV’2014), volume 8559 of
Lecture Notes in Computer Science, pages 737-744. Springer, July
2014.

Stephanie Forrest and Melanie Mitchell. Relative Building-Block
Fitness and the Building-Block Hypothesis. Foundations of Genetic
Algorithms, 2:109-126, 1993.

M. R. Garey and David S. Johnson. Computers and intractability:
A guide to the theory of np-completeness. 1979.

Fred Glover. Future Paths for Integer Programming and Links
to Artificial Intelligence. Computers and Operations Research,
13(5):533-549, 1986.

Carla P Gomes and Bart Selman. Algorithm portfolios. Artificial
Intelligence, 126(1-2):43-62, 2001.

84

[HBHHO7]

[HHLB10]

[HHLB11]

[HHLBS09)]

[HLBSS12]

[HLH97]

[HS04]

[JV83]

[KBS10]

[Lar02]

Frank Hutter, Domagoj Babic, Holger H. Hoos, and Alan J. Hu.
Boosting verification by automatic tuning of decision procedures.
In Formal Methods in Computer Aided Design, 2007. FMCAD 07,
pages 27 —34, nov. 2007.

Frank Hutter, HolgerH. Hoos, and Kevin Leyton-Brown. Automated
configuration of mixed integer programming solvers. In Andrea
Lodi, Michela Milano, and Paolo Toth, editors, Integration of Al
and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, volume 6140 of Lecture Notes in Computer

Science, pages 186—202. Springer Berlin Heidelberg, 2010.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential
model-based optimization for general algorithm configuration. In
International Conference on Learning and Intelligent Optimization,
pages 507-523. Springer, 2011.

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas
Stiitzle. ParamILS: an automatic algorithm configuration framework.
Journal of Artificial Intelligence Research, 36:267-306, October 2009.

Holger Hoos, Kevin Leyton-Brown, Torsten Schaub, and Marius
Schneider. Algorithm configuration for portfolio-based parallel sat-
solving. In Workshop on Combining Constraint Solving with Mining

and Learning, 2012.

Bernardo A Huberman, Rajan M Lukose, and Tad Hogg. An
economics approach to hard computational problems. Science,
275(5296):51-54, 1997.

Holger H. Hoos and Thomas Stutzle. Stochastic Local Search: Foun-
dations and Applications. Morgan Kaufmann, 2004.

Scott Kirkpatrick , C. Daniel Gelatt Jr. and Mario P. Vecchi. Opti-
mization by Simulated Annealing. Science, 220:671-680, 1983.

D. Kroening, R.E. Bryant, and O. Strichman. Decision Procedures:
An Algorithmic Point of View. Texts in Theoretical Computer
Science. An EATCS Series. Springer Berlin Heidelberg, 2010.

Javier Larrosa. Node and arc consistency in weighted csp. In
Proceedings of the National Conference on Artificial Intelligence,
pages 48-53, 01 2002.

85

[Leil0]

[LIDLC™16]

[Lou03]

[McC62]

[MH97]

[Mit98]

[MS12]

[OD12]

[PZ06]

[QYZ15]

[RK04]

[RLIS13]

K Rustan M Leino. Dafny: An automatic program verifier for
functional correctness. In International Conference on Logic for
Programming Artificial Intelligence and Reasoning, pages 348-370.
Springer, 2010.

Manuel Lépez-Ibanez, Jérémie Dubois-Lacoste, Leslie Pérez Céceres,
Mauro Birattari, and Thomas Stutzle. The irace package: Iterated
racing for automatic algorithm configuration. Operations Research
Perspectives, 3:43-58, 2016.

Samir Loudni. Solving constraint optimization problems in anytime
contexts. IJCAI pages 251-256, 2003.

John McCarthy. Towards a mathematical science of computation.
In IFIP Congress, volume 62, pages 21-28, 1962.

Nenad Mladenovi¢ and Pierre Hansen. Variable neighborhood search.
Computers € operations research, 24(11):1097-1100, 1997.

