
Real Time Solving of Discrete
Optimization Problems

Yair Nof

Real Time Solving of Discrete
Optimization Problems

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Information

Management Engineering

Yair Nof

Submitted to the Senate

of the Technion — Israel Institute of Technology

Adar 5778 Haifa March 2018

This research was carried out under the supervision of Prof. Ofer Strichman, in the

Faculty of Industrial Engineering & Management.

Acknowledgements

I would like to thank my adviser, for showing me the right way. Thanks to my parents,

who encouraged me to learn. Thanks to my kids, wife and her parents who supported

the thesis completion, with their patience.

Contents

List of Figures

List of Tables

Abstract 1

Abbreviations and Notations 3

1 Introduction 5

2 Preliminaries 9

2.1 Stochastic Search Algorithms . 11

2.1.1 Random Search . 11

2.1.2 Random Walk . 11

2.1.3 Stochastic Hill Climbing . 13

2.1.4 Tabu Search . 14

2.1.5 Simulated Annealing . 15

2.1.6 The Cross-Entropy Method . 16

3 Problem Formulation 17

3.1 The Resource Allocation with Forbidden Pairs (RAFP) Problem 17

3.2 Examples . 18

3.2.1 Computer Aided Dispatch for Medical Services 18

3.2.2 Automated Trading System . 19

3.3 The Fixed Time Variant of RAFP . 20

4 RAFP’s Complexity 21

4.1 The Maximum k-Colorable Subgraph Problem 21

4.2 The Decision Variants of RAFP and k-MCSP 21

4.3 The Decision Variant of RAFP is NP-Complete 21

5 Algorithms for RAFP 25

5.1 Local Search . 25

5.2 Beyond Local Search . 25

5.3 A Unifying Approach For Algorithms . 25

5.3.1 Fixed-Time Search . 26

5.3.2 The Procedure GenerateRandomNeighbor 26

5.3.3 The Procedure EvaluateSolution 27

5.4 Instances of Fixed-Time Search . 27

5.4.1 Random Search . 27

5.4.2 Random Walk . 28

5.4.3 Stochastic Hill Climbing . 28

5.4.4 Tabu Search . 29

5.4.5 Simulated Annealing . 30

5.4.6 The Cross-Entropy Method . 31

5.4.7 A Greedy Algorithm . 32

5.5 Leveraging the Greedy Algorithm . 33

5.5.1 Iterated Greedy . 33

5.5.2 Hybrid: Greedy + Search . 34

5.5.3 Hybrid for the Cross-Entropy Method 34

6 Empirical Results: Individual Algorithms 35

6.1 Implementation . 35

6.1.1 Inputs . 35

6.1.2 Anytime behavior . 36

6.2 Automatic Parameters Tuning . 36

6.2.1 Automatic Parameters Tuning for RAFP 36

6.2.2 Tuning of a Single Algorithm . 39

6.2.3 Comparison of Algorithms During Tuning 39

6.3 Validation of Final Configurations . 44

6.4 Harder Problems . 45

6.5 Algorithms Configurations . 45

7 Constructing The Best Portfolio 53

7.1 Constructing a Portfolio as an Optimization Problem 54

7.2 K-Algorithms Cover Problems . 54

7.2.1 Definitions . 54

7.2.2 Examples . 55

7.3 Minimum Algorithms Cover Problems 57

7.3.1 Definitions . 57

7.3.2 Examples . 57

7.4 Modeling the K-Algorithms Cover Problem with SMT 59

7.4.1 Modeling the K-Algorithms Max-Sum Problem with QF LRA . . 59

7.4.2 Modeling the K-Algorithms Min-Max-Gap Problem with QF LRA 60

8 Empirical Results: Portfolios 63

8.1 SMT Modeling . 63

8.2 SMT Solving . 63

8.3 Portfolios Construction – Tuned Algorithms 63

8.3.1 Three Portfolio Models . 64

8.3.2 Results . 64

9 Conclusion 73

9.1 Contributions . 73

9.2 Future Work . 74

9.2.1 Individual Algorithms . 74

9.2.2 Automatic Parameters Tuning 74

9.2.3 Better Portfolio Construction . 75

9.2.4 Exploring More Real Time Issues 76

A Appendix 77

A.1 Defining RAFP using Weighted Constraint Satisfaction Problems 77

A.1.1 Constraint Satisfaction Problem 77

A.1.2 Valued Constraint Satisfaction Problem 78

A.1.3 Weighted Constraint Satisfaction Problem 79

A.1.4 The Resource Allocation with Forbidden Pairs Problem 79

A.2 Portfolios Construction – Random Matrices 80

Hebrew Abstract i

List of Figures

1.1 Quality vs. Time of Anytime Algorithms 7

1.2 Quality vs. Worst Computation Time of Algorithmic Strategies 8

2.1 Search Illustration . 9

2.2 Search Illustration - Steepest Ascent Hill Climbing 10

2.3 Search Illustration - Random Search . 12

2.4 Search Illustration - Random Walk . 12

2.5 Search Illustration - Stochastic Hill Climbing 13

2.6 Search Illustration - Tabu Search . 14

2.7 Search Illustration - Simulated Annealing 15

2.8 Search Illustration - The Cross-Entropy Method 16

6.1 Anytime Behavior of Algorithms - Before Tuning 37

6.2 Anytime Behavior of Algorithms - After Tuning 38

6.3 Automatic Parameters Tuning . 40

6.4 Automatic Parameters Tuning, Greedy Initialization 41

6.5 Automatic Parameters Tuning, Algorithms Ranking 1 42

6.6 Automatic Parameters Tuning, Algorithms Ranking 2 43

6.7 Automatic Parameters Tuning, Ranking’s Validation 44

6.8 Automatic Parameters Tuning, Hard Problems 46

6.9 Automatic Parameters Tuning, Hard Problems, Greedy Initialization . . 47

6.10 Automatic Parameters Tuning, Hard Problems, Algorithms Ranking 1 . 48

6.11 Automatic Parameters Tuning, Hard Problems, Algorithms Ranking 2 . 49

6.12 Automatic Parameters Tuning, Hard Problems, Ranking’s Validation . . 50

8.1 Max-Sum Portfolios, General Problems 65

8.2 Max-Sum Portfolios, Hard Problems . 66

8.3 Min-Max-Gap Portfolios, General Problems 67

8.4 Min-Max-Gap Portfolios, Hard Problems 68

A.1 Max-Sum Portfolios, Random Matrices 81

List of Tables

6.1 Automatic Parameters Tuning - Random Walk Parameters 51

6.2 Automatic Parameters Tuning - Stochastic Hill Climbing Parameters . . 51

6.3 Automatic Parameters Tuning - Tabu Search Parameters 51

6.4 Automatic Parameters Tuning - Simulated Annealing Parameters 52

6.5 Automatic Parameters Tuning - The Cross Entropy Method Parameters 52

8.1 Max-Sum Optimal Portfolios - Part 1 69

8.2 Max-Sum Optimal Portfolios - Part 2 69

8.3 Max-Sum Optimal Portfolios - Part 3 69

8.4 Max-Sum Optimal Portfolios, Hard Problems - Part 1 70

8.5 Max-Sum Optimal Portfolios, Hard Problems - Part 2 70

8.6 Min-Max-Gap Optimal Portfolios - Part 1 71

8.7 Min-Max-Gap Optimal Portfolios - Part 2 71

8.8 Min-Max-Gap Optimal Portfolios - Part 3 71

8.9 Min-Max-Gap Optimal Portfolios, Hard Problems - Part 1 72

8.10 Min-Max-Gap Optimal Portfolios, Hard Problems - Part 2 72

Abstract

Many hard real-time systems have a desired requirement which is impossible to fulfill:

to solve a computationally hard optimization problem within a short and fixed amount

of time. For such a task, the exact, exponential algorithms are out of scope. Polynomial-

Time Approximation Schemes guarantee a 1 − ε approximation with a polynomial

run-time, but this run-time can easily exceed the short and fixed requirement. In this

thesis we define the ‘fixed-time variant’ of a hard optimization problem, based on giving

weights to the hard constraints. In practice only any-time algorithms are relevant for

such tasks.

We define a concrete optimization problem that we call RAFP and prove that its

decision variant is NP-complete. We then study the performance of several probabilistic

algorithms (most of them are local-search) that we fit to RAFP’s fixed-time variant,

with very short time bounds. We study the practical impact of automatically tuning

the parameters of those algorithms. In addition, we consider the problem of optimizing

a parallel portfolio of algorithms. Specifically, we study the problem of choosing k

algorithms out of n, for a machine with k computing cores, and the related problem

of detecting the minimum number of required cores to achieve an optimal portfolio,

with respect to a given training set of benchmarks. The thesis includes the results of

numerous experiments that compare the various methods.

1

Abbreviations and Notations

PTAS : Polynomial Time Approximation Scheme

CSP : Constraint Satisfaction Problem

WCSP : Weighted CSP

VCSP : Valued CSP

COP : Constraint Optimization Problem

SAT : Satisfiability

FT : Fixed Time

RAFP : Resource Allocation with Forbidden Pairs

k-MCSP : Maximum k-Colorable Subgraph Problem

RS : Random Search

RW : Random Walk

SHC : Stochastic Hill Climbing

TS : Tabu Search

SA : Simulated Annealing

CE : Cross Entropy

SMT : Satisfiability Modulo Theories

QF LRA : Quantifier Free Linear Real Arithmetic

3

Chapter 1

Introduction

Hard real-time systems frequently have a seemingly impossible requirement: To solve

within a short, fixed amount of time T (e.g., T = 0.5 second), a computationally

hard optimization problem1. For some hard optimization problems there are known

polynomial approximations, which may seem to meet this challenge. Such algorithms,

known by the name Polynomial-Time Approximation Schemes (PTAS) [WS11], can

guarantee a 1− ε proximity to the optimal solution2. For example, they can guarantee

a solution with an objective value which is not lower than 0.5 the value given by the

(exponential) exact algorithm. But PTAS are not necessarily relevant for hard real time

systems, for two main reasons:

• They only guarantee a polynomial bound on the run-time, whereas the hard real

time system requires a fixed bound. Moreover, this bound increases when the

precision parameter ε becomes smaller.

• The guaranteed upper-bound on the distance from the optimal value, as implied

by the precision parameter ε, is frequently less important than the average quality

of the solution.

1 In many real time systems there are other issues that we do not address in this thesis: The input
might be a stream of problems with inaccuracies or uncertainties, with a cost for a late delivery of a
solution

2 Throughout this work we refer to maximization problems. The definitions for minimization problems
are similar: in this case it will be a 1 + ε proximity.

5

We focus on optimization problems that their decision variant is complete in NP

(henceforth, NP-optimization problems); By definition, those can be reduced to the NP-

complete Constraint Satisfaction Problem (CSP)3, which gives us a unified starting point

in the discussion that follows. CSP has an optimization variant called the Constraint

Optimization Problem (COP), in which the goal is to satisfy the constraints while

maximizing (or minimizing) some objective function. It is common to distinguish

between hard and soft constraints in COP, where each of the latter is associated with

a weight that reflects the ‘reward’ for satisfying it. Every solution has to satisfy the

hard constraints, and an optimal solution has to additionally maximize the reward by

satisfying soft constraints. The problem may also have an objective other than the soft

constraints, but soft constraints and the objective are reducible to one another, if we

assume that the objective function is a linear function. Hence for convenience we can

talk about a constraints system with hard and soft constraints only, without an explicit

objective function.

We use COP to define a fixed-time variant of an NP-optimization problem. Given

the fixed time bound T our goal is to find algorithms that their solution is as good

as possible at time T . This, by definition, implies that we cannot guarantee that our

solution satisfies all the hard constraints of the original optimization problem, and we

therefore need to prioritize them by giving them weights. In other words, we need to

turn the hard constraints into soft constraints (in doing so, it is reasonable to assign

those constraints larger weight than those associated with the original soft constraints).

This gives rise to the following definition:

Definition 1.0.1 (The fixed-time variant of an NP-optimization problem). Given a

• NP-hard optimization problem P cast as a COP, and

• weights to the hard constraints, reflecting their importance relative to each other

and the original soft constraints (if there are any),

let soft(P) denote a problem identical to P except that all the hard constraints are

turned into soft constraints with the given weights. Given a time limit T , the fixed-time

variant of P , denoted FT (P), is the problem of finding a solution within time T to

soft(P).

Note that the time limit is given in absolute terms, which means that the best solution

may depend also on the hardware.

3 CSP generalizes the propositional satisfiability problem (SAT), but is still in NP. It allows variables
with any finite discrete domain (rather than SAT’s restriction to the Boolean domain), and a rich
modeling language.

6

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10

12

14

Anytime Vs. Regular Algorithm

Time

Q
u
a
l
i
t
y

Anytime Algorithm

Regular Algorithm

Figure 1.1: Quality vs. time of an anytime and a regular algorithm

Anytime algorithms

To satisfy the requirement of a fixed-time bound, in practice the algorithm has to be

an anytime algorithm [DB88]. Anytime algorithms maintain intermediate sub-optimal

results, and hence if interrupted, they can emit some solution. This solution is not likely

to be optimal, but is better than nothing. Figure 1.1 illustrates the difference between

the quality over time of an anytime algorithm and an algorithm which is not any-time.