Melanie Mitchell. An introduction to genetic algorithms. The MIT
Press, 1998.

Yuri Malitsky and Meinolf Sellmann. Instance-specific algorithm
configuration as a method for non-model-based portfolio generation.
Integration of AI and OR Techniques in Contraint Programming for

Combinatorial Optimzation Problems, pages 244-259, 2012.

Lars Otten and Rina Dechter. Anytime and/or depth-first search
for combinatorial optimization. AI Communications, 25(3):211-227,
2012.

Marek Petrik and Shlomo Zilberstein. Learning parallel portfolios
of algorithms. Annals of Mathematics and Artificial Intelligence,
48(1):85-106, 2006.

Chao Qian, Yang Yu, and Zhi-Hua Zhou. Subset selection by pareto
optimization. Advances in Neural Information Processing Systems,
pages 1774-1782, 2015.

Reuven Rubinstein and Dirk Kroese. The Cross-Entropy Method:
A Unified Approach to Combinatorial Optimization, Monte-Carlo
Simulation, and Machine Learning. Springer-Verlag, New York, 2004.

Andreea Radulescu, Manuel Lopez-Ibdnez, and Thomas Stiitzle.
Automatically improving the anytime behaviour of multiobjective
evolutionary algorithms. In International Conference on Evolutionary

Multi-Criterion Optimization, pages 825-840. Springer, 2013.

86

[SBLI12]

[SEV+95]

[Sin05]

[SS12]

[VFG*11]

[WC00]

[WPF*10]

[WS11]

[XHHLB12]

[Yan10]

[Zha00]

Thomas Stiitzle, Mauro Birattari, and Manuel Lépez-Ibanez. Any-
time Local Search for Multi-Objective Combinatorial Optimization:
Design, Analysis and Automatic Configuration. PhD thesis, Citeseer,
2012.

Thomas Schiex, Helene Fargier, Gerard Verfaillie, et al. Valued
constraint satisfaction problems: Hard and easy problems. IJCAI
(1), 95:631-639, 1995.

Carsten Sinz. Towards an optimal cnf encoding of boolean cardinality
constraints. CP, 3709:827-831, 2005.

Holger Hoos , Kevin Leyton-Brown , Torsten Schaub and Marius
Schneider. Algorithm Configuration for Portfolio-based Parallel
SAT-Solving. CoCoMile, 2012.

M. Vallati, C. Fawcett, A. Gerevini, H.H. Hoos, and A. Saetti.
Automatic generation of efficient domain-optimized planners from
generic parametrized planners. In Proceedings of the Fighth RCRA
International Workshop on Experimental Evaluation of Algorithms

for Solving Problems with Combinatorial Explosion, 2011.

Benjamin W Wah and Yi Xin Chen. Optimal anytime constrained
simulated annealing for constrained global optimization. In In-
ternational Conference on Principles and Practice of Constraint

Programming, pages 425—-440. Springer, 2000.

Yi Wei, Yu Pei, Carlo A Furia, Lucas S Silva, Stefan Buchholz,
Bertrand Meyer, and Andreas Zeller. Automated fixing of programs
with contracts. In Proceedings of the 19th international symposium
on Software testing and analysis, pages 61-72. ACM, 2010.

David P Williamson and David B Shmoys. The design of approxi-

mation algorithms. Cambridge university press, 2011.

Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Eval-
uating component solver contributions to portfolio-based algorithm
selectors. Theory and Applications of Satisfiability Testing—SAT
2012, pages 228-241, 2012.

Xin-She Yang. Nature-Inspired Metaheuristic Algorithms, Second
Edition. Luniver Press, pages 12—13, 2010.

Weixiong Zhang. Depth-first branch-and-bound versus local search:
A case study. In AAAI/IAAI pages 930-935, 2000.

87

[Zi196] Shlomo Zilberstein. Using anytime algorithms in intelligent systems.
ATl magazine, 17(3):73, 1996.