The diagram demonstrates a case in which the anytime algorithm is worse in the long

run; this reflects the fact that sacrifices may be necessary for achieving the anytime

property. Another family of algorithms are heuristic methods. Generally, these methods

do not guarantee anything: Their run-time might exceed the fixed bound, and they

have no upper-bound on their distance from the optimal value. Some of the heuristic

methods, in practice, reach high quality solutions (although not optimal) relatively fast,

and hence are good candidates as anytime algorithms.

For our purpose, the value of the algorithm is measured by the quality of the so-

lution that it is able to produce at time T . Most of the work in anytime algorithms that

we found, e.g., [BBNP04], [Lou03], [CZ06], [OD12], [SBLI12], [Cla99], [WC00] did not

try to measure empirically their success after a fixed and short amount of time. One of

the goals of this thesis is to do just that for a particular problem that we will define in

the next chapter.

Figure 1.2 summarizes the quality/time trade-off according to the strategies discussed

so far.

7

Sub-optimal

1− ǫ Approximation

Optimal

Q
u
a
li
ty

Fixed Polynomial Exponential

Worst case computation time

Anytime

PTAS

Exact

Figure 1.2: Quality vs. Worst computation time of various algorithmic strategies

In this thesis we focus on one particular hard optimization problem which we call

RAFP, and give two examples of using it. We define its fixed time variant, and then

study the performance of over 7 different algorithms in solving its fixed-time variant

with low values of the time bound T . Most of these algorithms are adaptation of

known stochastic search algorithms (such as Tabu Search, Stochastic Hill Climbing, The

Cross-Entropy Method and Simulated Annealing) and their combinations. We then

address the problem of optimizing a parallel portfolio of algorithms, for a given number

k of available computing cores, and also study the related problem of convergence: what

is the lowest value of k for which we can get an optimal portfolio?

The structure of the thesis

The thesis continues in the next chapter by defining a hard optimization problem called

RAFP, demonstrate its use, and define its fixed-time variant. In chapter 4 we prove

that the decision variant of this problem is NP-complete. In chapter 5 we describe a

set of anytime algorithms that cope with the fixed time-variant of RAFP. In chapter

6 we describe empirical results based on 500 random inputs for RAFP, some general

and some with a focus on hard instances. In chapter 7 we suggest methods to construct

optimal parallel portfolios of the algorithms, which will enable us to benefit the most

from a computing environment with multiple cores. In chapter 8 we describe empirical

results of building a parallel portfolio for our concrete problem. Chapter 9 summarizes

our work.

8

Chapter 2

Preliminaries

In Chapter 5 we will formally define several search algorithms (including pseudo-code)

that we use in this work. These meta-heuristics have many variants, and here we only

describe the essence, informally, of the common variant. We explain the principles of

these algorithms by using the maximization problem in figure 2.1. The figure describes

a problem in one dimension, where the x-axis represents the solution space, and the

y-axis represents the quality. Although the graph looks continuous, we refer to a discrete

set of solutions. For the purpose of these preliminaries (and opposed to Chapter 5),

the solution space is assumed to be ordered, which allows us to depict the x-axis. For

this reason a ‘neighbor’ is simply the next or previous value in that order. In the more

general case, which is relevant to this thesis, the solutions are not ordered but there are

multiple dimensions. When there are multiple dimensions, a ‘neighbor’ means that only

a few dimensions (i.e., variables) change. In the following figures, we will describe a

solution as a point on the graph, where the goal is to detect the global maximum. The

numbers on a point corresponds to its visit time, starting in point ’1’.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−60

−50

−40

−30

−20

−10

0

10

Solution

Q
u
a
l
i
t
y

Figure 2.1: Search Illustration - A maximization problem in one dimenstion

9

First, we show an example of a very simple search algorithm.

Steepest Ascent Hill Climbing

The steepest ascent hill climbing algorithm [Bro11] simply examine all neighboring

solutions, and moves to the best neighbor. In our setting, if we define a step of 1 unit,

each solution has two neighbors – the right and the left. We move to the solution that

has a higher quality. Figure 2.2 describes this process where point ’1’ is our initial

solution, and we are going up-hill until we stop in the top of the hill. At this stage,

both our neighbors are worse than the current solution, and the steepest ascent hill

climbing algorithm cannot continue. The local maximum that we found is our solution.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−60

−50

−40

−30

−20

−10

0

10

Solution

Q
u
a
l
i
t
y Current&

Best Solution

Global
Maximum

1

1
2

3

4
5

678

Figure 2.2: Search Illustration - Steepest Ascent Hill Climbing

10

2.1 Stochastic Search Algorithms

Stochastic algorithms use randomness in the search process, which might help to escape

local maxima or accelerate the progress. We show several examples of stochastic search

algorithms.

2.1.1 Random Search

Random search [Bro58] is a very simple algorithm. It chooses uniform random solutions

iteratively, evaluates their quality and maintains the best solution. When it reaches

its timeout, the best solution is returned. Figure 2.3 describes this process, where we

can see a random sampling of solutions, the last is marked as Current solution, and the

Best solution is the output.

2.1.2 Random Walk

Random walk [Yan10] iteratively and randomly chooses one of the current solution’s

neighbors. In our setting, with a step of 1 unit, random walk uniformly chooses between

the current solution’s right and left neighbors, and makes the chosen neighbor its current

solution. Figure 2.4 describes this process, where we can see a more local sampling of

solutions than we saw in random search, the current solution is the last solution, and

the best solution is the output.

11

−10 −8 −6 −4 −2 0 2 4 6 8 10
−60

−50

−40

−30

−20

−10

0

10

Solution

Q
u
a
l
i
t
y

Current Solution

Best
Solution

Global
Maximum

1

2

3

4

5

6

7

8 9

Figure 2.3: Search Illustration - Random Search. We can see a wide and uniform random
sampling

−10 −8 −6 −4 −2 0 2 4 6 8 10
−60

−50

−40

−30

−20

−10

0

10

Solution

Q
u
a
l
i
t
y

Current
Solution

Best
Solution

Global
Maximum

1

2

3
4

5

6

7

8

9

Figure 2.4: Search Illustration - Random Walk. We can see a local and uniform random sampling

12

2.1.3 Stochastic Hill Climbing

Stochastic hill climbing [FM93] iteratively and randomly samples one of the current

solution’s neighbors, and accepts it if its quality is higher than the current solution’s

quality. As opposed to random search and random walk, we do not accept any solution.

Figure 2.5 describes this process, where we can see hollow circles in sampled solutions

which we did not accept, because their quality was lower than the current solution’s

quality. We can see the local sampling of solutions. The filled circles show the hill-

climbing behavior of this method.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−60

−50

−40

−30

−20

−10

0

10

Solution

Q
u
a
l
i
t
y

Current&
Best Solution

Global
Maximum1 2

3

5

6 4

Figure 2.5: Search Illustration - Stochastic Hill Climbing. We can see two solutions (3,5) that
were not acceptable since they were worse than the current solution, and acceptable solutions
which improve with time

13

2.1.4 Tabu Search

Tabu search [Glo86] iteratively chooses (deterministically or stochastically) the best

neighboring solution, which is not forbidden. A forbidden solution might be a recently

visited solution. The forbidden solutions are handled using a constant size tabu list.

When the tabu list reaches its maximum size, the oldest items are removed. Accepting

worse solutions and avoiding last visited solutions help to escape local maxima. Figure

2.6 describes this process, where we can see a tabu list with the last three items, which

are temporarily forbidden.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−60

−50

−40

−30

−20

−10

0

10

Solution

Q
u
a
l
i
t
y

Tabu item

Current
Solution

Best
Solution

Global
Maximum

2

4

5

6

7

1
33

6

Figure 2.6: Search Illustration - Tabu Search. We can see that the last three solutions (5,6,7)
are temporarily forbidden (there is an ’x’ above them)

14

2.1.5 Simulated Annealing

Simulated annealing [JV83] iteratively and randomly samples one of the current solution’s

neighbors. There is a probability of accepting a neighbor solution. If it is better than the

current solution, it is chosen with probability 1. If it is worse than the current solution,

the probability of choosing it is lower as the differences in qualities between the current

and the candidate solution. A temperature parameter also influences the probability

of choosing a neighbor solution. At the beginning of the search the temperature is

high, and the probability of accepting worse solutions is high too. When time passes, a

temperature reduction leads to a lower acceptance probability of worse solutions. This

method enables a wide exploration of solutions at the beginning of the search, and a

more local exploration of solutions later. Figure 2.7 describes this process, where we

can see late candidate solutions that were not chosen because their value is too low to

accept in the last period of the search.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−60

−50

−40

−30

−20

−10

0

10

Solution

Q
u
a
l
i
t
y

Candidate
Solution

Current
Solution

Best
Solution

Global
Maximum

1

2

3

45

6

7

8

Figure 2.7: Search Illustration - Simulated Annealing. We can see that there are two solutions
(6,7) which we do not accept, since their quality is too low at their visit time

15

In what follows, we do not use the above maximization problem for illustration any

more.

2.1.6 The Cross-Entropy Method

The cross-entropy method (CE) [RK04], in its basic form, is parameterized by N ∈ N,

0 < ρ < 1, 0 < α < 1 and 0 < ε < 1 (typical values could be ρ = 0.2, α = 0.1, ε = 0.01).

The role of these parameters will be clear momentarily.

CE maintains a probability distribution, initially uniform, for the values in the

domain of each variable. It samples N solutions using this distribution, and then

evaluates them. The best dρ ∗ Ne samples is called the elite set. Based on this set,

CE recomputes the distribution, so it becomes more biased towards the elite set. For

example, suppose that α = 0.2, the probability of x to be assigned the value 12 is

currently 0.1, and that x = 12 appears in 30% of the solutions in the elite set. Then the

new probability of x being assigned 12 will be 0.2 ∗ 0.3 + (1− 0.2) ∗ 0.1 = 0.14. After

recomputing the distribution in this way, the process is reiterated. Each time a sample

is made, if its evaluation is the highest so far from all samples, it is saved. In the end of

the process, the best observed sample is returned.

This process can converge, which means that for each variable, there is one value

with probability larger than 1 − ε. With a small value of ε, this indicates that there

is no point reiterating since the results will stay the same with high probability. If

convergence occurs, CE can either be terminated or restarted with a different seed,

provided that there is enough time.

Figure 2.8 describes this process, where the x-axis represent the values of one

variable, the y-axis represent the iteration of the algorithm, and the z-axis represent

the probability for each value. We can see a convergence of the algorithm to one of its

values.

Figure 2.8: Search Illustration - The Cross-Entropy Method

16

Chapter 3

Problem Formulation

We begin by formulating a hard optimization problem. The rest of the thesis will focus

on solving its fixed-time variant.

3.1 The Resource Allocation with Forbidden Pairs (RAFP)

Problem

RAFP is defined by

• A = {A1, ..., An} is a set of variables.

• D is a set of tactics indices (henceforth ‘tactics’).

• Res is a set of available resources {r1, r2, ..., rm}.

• Di ⊆ D is the domain of tactics available for Ai, for i ∈ [1..n].

• R : D 7→ Res maps a tactic d to a resource in Res.

• U : D 7→ [0..1] is a unary utility function.

• U : D ×D 7→ [0..1] is a binary utility function.

• F : D ×D 7→ {0, 1} is a matrix of Boolean values, indicating the forbidden pairs

of tactics.

• B1, B2, ..., Bm ∈ N are bounds on the resources of Res.

A solution to RAFP is an assignment a1, a2, . . . , an to the variables in A, where ai ∈ Di

for i ∈ [1..n]. The hard constraints on the solution are implied by the forbidden-pairs

matrix F , and the bound on the resources B1, ..., Bm:

• For each pair of variables Ai, Aj , their selected tactics ai ∈ Di and aj ∈ Dj satisfy

F (ai, aj) = 0.

17

• For each rk ∈ Res, |{R(ai)}R(ai)=rk | ≤ Bk.

The objective is to maximize the utility:

max

 n∑
i=1

U(ai) +
n∑

i,j=1,i 6=j

U(ai, aj)

 . (3.1)

We note that RAFP can be defined using an existing framework for hard and soft

constraints called Weighted Constraint Satisfaction Problem. Appendix A shows this

formulation.

3.2 Examples

The RAFP is a rather general discrete optimization problem, which includes binary

constraints, some form of cardinality constraints and a utility function with unary and

binary factors. Several other general, but more specific known problems, can be derived

from RAFP, including the Binary Constraint Satisfaction Problems. Here we present

some real world problems which are natural to represent using RAFP.

3.2.1 Computer Aided Dispatch for Medical Services

An emergency control center might use a recommendation system that should react

very fast. When medical resources are limited, deciding to send a vehicle for a specific

task might cause a delay in other task and risk lives or cause more pain to someone.

The following details suggest a RAFP representation for this kind of a system:

• A = {A1, ..., An} are emergency medical tasks received at the control center; e.g.,

An injury of a worker in a construction site, a car accident in a specific junction,

etc.