88

DN D VYND TITHNN NOXYN MNP NMNND DIDD TTH MNAY D DININ NN
NP2 OX2IVN DNMINONRND k NN NVXVW NN NPYIN DY MNIAPN NV NIY ,DPINDVIND
OOPN MIN NYYW DDAPN NN NPOOON NPYAN NXIAPA .MINND MV PNV NMYD 0NN
NMAPA 247N NN DNIPION 17 12V TIYNA NP2 10N DIINORN NMYD DNNN 2 DY
12V TIYNA NP 20N DIPINORD NMIYY DHNKN 11 DY MN MY DOAPN 1IN MYPN Nyan
TTRNN NVXWNIY NN ,DIPVIININD ANV D1THN PNIND TTH MNAY 24N TINN DNIINON 15
7NN YN NP D2I0N DNNIMNONN k OV DWW, TPOVOIND NOXWN MINIAD NYIN NN
DYPVAND DI Y ¥ PYTY 12 NP 91N OOVNIND TIVNN NPOSON NPYan NP Nay
PNINN TON DOITHI D2IIYNA .IANYI NVN TN DIPINONRN NMYD 19D 2 %9 MINN NN 19V
NP2 DITIN HIVMND TV ,MYPN NPYIN NXIAP NAY .NITHINN 2970y ,0 NI DIPVND
NP2 20N TN DNINOND NMYY 2000 29 MND NN 19YN DIDVIND 210 IS ¥ PTY 12
MY MN92 VIPY DY IWAND PNND DX MYITI NPMYNYN J1 MNINND MIXIND NY

YA PIND TNND WITIN

iv

DNMINIR Y 99391 TN NI

VN ANV ONID TD [DMIANON OV ODAPN TIYN 1M SV Pyaa 09T DN M PONa
k<n 9901 ,DNINON n N OOD5 19INI NN AT DINIAN DX ANV Y 9V 2apn
NP NNAD DPNYN NN ,DMY DOOP DY DNMINOND MY MINHIM NN Mo S
N2 TND DX DN INVA DDV PP ODAPN TIYND TN DIYINAY n TINN DNIIVON k DV
MPPaon N»ya SV NPYY NANIN Satisfiability Modulo Theories (SMT) MYSNNA 7PYaN NN D100
Quantifier-Free Linear Real Arithmetic (QF_LRA) DV " 1NN2 DWYNNYN DN NN TNND SAT
NN .DPYHNN DINYH Dy DIMPYIRD 02N DOVPPTIO DY NINeDIa MINND) NIYINDD
NIN DNINON TIYN 0D NYRIND TN DNNINON TIVD MWD O»YI0 DX TTN NIV DYNN
K-Algorithms Max~Sum % ’y2 051N NN .DMOPND NXAND ¥ IMN ,DVOPN DY PAMDN DIOD
DIPIMOND MPND TIYNN MK P2 PNINN DY 05PN 970y DIOPNN NN VN TTHN
nYya K-Algorithms Min"Max~Gap 1t 7Py2 D200 DX .DMPHNY NIAND ¥ Nt TTH .INP2 20N
MY NIY ,DPOPVIN DIWNNA 52PY 172 1Y OOIPNN kTN NNONND)N NNAY NN IR MM'T
NAPN NN NND MYITI M NN PAND 1D WAN NON NYYI NIN’S IDNY OTTHN