• D are the set of emergency medical solutions; e.g., medication, first-aid, evacuation,

CPR, surgery, etc.

• Di ⊆ D is the set of solutions that fits each emergency medical task; e.g., For

a specific car accident first-aid or medication is enough. For some injuries an

evacuation over ambulance van or a CPR using an ambulance motorcycle are the

only options.

• U(d) for d ∈ D is the unary utility of using a single solution to an emergency

medical task: e.g., the utility of using a well-equipped ambulance van for CPR

might be higher than using an ambulance motorcycle for the same task.

• U(di, dj) for di, dj ∈ D is the binary utility of using two solutions simultaneously:

Performing a surgery at the stationary intensive care unit for task di delays another

task dj which we should carry out at the same unit, thus reducing U(di, dj).

18

• F (di, dj) for di, dj ∈ D is the binary matrix which indicates the pairs of tasks

that are impossible to accomplish simultaneously; e.g. we cannot send away a

helicopter with medical experts while handling a mass-casualty incident. In these

cases we have F (di, dj) = 1, which prevents di, dj from being performed together.

• Res is the set of the mobile and stationary resources types; e.g. Ambulance van,

ambulance motorcycle, helicopter, intensive care unit, etc.

• R(d) for d ∈ D maps a single medical solution to its medical resource.

• B1, B2, ..., Bm ∈ N are bounds on the medical resources.

3.2.2 Automated Trading System

An automated trading system performs buying and selling orders in the stock market.

The short system response time and quality of solution is critical for positive and high

revenue. The more profitable orders might be carried out only by few machines, special

times, have high correlation to other orders, or are forbidden to perform together. The

following details suggest a RAFP representation for this kind of a system:

• A = {A1, ..., An} is a batch of buying/selling orders to decide in the next trading

period.

• Di ⊆ D is a financial product (stock, bond, option etc.), a buy / sell order and a

discrete amount.

• U(d) for d ∈ D is the expected revenue for order d. Some orders are more profitable

than others.

• U(di, dj) for di, dj ∈ D is the inverse of correlation between orders di, dj . Low

correlations are preferred.

• F (di, dj) for di, dj ∈ D is a binary matrix which indicates which pairs of orders

are forbidden together in the same trading period. If di, dj is a forbidden pair we

have F (di, dj) = 1.

• Res is a set of types of trading machines: Different sizes of servers and clusters

that are available to perform our orders.

• R(d) for d ∈ D maps a single buying/selling order to a trading machine type.

• B1, B2, ..., Bm ∈ N are bounds on the number of available trading machines of

each type, for the next trading period.

19

3.3 The Fixed Time Variant of RAFP

soft(RAFP) is defined as RAFP with a weight of 0 on the hard constraints. Given a

time limit T , the fixed-time variant of RAFP , denoted FT (RAFP), is the problem of

finding a solution within time T to soft(RAFP).

20

Chapter 4

RAFP’s Complexity

We prove the NP-completeness of RAFP by a reduction from the following problem.

4.1 The Maximum k-Colorable Subgraph Problem

The Maximum k-Colorable Subgraph Problem (k-MCSP) is defined as follows.

• G = (V,E) is a graph

• k is a positive integer, which defines a set of colors C = {c1, . . . , ck}

A solution to k-MCSP is the largest vertex set V ′ ⊆ V which induces a k-colorable

graph, i.e. there is an assignment of colors to the vertices such that no two adjacent

vertices are assigned the same color.

For k=1, k-MCSP becomes the Maximum Independent Set problem, which is known to

be NP-hard [GJ79]. Therefore k-MCSP is NP-hard.

4.2 The Decision Variants of RAFP and k-MCSP

First we define the decision variants of RAFP and k-MCSP.

We add to k-MCSP an integer h ∈ [1..n], where |V | = n and ask whether there is a

solution to k-MCSP with h or more vertices.

We add to RAFP a value u ∈ R and ask whether there is a solution to RAFP with∑n
i=1 U(ai) +

∑n
i,j=1,i 6=j U(ai, aj) ≥ u.

4.3 The Decision Variant of RAFP is NP-Complete

Theorem 4.1. The decision variant of RAFP is NP-Hard

Proof. We will show that k-MCSP ≤P RAFP .

Given an instance of k-MCSP, we will construct an instance of RAFP.

Given G = (V,E), k, h, we define RAFP’s elements:

21

• A = V , i.e., the set of variables is the set of vertices.

• D = {dvc}v∈V,c∈C′ , where C ′ = C ∪ {c0}. Tactics are all possible colorings of

vertices, with the possibility of a vertex without a color, marked by c0.

• Di = {dic}c∈C′ , variable i’s tactics are all possible colorings of the i-th vertex,

with the possibility that it has no color. Note that D =
⋃
i
Di.

• For each v ∈ V, c ∈ C ′, the unary utility is defined as:

U(dici) =

{
0 if ci = c0

1 otherwise
(4.1)

• For each i, j ∈ V , and p, q ∈ C ′ we have dip, djq ∈ D and the binary utility is

defined as:

U(dip, djq) =

{
−∞ if (i, j) ∈ E, p = q, p 6= c0, q 6= c0

0 otherwise
(4.2)

• F = {1}|D|×|D| – There are no forbidden pairs of tactics

• Res = {r1}, R(d) = r1 for d ∈ D, and B1 = n. There is only one resource type

with n items.

• We define u = h, the utility value of RAFP should be equal to the size of the

subgraph in k-MCSP.

Since |D| = |V | · |C ′| = n(k + 1), |Di| = k + 1, the unary domain size is |D|, the binary

domain size for the binary utility function and the forbidden pairs matrix is |D|2 and

|Res| = 1, the construction is done in a polynomial time in the size of the k-MCSP

instance.

Now we show that the answer for the original instance of k-MCSP is yes if and only if

the answer for the RAFP instance we created is yes.

(⇐) Suppose k-MCSP has a k-colorable subgraph G′ = (V ′, E′) with |V ′| ≥ h, for

h ∈ N, h ≤ |V |. Let ci ∈ C ′ denote the color of i ∈ V on G. For each i ∈ V ′ we have

U(dici) = 1 and for each i /∈ V ′ we have ci = c0 and U(dic0) = 0. Since we have a

coloring with at least h vertices we have:∑
i∈V

U(dici) =
∑
i∈V ′

U(dici) +
∑
i/∈V ′

U(dici) ≥ h+ 0 ≥ h. (4.3)

22

Regarding the binary utility we have:

n∑
i,j=1,i 6=j

U(dici , djcj) =
∑

(i,j)∈E,ci=cj
ci,cj 6=c0

U(dici , djcj) +
∑

(i,j)/∈E∨ci 6=cj∨
ci=c0∨cj=c0

U(dici , djcj) (4.4)

Since we have a coloring, the following sum is over an empty set, thus it is equal to zero:

∑
(i,j)∈E,ci=cj

ci,cj 6=c0

U(dici , djcj) = 0 (4.5)

According to (4.2) we have: ∑
(i,j)/∈E∨ci 6=cj∨
ci=c0∨cj=c0

U(dici , djcj) = 0 (4.6)

Thus, (4.4) becomes
n∑

i,j=1,i 6=j

U(dici , djcj) = 0 (4.7)

From (4.3) and (4.7) we have

∑
i∈V

U(dici) +

n∑
i,j=1,i 6=j

U(dici , djcj) ≥ h+ 0 ≥ h (4.8)

as needed for the utility.

Regarding the resource constraints we have for each i ∈ V and ci ∈ C: |{R(dici)}R(dici)=r1
| =

n ≤ B1. The binary hard constraints are trivially met because F = {1}|D|×|D|. This

concludes this side of the proof.

(⇒) Now suppose that the assignment {dici}i∈[1..n] is a solution to the constructed

RAFP instance, with

n∑
i=1

U(dici) +
n∑

i,j=1,i 6=j

U(dici , djcj) ≥ h (4.9)

for h ∈ [1..n]. From (4.9) we infer U(dici , djcj) 6= −∞, which implies U(dici , djcj) = 0,

according to (4.2), for each i, j ∈ V and ci, cj ∈ C ′. Thus,

n∑
i,j=1,i 6=j

U(dici , djcj) = 0 (4.10)

23

From (4.9) and (4.10) we have

n∑
i=1

U(dici) ≥ h (4.11)

According to (4.1), this is equivalent to a k-coloring in V with at least h vertices,

different than c0. The coloring is legal since U(dici , djcj) 6= −∞ and according to (4.2).

Theorem 4.2. The decision version of RAFP is in NP

Proof. Let a1, a2, . . . , an be a solution to RAFP, with a utility larger or equal to u. To

validate the binary constraints, U(ai, aj) 6= −∞, i 6= j, we have O(n2) operations. To

validate the resource constraints, |{R(ai)}R(ai)=rk | ≤ Bk, for each rk ∈ Res, we have n

operations. To validate
∑n

i=1 U(ai) +
∑n

i,j=1,i 6=j U(ai, aj) ≥ u we have O(n2) operations.

Totally, we have O(n2) operations to validate that a1, a2, . . . , an is a solution to RAFP,

a polynomial number of operations, which implies RAFP ∈ NP .

Theorem 4.3. The decision version of RAFP is NP-Complete

Proof. From theorems 4.1 and 4.2 we get that the decision version of RAFP is in NPC.

24

Chapter 5

Algorithms for RAFP

5.1 Local Search

Local search is a heuristic framework for solving hard decision and optimization problems.

Local search is relatively simple to implement, output a stream of solutions without

a setup time, and contains a rich toolbox of parametrized algorithms. Local search

meta-heuristics might be easily adapted to many problems and solutions’ structures

[HS04]. Local search moves from one solution to a neighbor solution in the space of

candidate solutions using an evaluation function, and stops if an optimal solution is

found or the time bound is reached. The Random Walk, Stochastic Hill-Climbing, Tabu

Search and Simulated Annealing that we present later in this chapter are local search

algorithms.

5.2 Beyond Local Search

When the candidate solutions are sampled using a guidance which is different from a

neighboring relation, the search is not local. The Random Search, Greedy and the Cross

Entropy Method that we present later in this chapter are search algorithms which are

not considered as local search.

5.3 A Unifying Approach For Algorithms

Algorithm 5.1 describes the meta-heuristic that we used, which we call Fixed-Time

Search. Each derived algorithm implements parts of Fixed-Time Search, and adapted to

RAFP, when necessary. By using a single framework for all variations of the algorithm,

we achieve a relatively fair comparison between them. In all the following references to

RAFP, we refer to RT(RAFP).

25

5.3.1 Fixed-Time Search

Algorithm 5.1 FixedT imeSearch(Initial Solution Init, Timeout T)

Current← Init

Best← Current

while not (StopCriterionReached() or timeout T reached) do

Candidate← ChooseCandidate(Current)

if AcceptanceCriterionReached(Candidate) then

Current← Candidate

if EvaluateSolution(Best) ≤ EvaluateSolution(Current) then

Best← Current

end if

end if

if RestartCriterionReached() then

Current← Restart()

end if

end while

return Best

Next, we describe common definitions and procedures of all algorithms, in order to fit

Fixed-Time Search to RAFP.

Definition 5.3.1 (Distance between solutions). Let S = (a1, a2, ..., an) and S′ = (b1, b2, ..., bn)

be two solutions to a RAFP instance. The distance between the solutions is defined as

the number of different elements between them : D(S, S′) = |{i | ai 6= bi}|.

Definition 5.3.2 (K-Neighborhood of a solution). The K-Neighborhood of S, is the set

of all solutions that their distance from S is no more than K: NK(S) = {S′|D(S, S′) ≤
K}.

5.3.2 The Procedure GenerateRandomNeighbor

The procedure GenerateRandomNeighbor is used by most of the stochastic algorithms

that follow, in order to generate a single neighbor of the current solution. The neighbor

is in the K-Neighborhood of the current solution. Procedure 5.2 describes this process.

26

Procedure 5.2 GenerateRandomNeighbor(Solution Current, Neighborhood Size K)

Neighbor ← Current

for K times do

i← a variable’s index chosen uniformly at random

v ← a value chosen uniformly at random from the domain of Neighbor.V ari

Neighbor.V ari ← v

end for

return Neighbor

5.3.3 The Procedure EvaluateSolution

EvaluateSolution is a procedure tailored for the RAFP problem. It computes the

objective value described in Chapter 3, given a full assignment.

5.4 Instances of Fixed-Time Search

In what follows, we describe how to derive specific search algorithms from Fixed-Time

Search, using the procedures GenerateRandomNeighbor and EvaluateSolution.

5.4.1 Random Search

Random Search or Pure Random Search [Bro58] is the simplest algorithm of Fixed-Time

Search: Generate a series of random solutions of N variables and choose the best one

according to the objective function. Procedures 5.3-5.7 describe the random search

algorithm for RAFP. Random search is not likely to be competitive, and we only include

it for reference.

Procedure 5.3 StopCriterionReachedRS()

return false

Procedure 5.4 ChooseCandidateRS(Solution Current)

GenerateRandomNeighbor(Current,N)

Procedure 5.5 AcceptanceCriterionReachedRS(Solution Candidate)

return true

Procedure 5.6 RestartCriterionReachedRS()

return false

Procedure 5.7 RestartRS()

return empty solution

27

5.4.2 Random Walk

Random Walk [Yan10] is a simple local search algorithm which moves between random

neighbor solutions, according to some neighboring relation. Procedures 5.8-5.12 describe

the random walk algorithm for RAFP.

Procedure 5.8 StopCriterionReachedRW ()

return false

Procedure 5.9 ChooseCandidateRW (Solution Current, Neighborhood Size K)

GenerateRandomNeighbor(Current,K)

Procedure 5.10 AcceptanceCriterionReachedRW (Solution Candidate)

return true

Procedure 5.11 RestartCriterionReachedRW ()

return false

Procedure 5.12 RestartRW ()

return empty solution

5.4.3 Stochastic Hill Climbing

Stochastic Hill Climbing [FM93] is a simple local search algorithm which only adds

a simple acceptance criterion to random walk: Move to the neighbor if and only if it

is better than the current solution. Procedures 5.13-5.17 describe the stochastic hill

climbing algorithm for RAFP.

Procedure 5.13 StopCriterionReachedSHC()

return false

Procedure 5.14 ChooseCandidateSHC(Solution Current, Neighborhood Size K)

GenerateRandomNeighbor(Current,K))

Procedure 5.15 AcceptanceCriterionReachedSHC(Solution Current, Solution Candidate)

return EvaluateSolution(Current) ≤ EvaluateSolution(Candidate)

Procedure 5.16 RestartCriterionReachedSHC()

return false

28

Procedure 5.17 RestartSHC()

return empty solution

5.4.4 Tabu Search

Tabu Search [Glo86] is a local search algorithm which uses constant memory in order to

avoid visiting the same solutions, and escapes from local maxima. In the tabu search for

RAFP, we maintain a tabu list of variables. The list contains variables which changed

their value recently. A variable in the tabu list will not change its value unless it yields

a better solution than the best solution1. Procedures 5.18-5.24 describe the tabu search

algorithm for RAFP.

Procedure 5.18 StopCriterionReachedTS()

return false

Procedure 5.19 ChooseCandidateTS(Solution Current, Neighborhood Size K)

GenerateRandomNeighbor(Current,K)

Procedure 5.20 TabuForbidSolution(Solution Candidate, Solution Current)

for each variable index i do

if Candidate.V ari 6= Current.V ari and TabuList.Contain(i) then

return true

end if

end for

return false

Procedure 5.21 TabuUpdate(Solution Candidate, Solution Current)

for each variable index i do

if Candidate.V ari 6= Current.V ari then

TabuList.InsertFront(i)

end if

if TabuList.Size() > Maximum allowed tabu list size then

TabuList.RemoveBack()

end if

end for

1 Here we deviate from the common implementation of tabu search since a-priori it seemed to be
better. In our variant, instead of choosing the best neighbor that is not forbidden, we choose some
neighbor which is not forbidden.

29

Procedure 5.22 AcceptanceCriterionReachedTS(Solutions Best, Current, Candidate)

if EvaluateSolution(Best) ≤ EvaluateSolution(Candidate) or not

TabuForbidSolution(Candidate, Current) then

TabuUpdate(Candidate, Current)

return true

end if

return false

Procedure 5.23 RestartCriterionReachedTS()

return false

Procedure 5.24 RestartTS()

return empty solution

5.4.5 Simulated Annealing

Simulated Annealing [JV83] is a local search algorithm which uses the concept of

temperature in order to change its behavior during the search. The acceptance criterion

of a neighbor solution might approve a solution which has a lower quality than the

current solution. The probability of accepting worse solutions is a function of its relative

quality and the temperature. There is an initial temperature and a cooling rate, where

low temperatures yield low acceptance probabilities of worse solutions. Procedures

5.25-5.29 describe the simulated annealing algorithm for RAFP.

Procedure 5.25 StopCriterionReachedSA()

return false

Procedure 5.26 ChooseCandidateSA(Solution Current, Neighborhood Size K)

GenerateRandomNeighbor(Current,K)

Procedure 5.27 AcceptanceCriterionReachedSA(Solution Current, Solution Candidate)

T ← T
Rate

∆← EvaluateSolution(Candidate)− EvaluateSolution(Current)

if ∆ ≥ 0 then

P ← 1

else

P ← e∆/T

end if

return true with probability P

return false

30

Procedure 5.28 RestartCriterionReachedSA()

return false

Procedure 5.29 RestartSA()

return empty solution

5.4.6 The Cross-Entropy Method

The Cross-Entropy Method [RK04] is a stochastic algorithm used for simulation of

rare events and for optimization. The Cross-Entropy Method for RAFP maintains a

probability distribution function for the domain values of each variable. Initially, the

probability distributions are uniform. In each iteration, we sample n solutions from the

current distribution, and evaluate them. We take the best dρ× ne solutions, for some

0 < ρ < 1, to shape the distribution for the next iteration, using a smoothing factor

and the current distribution. Procedures 5.30-5.34 describe the cross entropy method.

Procedure 5.30 StopCriterionReachedCE()2

return false

Procedure 5.31 ChooseCandidateCE(Sample size n, Smoothing factor α, Elite ratio ρ)

Samples← an empty list

for n times do

for each variable index i do

Current.V ari ← Random value according to pdfi

end for

Current.V al← EvaluateSolution(Current)

Samples.Insert(Current)

end for

Elite← dρ× ne best samples in Samples

for each variable index i do

pdf ′i ← distribution according to Elite

pdfi ← α× pdf ′i + (1− α)× pdfi
end for

return best sample in Samples

Procedure 5.32 AcceptanceCriterionReachedCE(Solution Candidate)

return true

2 In our current implementation of the cross-entropy method, the StopCriterionReached() contains
what is under RestartCriterionReached() and the Restart() procedure returns an empty solution

31

Procedure 5.33 RestartCriterionReachedCE(Convergence constant ε)

return ∀imax pdfi ≥ 1− ε

Procedure 5.34 RestartCE()

Initialize pdf ′is as uniform distributions biased by the initial solution’s values

Set a new random seed

5.4.7 A Greedy Algorithm

The greedy method described here is a natural one for RAFP: For some variable ordering,

pick the value of each variable as the one which optimizes the objective function of

RAFP, while satisfying all constraints derived from previous variables assignments.

Procedures 5.35-5.39 describes the greedy algorithm for RAFP.

Procedure 5.35 StopCriterionReachedGreedy()

return CurrentV ar ≥ n

Procedure 5.36 ChooseCandidateGreedy(Solution Current, Variable CurrentV ar)

Candidate← Current

BestCandidate← Worst solution

for Value in CurrentV ar.V alues do

Candidate.CurrentV ar ← V alue

if BestCandidate.V alue < EvaluateSolution(Candidate) then

BestCandidate← Candidate

end if

end for

CurrentV ar ← CurrentV ar + 1

return BestCandidate

Procedure 5.37 AcceptanceCriterionReachedGreedy(Solution Current, Solution Candidate)

return true

Procedure 5.38 RestartCriterionReachedGreedy()

return false

Procedure 5.39 RestartGreedy()

return empty solution

32

5.5 Leveraging the Greedy Algorithm

All algorithms above, except the greedy algorithm, yield a series of solutions, terminated

by the timeout. The greedy algorithm yields one solution and stops. Greedy’s run time

might be below the timeout, and it might be useful to use the remaining run time for

other computations.

5.5.1 Iterated Greedy

First, We can use the greedy algorithm to produce a series of solutions by using several

variable orderings, since it may produce a different solution for each variable ordering.

Procedures 5.40-5.44 describes the greedy loop algorithm for RAFP.

Procedure 5.40 StopCriterionReachedGreedyLoop()

return false

Procedure 5.41 ChooseCandidateGreedyLoop(Solution Current, Variable CurrentV ar)

Candidate← Current

BestCandidate← Worst solution

for Value in CurrentV ar.V alues do

Candidate.CurrentV ar ← V alue

if BestCandidate.V alue < EvaluateSolution(Candidate) then

BestCandidate← Candidate

end if

end for

CurrentV ar ← CurrentV ar + 1

return BestCandidate

Procedure 5.42 AcceptanceCriterionReachedGreedyLoop(Solutions Current, Candidate)

return EvaluateSolution(Current) ≤ EvaluateSolution(Candidate)

Procedure 5.43 RestartCriterionReachedGreedy()

return CurrentV ar ≥ n

Procedure 5.44 RestartGreedy()

Produce a random variable ordering

CurrentV ar ← 1

return empty solution

33

5.5.2 Hybrid: Greedy + Search

Another way of using the greedy algorithm is to start with its solution as an initial

solution for any of the other algorithms above. For most of the algorithms above it allows

a local search in the neighborhood of the greedy solution, hopefully a neighborhood

with high-quality solutions.

5.5.3 Hybrid for the Cross-Entropy Method

For The Cross-Entropy Method, running the greedy algorithm first returns a solution

that we can use in another way: Initially, the probability distributions have the weight

0 ≤ w < 1 for the initial solution’s values, and uniform distribution for the rest of the

values. This biases the distribution towards the values of the greedy solution, that have

high qualities, we believe.

34

Chapter 6

Empirical Results: Individual

Algorithms

6.1 Implementation

We implemented all algorithms from chapter 5 in C++ under Windows 10. We ran the

algorithms serially on a Dell Vostro 3360 with Core i7-3517U at 1.9-2.4Ghz, using the

same timeout.

6.1.1 Inputs

We generated random inputs, using the following values for RAFP:

• Random number of variables – n ∈ [1..200]

• Constant set of tactics – |D| = 6000

• Derived variables domain – Di =
[
1 + |D|

n × (i− 1), . . . , |D|n × i
]
, for i ∈ [1..n]

• Random unary utility – U : D 7→ [0..1]

• Random binary hardness parameter – L ∈ [1..10]

• Random binary utility with L+ 1 values, equally distributed in the range [0, 1] –

U : D ×D 7→ [0, 1
L ,

2
L , . . . , 1]

• Random forbidden pairs matrix, each value is 0 with probability 1
L+1 –

F (di, dj) =

1 U(di, dj) > 0

0 otherwise

• Random number of resource types – m ∈ [1..20]

• Random resource mapping – R : D 7→ [1..m]

• Random bounds over each resource type – Bi ∈ [1..30], for i ∈ [1..m]

35

6.1.2 Anytime behavior

Figure 6.1 shows a comparison of the performance profile of the algorithms [Zil96], using

a timeout of 1 second, over 50 random inputs. We can see that there is a cluster of

similar anytime behavior of hybrid algorithms, i.e., algorithms that used the greedy as

an initial solution. The cluster’s quality is high, but there is a low improvement trend

long before it reaches the timeout. Algorithms which do not use the greedy as an initial

solution have diverse qualities. Simulated Annealing and Stochastic Hill Climbing reach

the highest score among the non-hybrid algorithms. Our basic Random Search and

Random Walk are inferior to the other algorithms, as expected.

6.2 Automatic Parameters Tuning

An algorithm’s parameters have a significant impact on its performance, and a systematic

tuning is less prone to biases. There are several efficient methods and tools for automatic

parameters tuning (or algorithm configuration): GGA [AST09] uses genetic algorithms

to search the configurations space. irace [LIDLC+16] uses iterated racing i.e. maintains

a distribution from which it samples configurations and update the distribution according

to the samples’ performance. SMAC [HHLB11] iterates between learning a model from

algorithm’s runs, selecting configurations from the model and comparing them to the

best known configuration. ParamILS [HHLBS09] uses iterated local search in the space

of configurations. ParamILS is probably the most widely used and cited state-of-the-art

tool for parameter tuning. It has been used mainly to reduce the run time of algorithms.

It has dozens of academic applications e.g.,[HBHH07], [HHLB10], [VFG+11] and several

industrial applications, on which it yielded significant speed-ups over state-of-the-art

solvers.

6.2.1 Automatic Parameters Tuning for RAFP

We used ParamILS for automatic tuning of the parameters of the algorithms that we

implemented. Since we are solving in real-time, the objective of the tuning is to get the

best quality at a given timeout. One benefit of a real-time algorithm is that for a given

offline time budget, it can be tuned much more than regular algorithms.

First, we used the same 50 random inputs that we used before, with a tuning process of

1500 seconds, in order to tune the parameters of the algorithms for the best quality at a 1

second timeout. RandomSearch, Greedy, Greedy+RandomSearch and GreedyLOOP

did not participate in the tuning process since they have no parameters to tune. Figure

6.2 shows an anytime behavior which is comparable to the behavior we saw in figure

6.1. We can see that all the non-hybrid algorithms improve their quality more than

the hybrid algorithms. Simulated Annealing and Stochastic Hill Climbing now reach a

quality which is higher than the hybrid cluster. The Cross-Entropy Method has a quite

low quality at the timeout but the biggest improvement trend.