NN MO MO HNID T DNNIMON TIY NNAD YWY YN NYAP IN ,NNNI DNNINON

9PN DINMININD TIYN HY IRV DIWINIA NINGD

,00P D5 5y DNINON YD SY NMMDN NXIVN NIN NOY VYPNY ,SMT TITPY NION DVNNN 1IN
OTID PIND TNXD .NNTIPN NPOOA NIV NPYIN PNV DOV DXTITPN 0N NOY VOIS k 190
24 MINSINND D212 DN OMNXY DNIPINON 2DTYN DNMN NN .Z3 IO DVHINYN DX SMT-N
YOPVAIND DINITPIANOND TIVND 21 IRNYN TNKD .0TIP 1T 0N DVOPN 500 D1 ONNINIONND
TTHN NV NN INYRIN .DNIIMNON TIYHD 12320 MODI MOLIVI MYV XNV DVNNHD DN
NN2 DOWY DIPIVOND NN MPNIVN D02 DIN P27 DHRIINONR TIYHN DNANN DX N2
NN DI”AN DX NNIYN NOWA .NPYIVN k TYNY 07PN DHNINONRND TIYH NN N2 120N
DONIIMNON 1IYN DN NN ANV DIV DNNINOND k NN DM DIV 297Dy DNINPINOND
MYPN NPYan NP NIAY N1IYON N1yan NP NAY DNYRIN k7Y D2THN ,DYI009N

.OTIP N2 NTY ANy

iii

YN PINAY DNINNND DNNINIIN

DINNNND WP NNODD Fixed-Time Search D21 NN NMN TPNRNINON NNOD DPTHD DN
D DT IMPHN WVIDN MIPINON 19010 NNV DY NN TPYNI IOV anytime 1 MWD
NN 90N .PYAD OMN ONRNMY Simulated Annealing, Tabu Search ,Stochastic Hill~Climbing
.The Cross“Entropy Method 199 NONINN VISN NNI ,PYIAD VIV NTHN ¥IPN NNODI DWNNN
DNMIMOND TAR NN DXDYAN PINRIY 2 THN ¥IN Y ,O0PNDD NINDI) 19010 DWNNHD DN
-y Random Search D»2'NIN OPNIPRA DNINONI DVYNNYN NN INNYN MTIPID DNV
,JINN IV DY N 3T NAY DY NN DN DNIPININD DR DWNINN 1IN .Random Walk
PNPNND DNIVINOND DY MODND 29179 .RAFP 72y NINY DPNIPN DVOP 50 Dy ysmnd
DNIMIVONRD IV INND N0 DT MK DY 0N DPNRION MIMIVIORY IR DN SV
DMNN DNV DN ¥ 2YTHNN DIINOND DY NTPNn NN Dy DDDIAN DPRY ,0MINND
NPT NINYN NNR MY DY NN JT TIND DD 191N .12V INNRD OPRIIN MMIIPININ ONNIN
ANV PTHN NN PR TON YVRNYAD T2 DNINOR DPNI NDNONNNY TD DNNINOND

NN Y SY NN ina

DYIND NN YONIVIR D901999 1IN

DNNYN TNNY NI LDV MW SMYNYN 0N NIN DNIINON DY DIVNID)ID
DVANYN DN .NMI¥T IPRY NPON THID NP TRY SUMOIN DIVNID PNV 0PI NINN
0N YNPD TNYY ParamILS NIPIY NNYNIN NNYN N DIVNID PNPID SUMVIN DO
NP2 OVN DIV DNIPINVIND MI0NTY NN DIMNDN DN TPYNT . NIVNIY DNRIININD
DI9NVYN DTHN NI DY DDDIAN DPRY DNIVININ NN TV NN ,NNN MY INND
TNPS PONN DYNIAN DX 9N INKD DPNRION MNIININ M DY DY OPYM IIMYNYN
T2 DIPINION NN N NIV 1500 TYNY RAFP NUN NPNIPN N1y 500 MYNNINI 000910
DXI0NIAN PN AINNRD DNVIPIVOND DY MNITAN MK 2D ONIN NN .IVND TPYY DY
NPT IO N . DIVNIAN DY OPNINNNN O2IIYN DY DIPYIND NMYD DINN 35 TYa NIaNwn
N ANV TIY WITAY NN ,001N990 NMIPD PONN TONNA NINYHD DNIINOND DV SIRNYIN
NPRIPN NPYA 500 NIY O TINIA MRXIN M DIVNID PNV DYXIN 1IN . TOINN MDYN
DHINYND DOy Mt YOV oY 0.5 SY MIANDN NN XTOY NI MYPN Nryan any mvp
VYN NNV DNRTPINON NIT IR INY MYPN NPYIN DY DNIPIOND SN MDY PN i
D0NI9N NP NN .MYPN NPYAN DY MNS DXV DNIPINOND DI DY NNV 950
NPYa 500 YM ONNIN OTOY NPADN DNNEND DNIPINVIND MNP DY NN DOYNIN DN
NN NNPI >T-OYY DRI DX .DIVNIIN PNV TNXD WYY NON TUND MINKR NPRIPN
TIRD PNY DINY DX) MPI7I2 NINY OPIDONR 93 HY MNXDI) NN NYD 1N NNV seed

.RAFP 17195 D)WY DNMINION 24 DYAPNN 10 .D DIYINON 955

ii

851

MmTPn

TNYD TND NP AP IR DI MYP NPYA MNSD DYDY MYITI DHRTIDT MOIYND
WNRY NI DPOPPVAN 7PYAN NN DIAMON DNIPINOND NYND D31 KD T NINARY NWIT OV
Y2 P OPADN PTAS NDN VP MIMINON .0OPN DTN MIONNINIDPR NI T OOWNT
1991 ,09PN 5 TN KNP AT DOVIY DN NNT IYDPVND PNINANN IPNIN DY DY BDN
TN MVYP NPYIL DXTPHRNN NN IPTMYID TOYN MAPN NN I NIND DDy DN D)
991 791 Constraints Optimization Problem N»yad ipPNITI YN 1723 DY NP~ optimization)00
OYPY W OMN ,DVP DNPIRY OPON) NON NPYAD DIIDNRD .MPON N N NN PNTD
W NN NI0N DIYNPN 7PYID IPNN 0N .0DPNY W 0IIY NRY DD DN ,MIVS KOO
DINDNN DY OYPYN ,1PYa JMINA .TY N2 PTI KD 190 O DININRD NPV NN TR ,00PNnD
D29 DVYPN DNRN NAY PYID 1PYAN DY WA~ NOIY IR DPTHIN DN ,WITI NN 19
NN NNAY TD NN NN T TN NNAY W AMNY L, DNNIN DOPYNN DY OO DININD
S5V NITO DPTNNN Anytime MNPININRI YWHNYND 10 NP2IWN NYP 7Py DY WAPN T DO

JIIN NXIN YT IR RN 0NN TAR MNAYY Td ,N91Y MINI MNIND

YN NMNVIN Ny

NPNIA2 NPOIY N Y2 .RAFP N9 NP NRY TPYNN 7PY2 DTN NN RYIIN 1D TN
9901 AT MHNYN DY IPNAD NNWOTTIT AN TIY DOV 1O ,D0TTa DINWNY Doy
,OI0TTI2 0N OO 1NNV D2OIYN DY DINIDIR DNYP DINYN N DID) , 07PN DYDY DY DIDN
TN NYONN ARWYN NRKPN NN DNYND Ty SV NNV 95 ,q0NA .0»INYI DN DNIPN
NPYI ONY DY N DTN DN .ONN NIND PRI ,DNIN) OIPIMND OIPNDY DARYND GUIN
MOLSNN NYAPY OPNIST DIVN XMPY YIDYI MOONN NYAP :RAFP MYNNNI 7T PINSDNVNN
»T-Hy NP-Complete NN ITHNY YA DY NyI10NN NDM D DNOM NN SVMVIN INDNID