36

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

246810121416
A

n
yt

im
e

 Q
u

a
lit

y
 −

 R
e

la
tiv

e
 t

o
 w

o
rs

t

C
P
U

T
i
m
e

[
S
e
c
]

Quality

C
E

G
R
E
E
D
Y

G
R
E
E
D
Y
+
C
E

G
R
E
E
D
Y
+
R
S

G
R
E
E
D
Y
+
R
W

G
R
E
E
D
Y
+
S
A

G
R
E
E
D
Y
+
S
H
C

G
R
E
E
D
Y
+
T
S

G
R
E
E
D
Y
L
O
O
P

R
S

R
W

S
A

S
H
C

T
S

F
ig

u
re

6.
1:

A
n
y
ti

m
e

b
eh

av
io

r
-

M
ea

n
ov

er
5
0

ra
n

d
o
m

in
p
u

ts
,

b
ef

o
re

tu
n

in
g

37

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
0 2 4 6 8 10 12 14 16

A
n

ytim
e

 Q
u

a
lity −

 R
e

la
tive

 to
 w

o
rst

C
P
U

T
i
m
e

[
S
e
c
]

Quality

C
E

G
R
E
E
D
Y

G
R
E
E
D
Y
+
C
E

G
R
E
E
D
Y
+
R
S

G
R
E
E
D
Y
+
R
W

G
R
E
E
D
Y
+
S
A

G
R
E
E
D
Y
+
S
H
C

G
R
E
E
D
Y
+
T
S

G
R
E
E
D
Y
L
O
O
P

R
S

R
W

S
A

S
H
C

T
S

F
igu

re
6
.2

:
A

n
y
tim

e
b

eh
av

io
r

-
M

ea
n

ov
er

5
0

ra
n

d
o
m

in
p

u
ts,

after
tu

n
in

g

38

In order to focus on real-time scales, we now shift out focus to the quality of the

algorithms at timeouts of 0.1 seconds. In the tuning process, we used 10 random inputs,

a tuning time of 1500 seconds, and a timeout of 0.1 seconds for each algorithm.

6.2.2 Tuning of a Single Algorithm

The results of the algorithms’ tuning are shown in figures 6.3 (no initial solution) and 6.4

(hybrid). In each figure we can see the quality of one algorithm normalized to its initial

quality, over two separate runs. Each run of ParamILS finds a different configuration

by using a different seed. The two versions of each tunable algorithm will help us create

a diverse set of algorithms for the later build of a portfolio. We ran all algorithms for

the same tuning time, and the graphs end at the last time of improvement. We can see

that the tuning process yields a quality improvement of up to 35%, which is a significant

improvement.

6.2.3 Comparison of Algorithms During Tuning

After we saw each algorithm’s improvement by itself, we want to see the comparison

between algorithms, including the untunable ones. The results of algorithms comparison

are shown in figures 6.5 (First version of all algorithms) and 6.6 (Second version of all

algorithms). Both figures include the untunable algorithms which have only one version.

We can see that the ranking between algorithms is changing during the tuning process,

and that it is a similar ranking when comparing all first versions and all second versions

of the algorithms. The leading algorithms at the end of the tuning are Greedy+SA,

Greedy+SHC and Greedy+CE.

39

25 30 35 40 45 50 55 60 65 70 75

1

1.005

1.01

1.015

1.02

Quality during ParamILS tuning − RW

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

0 100 200 300 400 500

1

1.05

1.1

1.15

1.2

Quality during ParamILS tuning − SHC

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

(a) Random Walk (b) Stochastic Hill Climbing

0 500 1000 1500

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

Quality during ParamILS tuning − TS

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

0 100 200 300 400 500 600 700 800

1

1.05

1.1

1.15

1.2

Quality during ParamILS tuning − SA

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

(c) Tabu Search (d) Simulated Annealing

0 500 1000 1500

1

1.05

1.1

1.15

1.2

1.25

1.3

Quality during ParamILS tuning − CE

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

(e) The Cross Entropy Method
Figure 6.3: Automatic Parameters Tuning: Initial solution = None, Benchmarks = 10, Tuning
time = 1500 sec, Timeout = 0.1 sec, L ∈ [1..10]

40

0 50 100 150 200 250 300 350 400 450 500

1+0.0e+00

1+2.0e−09

1+4.0e−09

1+6.0e−09

1+8.0e−09

1+1.0e−08

1+1.2e−08

1+1.4e−08

1+1.6e−08

1+1.8e−08

1+2.0e−08

Quality during ParamILS tuning − GREEDY+RW

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

0 100 200 300 400 500 600

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

1.02

Quality during ParamILS tuning − GREEDY+SHC

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

(a) Random Walk (b) Stochastic Hill Climbing

0 200 400 600 800 1000 1200

1+0.0e+00

1+2.0e−09

1+4.0e−09

1+6.0e−09

1+8.0e−09

Quality during ParamILS tuning − GREEDY+TS

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

0 500 1000 1500

1

1.005

1.01

1.015

1.02

1.025

1.03

Quality during ParamILS tuning − GREEDY+SA

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

(c) Tabu Search (d) Simulated Annealing

0 50 100 150 200 250

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

1.02
Quality during ParamILS tuning − GREEDY+CE

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

(e) The Cross Entropy Method
Figure 6.4: Automatic Parameters Tuning. Initial solution = Greedy, Benchmarks = 10, Tuning
time = 1500 sec, Timeout = 0.1 sec, L ∈ [1..10]

41

200
400

600
800

1000
1200

1400
1

1.2

1.4

1.6

1.8 2

2.2

Q
u

a
lity d

u
rin

g
 P

a
ra

m
IL

S
 tu

n
in

g
 −

 R
e

la
tive

 to
 w

o
rst

C
P
U

T
i
m
e

[
S
e
c
]

Quality

R
W

S
H
C

T
S

S
A

C
E

G
R
E
E
D
Y
+
R
W

G
R
E
E
D
Y
+
S
H
C

G
R
E
E
D
Y
+
T
S

G
R
E
E
D
Y
+
S
A

G
R
E
E
D
Y
+
C
E

R
S

G
R
E
E
D
Y
L
O
O
P

G
R
E
E
D
Y
+
R
S

G
R
E
E
D
Y

F
ig

u
re

6.5:
A

u
to

m
atic

P
a
ra

m
eters

T
u

n
in

g
-

R
a
n

k
in

g
V

ersio
n

1
:

B
en

ch
m

a
rk

s
=

1
0
,

T
u
n

in
g

tim
e

=
1500

sec,
T

im
eou

t
=

0.1
sec,

L
∈

[1
..10]

42

20
0

40
0

60
0

80
0

10
00

12
00

14
00

1

1.
2

1.
4

1.
6

1.
82

2.
2

Q
u

a
lit

y
d

u
ri
n

g
 P

a
ra

m
IL

S
 t

u
n

in
g

 −
 R

e
la

tiv
e

 t
o

 w
o

rs
t

C
P
U

T
i
m
e

[
S
e
c
]

Quality

R
W
2

S
H
C
2

T
S
2

S
A
2

C
E
2

G
R
E
E
D
Y
+
R
W
2

G
R
E
E
D
Y
+
S
H
C
2

G
R
E
E
D
Y
+
T
S
2

G
R
E
E
D
Y
+
S
A
2

G
R
E
E
D
Y
+
C
E
2

R
S

G
R
E
E
D
Y
L
O
O
P

G
R
E
E
D
Y
+
R
S

G
R
E
E
D
Y

F
ig

u
re

6.
6:

A
u

to
m

at
ic

P
ar

am
et

er
s

T
u

n
in

g
-

R
a
n

k
in

g
V

er
si

o
n

2
:

B
en

ch
m

a
rk

s
=

1
0
,

T
u

n
in

g
ti

m
e

=
1
5
0
0

se
c,

T
im

eo
u

t
=

0
.1

se
c,
L
∈

[1
..
1
0
]

43

1

1.2

1.4

1.6

1.8

2

2.2

Algorithm Qualities

Algorithm

Q
u
a
l
i
t
y

GR
EE
DY
+S
A

GR
EE
DY
+C
E 2

GR
EE
DY
+S
HC

GR
EE
DY
+S
HC 2

GR
EE
DY
+S
A 2

GR
EE
DY LO

OP

GR
EE
DY
+C
E

GR
EE
DY
+R
W

GR
EE
DY
+R
W 2

GR
EE
DY
+T
S 2

GR
EE
DY
+T
S

GR
EE
DY
+R
S

GR
EE
DYSASA 2

SH
C

SH
C 2TS 2TSCECE 2RWRW 2RS

Figure 6.7: Automatic Parameters Tuning - Validation Qualities: Benchmarks = 10, Tuning
time = 1500 sec, Timeout = 0.1 sec, L ∈ [1..10]

6.3 Validation of Final Configurations

The validation is the process of a deeper evaluation of the final configuration. Here we

used 500 random inputs, in the same timeout of 0.1 second. The results of the validation

are shown in figure 6.7. We can see that the two versions of the leading algorithms at

the end of the tuning process (Greedy+SA, Greedy+SHC and Greedy+CE) are leading

in the validation process too. This is a sign that the training problems represented well

the test problems. We can also see that the quality of the best algorithms is about 2.2

times than the quality of the worst algorithm, Random Search.

44

6.4 Harder Problems

The random inputs described in 6.1.1 are very diverse. Next, we focus on problems

which we created using L = 1. This makes the forbidden pairs matrix F get uniform

random values from {0, 1}. Thus, we have a probability of 0.5 that any pair of tactics is

possible in a solution. This is our heuristic method of creating harder problems. We

repeated the tuning and comparison process for these problems, and the results are

shown in figures 6.8-6.12. Generally, we can see in figures 6.8 and 6.9 that the maximum

tuning profit is about 19%, less than the tuning profit over general problems, but still

significant. Figures 6.10 and 6.11 show a ranking of algorithms over hard problems in

which several non-hybrid algorithms take the first places during the tuning process. In

figure 6.12 we can see the quality of the various algorithms in the validation process.

We can see a smaller span of qualities when comparing to general problems: a factor of

1.6 between the best and the worst quality of algorithms. Several non-hybrid algorithms

are better than some hybrid algorithms, and the the non-hybrid simulated annealing is

not far from the best algorithm.

6.5 Algorithms Configurations

Tables 6.1-6.5 describe for each algorithm its tunable parameters, their range and initial

configuration. Then for each version of algorithm and problem set (general or hard) we

can see the final tuned configurations.

45

0 100 200 300 400 500 600
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

Quality during ParamILS tuning − RW

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

0 50 100 150 200 250 300 350 400 450 500

1

1.02

1.04

1.06

1.08

1.1

Quality during ParamILS tuning − SHC

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

(a) Random Walk (b) Stochastic Hill Climbing

0 200 400 600 800 1000 1200

1

1.05

1.1

1.15

1.2

Quality during ParamILS tuning − TS

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

0 200 400 600 800 1000
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

Quality during ParamILS tuning − SA

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

(c) Tabu Search (d) Simulated Annealing

0 100 200 300 400 500 600 700 800 900

1

1.02

1.04

1.06

1.08

1.1

Quality during ParamILS tuning − CE

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

(e) The Cross Entropy Method
Figure 6.8: Initial solution = None, Benchmarks = 10, Tuning time = 1500 sec, Timeout = 0.1
sec, L=1

46

0 20 40 60 80 100 120 140 160

1

1.005

1.01

1.015

Quality during ParamILS tuning − GREEDY+RW

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

0 50 100 150 200 250 300 350 400 450 500
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

Quality during ParamILS tuning − GREEDY+SHC

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

(a) Random Walk (b) Stochastic Hill Climbing

0 100 200 300 400 500 600 700
0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

Quality during ParamILS tuning − GREEDY+TS

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

0 100 200 300 400 500 600 700 800 900 1000
0.99

1

1.01

1.02

1.03

1.04

Quality during ParamILS tuning − GREEDY+SA

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

(c) Tabu Search (d) Simulated Annealing

0 200 400 600 800 1000 1200
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

Quality during ParamILS tuning − GREEDY+CE

CPU Time [Sec]

Q
u
a
l
i
t
y

Run Seed 1
Run Seed 2

(e) The Cross Entropy Method
Figure 6.9: Automatic Parameters Tuning. Initial solution = Greedy, Benchmarks = 10, Tuning
time = 1500 sec, Timeout = 0.1 sec, L=1

47

200
400

600
800

1000
1200

1400
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Q
u

a
lity d

u
rin

g
 P

a
ra

m
IL

S
 tu

n
in

g
 −

 R
e

la
tive

 to
 w

o
rst

C
P
U

T
i
m
e

[
S
e
c
]

Quality

R
W

S
H
C

T
S

S
A

C
E

G
R
E
E
D
Y
+
R
W

G
R
E
E
D
Y
+
S
H
C

G
R
E
E
D
Y
+
T
S

G
R
E
E
D
Y
+
S
A

G
R
E
E
D
Y
+
C
E

R
S

G
R
E
E
D
Y
L
O
O
P

G
R
E
E
D
Y
+
R
S

G
R
E
E
D
Y

F
igu

re
6
.1

0
:

A
u

to
m

atic
P

a
ra

m
eters

T
u

n
in

g
-

R
a
n

k
in

g
V

ersio
n

1
:

B
en

ch
m

a
rk

s
=

1
0
,

T
u
n

in
g

tim
e

=
1500

sec,
T

im
eou

t
=

0.1
sec,

L
=

1

48

20
0

40
0

60
0

80
0

10
00

12
00

14
00

1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

Q
u

a
lit

y
d

u
ri
n

g
 P

a
ra

m
IL

S
 t

u
n

in
g

 −
 R

e
la

tiv
e

 t
o

 w
o

rs
t

C
P
U

T
i
m
e

[
S
e
c
]

Quality

R
W
2

S
H
C
2

T
S
2

S
A
2

C
E
2

G
R
E
E
D
Y
+
R
W
2

G
R
E
E
D
Y
+
S
H
C
2

G
R
E
E
D
Y
+
T
S
2

G
R
E
E
D
Y
+
S
A
2

G
R
E
E
D
Y
+
C
E
2

R
S

G
R
E
E
D
Y
L
O
O
P

G
R
E
E
D
Y
+
R
S

G
R
E
E
D
Y

F
ig

u
re

6.
11

:
A

u
to

m
at

ic
P

ar
am

et
er

s
T

u
n

in
g

-
R

a
n

k
in

g
V

er
si

o
n

2
:

B
en

ch
m

a
rk

s
=

1
0
,

T
u

n
in

g
ti

m
e

=
1
5
0
0

se
c,

T
im

eo
u

t
=

0
.1

se
c,
L

=
1

49

1

1.1

1.2

1.3

1.4

1.5

1.6

Algorithm Qualities

Algorithm

Q
u
a
l
i
t
y

GR
EE
DY LO

OP

GR
EE
DY
+C
E

GR
EE
DY
+S
HC 2

GR
EE
DY
+S
A 2

GR
EE
DY
+C
E 2SA

GR
EE
DY
+S
A

GR
EE
DY
+S
HCSA 2

SH
CTS

SH
C 2TS 2

GR
EE
DY
+T
S

GR
EE
DY
+T
S 2

GR
EE
DY
+R
W

GR
EE
DY
+R
W 2

GR
EE
DY
+R
S

GR
EE
DYCE 2CERW 2RWRS

Figure 6.12: Automatic Parameters Tuning - Validation Qualities: Benchmarks = 10, Tuning
time = 1500 sec, Timeout = 0.1 sec, L = 1

50

P
a
ra

m
et

er
R

a
n

g
e

In
it

ia
l

co
n

fi
g
.

F
in

a
l

co
n

fi
g
.

1
R

W
F

in
a
l

co
n

fi
g
.

2
R

W
F

in
a
l

co
n

fi
g
.

1
G

re
ed

y
+

R
W

F
in

a
l

co
n

fi
g
.

2
G

re
ed

y
+

R
W

F
in

a
l

co
n

fi
g
.

1
R

W
h

a
rd

F
in

a
l

co
n

fi
g

2
R

W
h

a
rd

F
in

a
l

co
n

fi
g
.

1
G

re
ed

y
+

R
W

h
a
rd

F
in

a
l

co
n

fi
g
.

2
G

re
ed

y
+

R
W

h
a
rd

N
ei

g
h
b

o
rh

o
o
d

1
,2

,.
..
,2

0
1
0

1
6

1
0

2
7

2
0

1
8

9
1
5

T
ab

le
6.

1:
A

u
to

m
a
ti

c
P

a
ra

m
et

er
s

T
u

n
in

g
-

R
a
n

d
o
m

W
a
lk

P
a
ra

m
et

er
s

P
a
ra

m
et

er
R

a
n

g
e

In
it

ia
l

co
n

fi
g
.

F
in

a
l

co
n

fi
g
.

1
S

H
C

F
in

a
l

co
n

fi
g
.

2
S

H
C

F
in

a
l

co
n

fi
g
.

1
G

re
ed

y
+

S
H

C
F

in
a
l

co
n

fi
g
.

2
G

re
ed

y
+

S
H

C

F
in

a
l

co
n

fi
g
.

1
S

H
C

h
a
rd

F
in

a
l

co
n

fi
g

2
S

H
C

h
a
rd

F
in

a
l

co
n

fi
g
.

1
G

re
ed

y
+

S
H

C
h

a
rd

F
in

a
l

co
n

fi
g
.

2
G

re
ed

y
+

S
H

C
h

a
rd

N
ei

g
h
b

o
rh

o
o
d

1
,2

,.
..
,2

0
1
0

2
4

1
1

6
1
3

1
9

1

T
ab

le
6.

2:
A

u
to

m
a
ti

c
P

a
ra

m
et

er
s

T
u

n
in

g
-

S
to

ch
a
st

ic
H

il
l

C
li

m
b

in
g

P
a
ra

m
et

er
s

P
a
ra

m
et

er
R

a
n

g
e

In
it

ia
l

co
n

fi
g
.

F
in

a
l

co
n

fi
g
.

1
T

S
F

in
a
l

co
n

fi
g
.

2
T

S
F

in
a
l

co
n

fi
g
.

1
G

re
ed

y
+

T
S

F
in

a
l

co
n

fi
g
.

2
G

re
ed

y
+

T
S

F
in

a
l

co
n

fi
g
.

1
T

S
h

a
rd

F
in

a
l

co
n

fi
g

2
T

S
h

a
rd

F
in

a
l

co
n

fi
g
.

1
G

re
ed

y
+

T
S

h
a
rd

F
in

a
l

co
n

fi
g
.

2
G

re
ed

y
+

T
S

h
a
rd

N
ei

g
h
b

o
rh

o
o
d

1
,2

,.
..
,2

0
1
0

9
9

9
8

1
1

1
7

1
6

1
4

T
a
b

u
si

ze
1
0
,2

0
,.
..
,2

0
0

1
0
0

1
8
0

1
8
0

3
0

1
1
0

1
5
0

1
5
0

1
0
0

1
1
0

T
ab

le
6.

3:
A

u
to

m
a
ti

c
P

a
ra

m
et

er
s

T
u

n
in

g
-

T
a
b

u
S

ea
rc

h
P

a
ra

m
et

er
s

51

P
a
ra

m
eter

R
a
n

g
e

In
itia

l
co

n
fi

g
.

F
in

a
l

co
n

fi
g
.

1
S

A
F

in
a
l

co
n

fi
g
.

2
S

A
F

in
a
l

co
n

fi
g
.

1
G

reed
y
+

S
A

F
in

a
l

co
n

fi
g
.

2
G

reed
y
+

S
A

F
in

a
l

co
n

fi
g
.

1
S

A
h

a
rd

F
in

a
l

co
n

fi
g

2
S

A
h

a
rd

F
in

a
l

co
n

fi
g
.

1
G

reed
y
+

S
A

h
a
rd

F
in

a
l

co
n

fi
g
.

2
G

reed
y
+

S
A

h
a
rd

N
eig

h
b

o
rh

o
o
d

1
,2

,...,2
0

1
0

2
3

1
3

4
5

1
8

1
6

In
it.

T
em

p
era

tu
re

1
0
0
,1

0
,...,0

.0
0
0
1

0
.1

0
.0

1
1
0
0

0
.0

0
0
1

1
0
.1

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
1

T
em

p
era

tu
re

S
tep

1
1
,1

.1
,...,1

.0
0
0
0
0
1

1
.0

0
1

1
1

1
1

1
.1

1
.1

1
.1

1
1

1
1

1
.0

1

T
a
b

le
6
.4

:
A

u
tom

a
tic

P
a
ra

m
eters

T
u

n
in

g
-

S
im

u
la

ted
A

n
n

ea
lin

g
P

aram
eters

P
a
ra

m
e
te

r
R

a
n
g
e

In
itia

l
c
o
n
fi

g
.

F
in

a
l

c
o
n
fi

g
.

1
C

E
F

in
a
l

c
o
n
fi

g
.

2
C

E
F

in
a
l

c
o
n
fi

g
.

1
G

re
e
d
y
+

C
E

F
in

a
l

c
o
n
fi

g
.

2
G

re
e
d
y
+

C
E

F
in

a
l

c
o
n
fi

g
.

1
C

E
h
a
rd

F
in

a
l

c
o
n
fi

g
2

C
E

h
a
rd

F
in

a
l

c
o
n
fi

g
.

1
G

re
e
d
y
+

C
E

h
a
rd

F
in

a
l

c
o
n
fi

g
.

2
G

re
e
d
y
+

C
E

h
a
rd

#
S
a
m

p
le

s
1
0
,
2
0
,
.
.
.
,
1
0
0

5
0

7
0

4
0

9
0

5
0

9
0

9
0

9
0

4
0

In
itia

l
S
o
lu

tio
n
’s

W
e
ig

h
t

0
.0
,
0
.1
,
0
.2
,
.
.
.
,
0
.9

0
.5

0
.0

0
.0

0
.5

0
.9

0
.0

0
.0

0
.5

0
.9

S
m

o
o
th

in
g

F
a
c
to

r
(α

)
0
.1
,
0
.2
,
.
.
.
,
0
.9

0
.5

0
.5

0
.7

0
.7

0
.1

0
.4

0
.4

0
.7

0
.1

E
lite

F
a
c
to

r
(ρ

)
0
.1
,
0
.2
,
.
.
.
,
0
.9

0
.5

0
.1

0
.4

0
.5

0
.1

0
.2

0
.1

0
.2

0
.3

C
o
n
v
e
rg

e
n
c
e

d
ista

n
c
e

(ε
)

0
.1
,
0
.0

1
,
.
.
.
,
0
.0

0
0
0
1

0
.0

0
1

0
.0

0
0
0
1

0
.1

0
.0

0
0
0
1

0
.0

0
0
1

0
.1

0
.0

1
0
.1

0
.0

0
0
1

T
a
b

le
6
.5

:
A

u
tom

a
tic

P
a
ra

m
eters

T
u

n
in

g
-

T
h

e
C

ro
ss

E
n
tro

p
y

M
eth

o
d

P
aram

eters

52

Chapter 7

Constructing The Best Portfolio

Using a parallel portfolio of algorithms [HLH97] can significantly improve the perfor-

mance relative to a single algorithm [GS01]. The idea of a static portfolio [PZ06] is to

run several algorithms in parallel, on separate cores, and after the time bound T has

elapsed, take the best result achieved by any of those algorithms. The same portfolio is

used for all inputs. A dynamic portfolio is a portfolio that can adapt per input [MS12].

Two automated methods for constructing a static portfolio are described in [HLBSS12].

These methods integrate the tuning process with the construction of the portfolio,

and was used to reduce the computation time of SAT-solving. The first method was

to treat a portfolio of algorithms as one algorithm with a configuration space of all

its components and tune this one algorithm to get the best quality. The second and

less exhaustive method, was a greedy method of using a highly parameterized single

algorithm, start with an empty portfolio and tune one algorithm instance at a time, to

find the best parameters we can, in order to improve the quality of the growing portfolio.

As any greedy method for a computationally hard problem, it is not optimal since the

results depend on the order of tuning.

We will focus on static parallel portfolios, composed of different algorithms, which

are already tuned. We also assume that the algorithms do not communicate during

their run. This process is modular and easily allows to get the best out of a given set

of algorithms. As before, our portfolio measure relates to the quality of the portfolio

when reaching the short and fixed timeout, and it cannot be based on an on-line time

consuming process like pre-runs, in order to keep the real-time requirements. We are

now interested in the following problem: Given a set of n algorithms, k < n cores

and a set of benchmarks, how to choose the best parallel portfolio of k algorithms

according to some performance measure. This parallel portfolio is called virtual best

solver [XHHLB12]. We suggest a general method of solving this problem optimally.

53

7.1 Constructing a Portfolio as an Optimization Problem

Choosing a bounded subset of algorithms in order to achieve optimum for a given

performance measure is a special case of the subset selection problem [QYZ15]. We

define several variants of this problem.

7.2 K-Algorithms Cover Problems

7.2.1 Definitions

Definition 7.2.1. (K-Algorithms Cover Problem). An instance of the k-algorithms

cover problem is a 5-tuple 〈S, I,M,m, k〉, where:

• S is a set of n algorithms

• I is a set of inputs for S

• M : S × I 7→ R is the quality of solution that each algorithm in S returns with

each input in I

• mI : P(S) 7→ R is a portfolio measure over I, of a parallel portfolio s ⊆ S, which

satisfies the property m{i}({A}) = M(A, i), for i ∈ I, A ∈ S

• k < n is the number of algorithms to choose from S

A solution to the instance 〈S, I,M,m, k〉 is a parallel portfolio of k algorithms from S

with the best performance, according to mI :

s∗ = argmaxs⊂S:|s|=k(mI(s)) (7.1)

or

s∗ = argmins⊂S:|s|=k(mI(s)) (7.2)

Definition 7.2.1 allows to define the best performance measure mI as a maximum or

minimum, according to the context. In the follwing definition the performance measure

has to be maximized.

Definition 7.2.2. (K-Algorithms Max-Sum Problem) An instance of the k-algorithms

max-sum problem is an instance of the k-algorithms cover problem with the following

portfolio measure:

mI(s) =
∑
i∈I

(
max
A∈s

M(A, i)

)
(7.3)

In words, the objective of a k-algorithms cover problem with this measure is to maximize

the portfolio’s sum of qualities across benchmarks.