SN YRS NN ,NAN IYYA DY NDIN TON TPONIMIYNS PNITI

D10 VYN NOTIND NOIPHL ,JNIMPIVY IMY NDMII DV INPNIN YN IPNNN

nmmn

STMOD SMIN VTTIYY O NNY DTN LN TITH DX Y ANINY POV DNND MTMInd X0 N
.ONNYADA ,NMNN NAOYN NN VIVARY 7PNM INYN M T TN

NN AT PN
VAP PSTVIIN NPV HY

PPN DY NN

ANINN NOAPO MYWIATN DY HPON " YD
YT 91112 NOTINA DY TND T0DNIN

M) PN

DNV MDNDV NON — POV VIDD YN
2018 Y nan n"ywnn TN

NN AT PN
VAP PSTVIIN NPV HY

M PN

	List of Figures
	List of Tables
	Abstract
	Abbreviations and Notations
	1 Introduction
	2 Preliminaries
	2.1 Stochastic Search Algorithms
	2.1.1 Random Search
	2.1.2 Random Walk
	2.1.3 Stochastic Hill Climbing
	2.1.4 Tabu Search
	2.1.5 Simulated Annealing
	2.1.6 The Cross-Entropy Method

	3 Problem Formulation
	3.1 The Resource Allocation with Forbidden Pairs (RAFP) Problem
	3.2 Examples
	3.2.1 Computer Aided Dispatch for Medical Services
	3.2.2 Automated Trading System

	3.3 The Fixed Time Variant of RAFP

	4 RAFP's Complexity
	4.1 The Maximum k-Colorable Subgraph Problem
	4.2 The Decision Variants of RAFP and k-MCSP
	4.3 The Decision Variant of RAFP is NP-Complete

	5 Algorithms for RAFP
	5.1 Local Search
	5.2 Beyond Local Search
	5.3 A Unifying Approach For Algorithms
	5.3.1 Fixed-Time Search
	5.3.2 The Procedure GenerateRandomNeighbor
	5.3.3 The Procedure EvaluateSolution

	5.4 Instances of Fixed-Time Search
	5.4.1 Random Search
	5.4.2 Random Walk
	5.4.3 Stochastic Hill Climbing
	5.4.4 Tabu Search
	5.4.5 Simulated Annealing
	5.4.6 The Cross-Entropy Method
	5.4.7 A Greedy Algorithm

	5.5 Leveraging the Greedy Algorithm
	5.5.1 Iterated Greedy
	5.5.2 Hybrid: Greedy + Search
	5.5.3 Hybrid for the Cross-Entropy Method

	6 Empirical Results: Individual Algorithms
	6.1 Implementation
	6.1.1 Inputs
	6.1.2 Anytime behavior

	6.2 Automatic Parameters Tuning
	6.2.1 Automatic Parameters Tuning for RAFP
	6.2.2 Tuning of a Single Algorithm
	6.2.3 Comparison of Algorithms During Tuning

	6.3 Validation of Final Configurations
	6.4 Harder Problems
	6.5 Algorithms Configurations

	7 Constructing The Best Portfolio
	7.1 Constructing a Portfolio as an Optimization Problem
	7.2 K-Algorithms Cover Problems
	7.2.1 Definitions
	7.2.2 Examples

	7.3 Minimum Algorithms Cover Problems
	7.3.1 Definitions
	7.3.2 Examples

	7.4 Modeling the K-Algorithms Cover Problem with SMT
	7.4.1 Modeling the K-Algorithms Max-Sum Problem with QF_LRA
	7.4.2 Modeling the K-Algorithms Min-Max-Gap Problem with QF_LRA

	8 Empirical Results: Portfolios
	8.1 SMT Modeling
	8.2 SMT Solving
	8.3 Portfolios Construction – Tuned Algorithms
	8.3.1 Three Portfolio Models
	8.3.2 Results

	9 Conclusion
	9.1 Contributions
	9.2 Future Work
	9.2.1 Individual Algorithms
	9.2.2 Automatic Parameters Tuning
	9.2.3 Better Portfolio Construction
	9.2.4 Exploring More Real Time Issues

	A Appendix
	A.1 Defining RAFP using Weighted Constraint Satisfaction Problems
	A.1.1 Constraint Satisfaction Problem
	A.1.2 Valued Constraint Satisfaction Problem
	A.1.3 Weighted Constraint Satisfaction Problem
	A.1.4 The Resource Allocation with Forbidden Pairs Problem

	A.2 Portfolios Construction – Random Matrices

	Bibliography
	Hebrew Abstract