In the follwing definition the performance measure has to be minimized.

54

Definition 7.2.3. (K-Algorithms Min-Max-Gap Problem) An instance of the k-algorithms

min-max-gap problem is an instance of the k-algorithms cover problem with the following

portfolio measure:

mI(s) = max
i∈I

(
min
A∈s

Gap(A, i, S)

)
(7.4)

Where

Gap(a, i, S) = max
A∈S

(A, i)−M(a, i) (7.5)

In words, the objective of a k-algorithms cover problem with this measure is to minimize

the portfolio’s worst gap to the optimal algorithm in S, across benchmarks.

7.2.2 Examples

Example 7.2.4. Let 〈S, I,M,m, k〉 be an instance of the K-Algorithms Cover Problem,

with its first three components S, I,M defined as follows:

• S = {A1, A2, A3}, thus n = 3

• I = {i1, i2, i3, i4, i5, i6, i7}

• M is defined using the following table:

i1 i2 i3 i4 i5 i6 i7

A1 1 4 3 4 3 4 3

A2 1 3 4 3 4 3 4

A3 3 3 3 3 3 3 3

Now, for the K-algorithms max-sum problem, mI(s) is given in (7.3).

if k = 1 we have:

mI({A1}) =
∑
i∈I

(
max

A∈{A1}
M(A, i)

)
=
∑
i∈I

M(A1, i) = 22 (7.6)

mI({A2}) =
∑
i∈I

(
max

A∈{A2}
M(A, i)

)
=
∑
i∈I

M(A2, i) = 22 (7.7)

mI({A3}) =
∑
i∈I

(
max

A∈{A3}
M(A, i)

)
=
∑
i∈I

M(A3, i) = 21 (7.8)

Thus {A1} or {A2} is the best 1-portfolio in this case.

If k = 2, we have:

mI({A1, A2}) =
∑
i∈I

(
max

A∈{A1,A2}
M(A, i)

)
= 1 + 4 + 4 + 4 + 4 + 4 + 4 = 25 (7.9)

55

mI({A1, A3}) =
∑
i∈I

(
max

A∈{A1,A3}
M(A, i)

)
= 3 + 4 + 3 + 4 + 3 + 4 + 3 = 24 (7.10)

mI({A2, A3}) =
∑
i∈I

(
max

A∈{A2,A3}
M(A, i)

)
= 3 + 3 + 4 + 3 + 4 + 3 + 4 = 24 (7.11)

Thus {A1, A2} the best 2-portfolio in this case. For the K-algorithms min-max-gap,

mI(s) is computed according to (7.4), where Gap(A, i, S) is computed from M using

(7.5):

i1 i2 i3 i4 i5 i6 i7

A1 2 0 1 0 1 0 1

A2 2 1 0 1 0 1 0

A3 0 1 1 1 1 1 1

if k = 1 we have:

mI({A1}) = max
i∈I

(
min

A∈{A1}
Gap(A, i, S)

)
= max{2, 0, 1, 0, 1, 0, 1} = 2 (7.12)

mI({A2}) = max
i∈I

(
min

A∈{A2}
Gap(A, i, S)

)
= max{2, 1, 0, 1, 0, 1, 0} = 2 (7.13)

mI({A3}) = max
i∈I

(
min

A∈{A3}
Gap(A, i, S)

)
= max{0, 1, 1, 1, 1, 1, 1} = 1 (7.14)

Thus {A3} is the best 1-portfolio in this case.

if k = 2, we have

mI({A1, A2}) = max
i∈I

(
min

A∈{A1,A2}
Gap(A, i, S)

)
= max{2, 0, 0, 0, 0, 0, 0} = 2 (7.15)

mI({A1, A3}) = max
i∈I

(
min

A∈{A1,A3}
Gap(A, i, S)

)
= max{0, 0, 1, 0, 1, 0, 1} = 1 (7.16)

mI({A2, A3}) = max
i∈I

(
min

A∈{A2,A3}
Gap(A, i, S)

)
= max{0, 1, 0, 1, 0, 1, 0} = 1 (7.17)

Thus {A1, A3} or {A2, A3} is the best 2-portfolio in this case.

56

7.3 Minimum Algorithms Cover Problems

For a given k, it is possible that the same performance can be achieved with k′ < k.

A multi-core machine should use k′ cores to achieve maximum performance. More cores

do not contribute at all and might be used for other purposes. Another conclusion might

be that we should develop more diverse algorithms in order to utilize the multi-core

machine.

We define now the problem of finding the smallest best portfolio of algorithms. It is

equivalent to definition 7.2.1, except that k is a property of the solution and not a

parameter, and we allow k = n.

7.3.1 Definitions

Definition 7.3.1. (Minimum Algorithms Cover Problem). An instance of the minimum

algorithms cover problem is a 4-tuple 〈S, I,M,m〉, where:

• S is a set of n algorithms

• I is a set of benchmarks for S

• M : S × I → R is the quality of solution that each algorithm in S returns with

each input in I

• mI : P(S)→ R is a portfolio measure over I, of a parallel portfolio s ⊆ S, which

satisfies the property m{i}({A}) = M(A, i), for i ∈ I, A ∈ S

A solution to the instance 〈S, I,M,m〉 is a parallel portfolio of algorithms from S with

the best performance, and |s∗| of minimal size, where

s∗ = argmaxs⊆S(mI(s)) (7.18)

or

s∗ = argmins⊆S(mI(s)) (7.19)

Minimum Algorithms Cover Problem can be defined with portfolio measures according

to definitions 7.2.2 and 7.2.3, to get the Minimum Algorithms Max Sum Problem and

the Minimum Algorithms Min-Max-Gap Problem, respectively.

7.3.2 Examples

Example 7.3.2. Let 〈S, I,M,m〉 be an instance of the Minimum Algorithms Cover

Problem, with the following properties:

• S = {A1, A2, A3}, thus n = 3

• I = {i1, i2}

57

• M is defined using the following table:

i1 i2

A1 1 0

A2 0 1

A3 0.8 0.7

• mI(s) =
∑

i∈I (maxA∈sM(A, i))

For k = 1 we have

mI({A1}) = 1 + 0 = 1 (7.20)

mI({A2}) = 0 + 1 = 1 (7.21)

mI({A3}) = 0.8 + 0.7 = 1.5 (7.22)

Thus {A3} is the optimal solution.

For k = 2 we have

mI({A1, A2}) = 1 + 1 = 2 (7.23)

mI({A1, A3}) = 1 + 0.7 = 1.7 (7.24)

mI({A2, A3}) = 0.8 + 1 = 1.8 (7.25)

Thus, {A1, A2} is the optimal solution. As we can see, since {A3} 6⊂ {A1, A2}, the

solutions are not monotonic.

For k = 3 we have

mI({A1, A2, A3}) = 1 + 1 = 2 (7.26)

Thus we can conclude that the minimum k for maximum portfolio measure is 2, and

the minimum portfolio is {A1, A2}.
Generally, the fact that two portfolios with consecutive sizes share the same quality (in

our example 2-portfolio and 3-portfolio), does not imply that the portfolio has reached

its optimum quality, as we will see in chapter 8.

58

7.4 Modeling the K-Algorithms Cover Problem with SMT

The Satisfiability Modulo Theories problem (SMT) [KBS10] is to decide the satisfiability

of a first-order formula over some decidable theories. Among theories in use we find:

Arithmetics [DDM06], the theories of bit-vectors [BDL98], arrays [McC62] and equality

of uninterpreted functions [Ack]. There is an extensive research in the field of SMT, and

SMT solvers that participate in contests manage to solve large problems within reasonable

run times. Next, we represent our algorithms cover problems using SMT with the theory

of Quantifier-Free Linear Real Arithmetic (QF LRA). This theory enables representation

of Boolean formulas of inequalities between linear polynomials, using real variables. For

example, consider the following QF LRA formula: F = (x ≥ −2) ∨ (y ≥ −1 ∧ y ≤ 5).

F contains two real variables x and y, that are used in predicates within a Boolean

formula. The set of solutions to this formula is a union of two areas in the x-y plane.

7.4.1 Modeling the K-Algorithms Max-Sum Problem with QF LRA

The following encoding is the SMT representation of the K-Algorithms Max-Sum Prob-

lem.

The real variables are Vi for i ∈ I ,which represent the quality of the portfolio over

benchmark i.

The Boolean decision variables are Ai for i ∈ [1..n], which represent whether algo-

rithm Ai is chosen for the optimal k-portfolio.

The objective is to maximize the sum of qualities across the benchmarks and is defined

as:

max

|I|∑
i=1

Vi (7.27)

Constraints (7.28)-(7.30) below are connected by a logical and (∧).

The value choice constraints allow a choice of quality for each benchmark, accord-

ing to a chosen algorithm, using M :

∀i ∈ I : (Vi = M(A1, i)) ∨ (Vi = M(A2, i)) ∨ . . . ∨ (Vi = M(An, i)) (7.28)

The implied algorithm constraints connect between the chosen quality of a benchmark

and the algorithms that return this quality:

∀i ∈ I, V ∈ {M(Aj , i)}j∈{1..n} : (Vi = V)→
∨

A∈S:M(A,i)=V

A (7.29)

59

The algorithms cardinality constraints make sure that the number of chosen algorithms

of a portfolio will be k, when we take true=1 and false=0 :

n∑
i=1

Ai = k (7.30)

Such constraints are not allowed in QF LRA, but they can be reduced to propositional

logic, which is allowed in QF LRA. We used the encoding suggested in [Sin05] for this

purpose.

In the above SMT representation, 7.28–7.30 allow the choice of exactly k algorithms,

with values from M . When combined with 7.27, the maximum sum of k-subsets will be

produced when Vi = maxA∈sM(A, i), thus the model expresses measure 7.3.

7.4.2 Modeling the K-Algorithms Min-Max-Gap Problem with QF LRA

The following encoding is the SMT representation of the K-Algorithms Min-Max-Gap

Problem.

The real variables are Vi for i ∈ I ,as in subsection 7.4.1.

In addition, the single real variable V is used to hold the maximum of Vi’s.

The Boolean decision variables are Ai for i ∈ [1..n], as in subsection 7.4.1.

The objective is to minimize the worst gap across benchmarks, marked by V :

minV (7.31)

Constraints (7.32)-(7.35) below are connected by a logical and(∧).

The maximum constraints ensure that V is the maximal (worst) gap across benchmarks:

∀i ∈ I : V ≥ Vi (7.32)

The value choice constraints role and encoding is identical to (7.28):

∀i ∈ I : (Vi = Gap(A1, i, S)) ∨ (Vi = Gap(A2, i, S)) ∨ . . . ∨ (Vi = Gap(An, i, S)) (7.33)

The implied algorithm constraints role and encoding is identical to (7.29):

∀i ∈ I, V ∈ {Gap(Aj , i, S)}j∈{1..n} : (Vi = V)→
∨

A∈S:Gap(A,i,S)=V

A (7.34)

60

The algorithm cardinality constraints role and encoding is identical to (7.30):

n∑
i=1

Ai = k (7.35)

In the above SMT representation, 7.33–7.35 allow the choice of exactly k algorithms,

with values defined by 7.5. When combined with 7.32, V becomes the maximum of Vi

values. The minimum of maximum gaps from the optimal solution over all k-subsets

algorithms values will be produced when Vi = minA∈sGap(A, i, S), thus the model

expresses the measure 7.4.

61

Chapter 8

Empirical Results: Portfolios

8.1 SMT Modeling

We implemented an SMT modeling program with the following interface, as described

in chapter 7:

• Input:

– A matrix M , where Mij represents the quality of the solution that algorithm

i ∈ [1..n] returns over input j

– A number k < n of algorithms to choose

• Output:

– SMT encoding of the k-Algorithms Max-Sum problem

– SMT encoding of the k-Algorithms Min-Max-Gap problem

8.2 SMT Solving

Some of the most competitive SMT solvers are CVC4 [BCD+11], Yices [Dut14] and

Z3 [dMB08]. We chose to use Z3. Z3 is a high-performance SMT solver developed by

Microsoft Research. It is used in various software verification applications [CDH+09],

[Lei10], [WPF+10]. Z3 supports various theories, including the quantifier-free linear

real arithmetic (QF LRA) theory in our setting.

8.3 Portfolios Construction – Tuned Algorithms

We built the matrix M from the results of the 24 tuned algorithms over the inputs that

we described in chapter 6, for both portfolio measures that we described in chapter 7.

63

8.3.1 Three Portfolio Models

We built three portfolios, for each k ∈ [1..24]:

1. Optimal – Uses the program-generated SMT encoding for k and solves with Z3

2. Greedy – Chooses the best algorithm to complete a partial portfolio, for k iterations

3. K-Best – Sorts the algorithms by quality, and takes the first k algorithms.

The greedy portfolio is a natural choice since we have a special case of the subset

selection problem. The K-Best portfolio is one which does not use the information

about the quality of each algorithm per-instance, thus we expect it to be inferior to the

two other portfolios. Obviously any method of portfolio construction eventually reaches

the optimum if k = n.

8.3.2 Results

The results of the three portfolios are shown in figures 8.1-8.4. In the Max-Sum

figures the qualities sum, which have to be maximized, is normalized to the best single

algorithm’s quality. In the Min-Max-Gap the qualities max-gap, which have to be

minimized, is normalized to the best non-zero quality. This normalization influences

the improvement factors that we describe, since we are using percents. Each figure

describes the number of benchmarks, the timeout for a single algorithm’s run, and L,

the hardness parameter that we used and described in chapter 6.

64

5 10 15 20

1

1.005

1.01

1.015

1.02

Benchmarks = 500
Timeout = 0.1 Sec

 L∈ [1..10]

#Algorithms in portfolio

Q
u
a
l
i
t
i
e
s

S
u
m

KBest Portfolio

Optimized Portfolio

Greedy Portfolio

Figure 8.1: Max-Sum portfolios. The optimal portfolio reaches its maximum improvement
of about 2% at a portfolio size of 17, with a decreasing rate of improvement. This does not
guarantee convergence, and as far as we know convergence is identified only when a partial
portfolio reaches the quality of the full portfolio. The greedy portfolio’s quality is almost identical
to the optimal portfolio. The K-Best portfolio’s quality is lower as expected, and it reaches the
optimum quality at a portfolio size of 19.

65

5 10 15 20

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

Benchmarks = 500
Timeout = 0.1 Sec

 L=1

#Algorithms in portfolio

Q
u
a
l
i
t
i
e
s

S
u
m

KBest Portfolio

Optimized Portfolio

Greedy Portfolio

Figure 8.2: Max-Sum portfolios for hard problems (L=1).The optimal portfolio reaches its
maximum improvement of 11% at a portfolio size of 15. This is not apparent from the graph
but can be seen in the numerical results. The 11% improvement is higher than the improvement
we saw in the portfolio over general problems. Again, the greedy portfolio almost coincide with
the optimal portfolio, and the K-best portfolio is inferior, and it reaches the optimal portfolio
only at a portfolio size of 13.

66

0 5 10 15 20 25

0

0.5

1

1.5

2

x 10
6

Benchmarks = 500
Timeout = 0.1 Sec

L∈ [1..10]

#Algorithms in portfolio

Q
u

a
lit

ie
s

M
a

x−
g

a
p

KBest Portfolio

Optimized Portfolio

Greedy Portfolio

Figure 8.3: Min-Max-Gap portfolios. The optimal portfolio is of size 17. The best portfolio with
non-zero quality gap is the one in size 16 and it is more than 2 million times better than using
the single best algorithm, as we can see at a portfolio size of 1, for all the portfolio construction
methods. In the optimum size of the optimal portfolio (17), the cost is 0, by definition. This
shows that using less cores than the minimum number for optimal performance has a high cost
in the min-max-gap measure, more than it has in the max-sum measure. We can also see that
the greedy portfolio is not meeting the optimal cost for two portfolio sizes, and it fits less to
this measure. Last, we can see that the K-best portfolio is far from the optimal performance,
reaching the optimum only at a portfolio size of 20.

67

0 5 10 15 20 25

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Benchmarks = 500
Timeout = 0.1 Sec

L=1

#Algorithms in portfolio

Q
u

a
lit

ie
s

M
a

x−
g

a
p

KBest Portfolio

Optimized Portfolio

Greedy Portfolio

Figure 8.4: Min-Max-Gap portfolios for hard problems (L=1). The optimal portfolio is reaching
optimum in a portfolio size of 15. This is not apparent from the graph but can be seen in the
numerical results. For the min-max-gap over hard problems, the best portfolio with non-zero
quality gap is about 2000 times better than the best single algorithm, which is a very significant
result. The greedy portfolio is following the optimal portfolio, except for a portfolio size of 2.
The K-best portfolio is far from the optimum and reaching it only in a portfolio size of 21.

Tables 8.1-8.10 describe the algorithmic components of the optimal portfolio, for the

max-sum and min-max-gap measures, for general and hard problems. One example for

the lack of monotonicity in the optimal portfolios can be found in portfolio’s sizes of 1

and 2 in table 8.4. In Appendix A we describe a computation of an optimal max-sum

portfolio that we conducted using random matrices. The results in the appendix are

not comparable to the results that we showed in this chapter, since the quality axis in

the appendix is normalized to the range [0,1].

68

P
o
rt

fo
li
o

S
iz

e
1

2
3

4
5

6
7

P
o
rt

fo
li
o

m
em

b
er

s
G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y
L
O
O
P

T
S

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y
L
O
O
P

T
S

G
r
ee
d
y

+
S
A

2

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y
L
O
O
P

T
S

G
r
ee
d
y

+
S
A

2

S
A

T
a
b

le
8
.1

:
M

a
x
-S

u
m

O
p

ti
m

a
l

P
o
rt

fo
li

o
s

-
P

a
rt

1

P
o
rt

fo
li
o

S
iz

e
8

9
1
0

1
1

1
2

1
3

P
o
rt

fo
li
o

m
em

b
er

s

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y
L
O
O
P

T
S

G
r
ee
d
y

+
S
A

2

S
A

G
r
ee
d
y

+
S
H
C

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y
L
O
O
P

T
S

G
r
ee
d
y

+
S
A

2

S
A

G
r
ee
d
y

+
S
H
C

T
S

2

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y
L
O
O
P

T
S

G
r
ee
d
y

+
S
A

2

S
A

G
r
ee
d
y

+
S
H
C

T
S

2

G
r
ee
d
y

+
S
H
C

2

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y
L
O
O
P

T
S

G
r
ee
d
y

+
S
A

2

S
A

G
r
ee
d
y

+
S
H
C

T
S

2

G
r
ee
d
y

+
S
H
C

2

S
H
C

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y
L
O
O
P

T
S

G
r
ee
d
y

+
S
A

2

S
A

G
r
ee
d
y

+
S
H
C

T
S

2

G
r
ee
d
y

+
S
H
C

2

S
H
C

S
H
C

2

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y
L
O
O
P

T
S

G
r
ee
d
y

+
S
A

2

S
A

G
r
ee
d
y

+
S
H
C

T
S

2

G
r
ee
d
y

+
S
H
C

2

S
H
C

S
H
C

2

G
r
ee
d
y

+
T
S

2

T
a
b

le
8
.2

:
M

a
x
-S

u
m

O
p

ti
m

a
l

P
o
rt

fo
li

o
s

-
P

a
rt

2

P
o
rt

fo
li
o

S
iz

e
1
4

1
5

1
6

1
7

P
o
rt

fo
li
o

m
em

b
er

s

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y
L
O
O
P

T
S

G
r
ee
d
y

+
S
A

2

S
A

G
r
ee
d
y

+
S
H
C

T
S

2

G
r
ee
d
y

+
S
H
C

2

S
H
C

S
H
C

2

G
r
ee
d
y

+
T
S

2

G
r
ee
d
y

+
C
E

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y
L
O
O
P

T
S

G
r
ee
d
y

+
S
A

2

S
A

G
r
ee
d
y

+
S
H
C

T
S

2

G
r
ee
d
y

+
S
H
C

2

S
H
C

S
H
C

2

G
r
ee
d
y

+
T
S

2

G
r
ee
d
y

+
C
E

G
r
ee
d
y

+
R
W

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y
L
O
O
P

T
S

G
r
ee
d
y

+
S
A

2

S
A

G
r
ee
d
y

+
S
H
C

T
S

2

G
r
ee
d
y

+
S
H
C

2

S
H
C

S
H
C

2

G
r
ee
d
y

+
T
S

2

G
r
ee
d
y

+
C
E

G
r
ee
d
y

+
R
W

G
r
ee
d
y

+
R
S

G
r
ee
d
y

+
S
A

G
r
ee
d
y

+
C
E

2

S
A

2

G
r
ee
d
y
L
O
O
P

T
S

G
r
ee
d
y

+
S
A

2

S
A

G
r
ee
d
y

+
S
H
C

T
S

2

G
r
ee
d
y

+
S
H
C

2

S
H
C

S
H
C

2

G
r
ee
d
y

+
T
S

2

G
r
ee
d
y

+
C
E

G
r
ee
d
y

+
R
W

G
r
ee
d
y

+
R
S

G
r
ee
d
y

+
R
W

2

T
a
b

le
8
.3

:
M

a
x
-S

u
m

O
p

ti
m

a
l

P
o
rt

fo
li

o
s

-
P

a
rt

3

69

P
o
rtfo

lio
S
ize

1
2

3
4

5
6

7
8

P
o
rtfo

lio
m

em
b

ers
G
reed

y
L
O
O
P

S
A

2

G
reed

y
+
S
H
C

2

G
reed

y
L
O
O
P

G
reed

y
+
S
H
C

2

T
S

2

G
reed

y
L
O
O
P

G
reed

y
+
S
A

2

T
S

2

S
A

G
reed

y
L
O
O
P

G
reed

y
+
S
H
C

2

T
S

2

S
H
C

2

S
A

G
reed

y
L
O
O
P

G
reed

y
+
S
H
C

2

T
S

2

S
H
C

2

S
A

S
A

2

G
reed

y
L
O
O
P

G
reed

y
+
S
H
C

2

T
S

2

S
H
C

2

S
A

S
A

2

G
reed

y
+
S
A

2

G
reed

y
L
O
O
P

G
reed

y
+
S
H
C

2

T
S

2

S
H
C

2

S
A

S
A

2

G
reed

y
+
S
A

2

T
S

T
a
b

le
8
.4

:
M

a
x
-S

u
m

O
p

tim
a
l

P
o
rtfo

lio
s,

H
a
rd

P
ro

b
lem

s
-

P
art

1

P
o
rtfo

lio
S
ize

9
1
0

1
1

1
2

1
3

1
4

1
5

P
o
rtfo

lio
m

em
b

ers

G
reed

y
L
O
O
P

G
reed

y
+
S
H
C

2

T
S

2

S
H
C

2

S
A

S
A

2

G
reed

y
+
S
A

2

T
S

G
reed

y
+
C
E

G
reed

y
L
O
O
P

G
reed

y
+
S
H
C

2

T
S

2

S
H
C

2

S
A

S
A

2

G
reed

y
+
S
A

2

T
S

G
reed

y
+
C
E

S
H
C

G
reed

y
L
O
O
P

G
reed

y
+
S
H
C

2

T
S

2

S
H
C

2

S
A

S
A

2

G
reed

y
+
S
A

2

T
S

G
reed

y
+
C
E

S
H
C

G
reed

y
+
S
H
C

G
reed

y
L
O
O
P

G
reed

y
+
S
H
C

2

T
S

2

S
H
C

2

S
A

S
A

2

G
reed

y
+
S
A

2

T
S

G
reed

y
+
C
E

S
H
C

G
reed

y
+
S
H
C

G
reed

y
+
S
A

G
reed

y
L
O
O
P

G
reed

y
+
S
H
C

2

T
S

2

S
H
C

2

S
A

S
A

2

G
reed

y
+
S
A

2

T
S

G
reed

y
+
C
E

S
H
C

G
reed

y
+
S
H
C

G
reed

y
+
S
A

G
reed

y
+
C
E

2

G
reed

y
L
O
O
P

G
reed

y
+
S
H
C

2

T
S

2

S
H
C

2

S
A

S
A

2

G
reed

y
+
S
A

2

T
S

G
reed

y
+
C
E

S
H
C

G
reed

y
+
S
H
C

G
reed

y
+
S
A

G
reed

y
+
C
E

2

G
reed

y
+
R
S

G
reed

y
L
O
O
P

G
reed

y
+
S
H
C

2

T
S

2

S
H
C

2

S
A

S
A

2

G
reed

y
+
S
A

2

T
S

G
reed

y
+
C
E

S
H
C

G
reed

y
+
S
H
C

G
reed

y
+
S
A

G
reed

y
+
C
E

2

R
S

C
E

2

T
ab

le
8.5:

M
a
x
-S

u
m

O
p

tim
a
l

P
o
rtfo

lio
s,

H
a
rd

P
ro

b
lem

s
-

P
art

2

70

P
o
rt

fo
li
o

S
iz

e
1

2
3

4
5

6
7

P
o
rt

fo
li
o

m
em

b
er

s
G
r
ee
d
y

+
C
E

2
G
r
ee
d
y

+
S
A

S
A

2

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
C
E

2

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
C
E

2

G
r
ee
d
y

+
S
H
C

2

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
C
E

2

G
r
ee
d
y

+
S
H
C

2

T
S

2

T
a
b

le
8
.6

:
M

in
-M

a
x
-G

a
p

O
p

ti
m

a
l

P
o
rt

fo
li

o
s

-
P

a
rt

1

P
o
rt

fo
li
o

S
iz

e
8

9
1
0

1
1

1
2

1
3

P
o
rt

fo
li
o

m
em

b
er

s

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
C
E

2

G
r
ee
d
y

+
S
H
C

2

T
S

2

S
H
C

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
C
E

2

G
r
ee
d
y

+
S
H
C

2

T
S

2

S
H
C

T
S

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
C
E

2

G
r
ee
d
y

+
S
H
C

2

T
S

2

S
H
C

T
S

G
r
ee
d
y

+
S
A

2

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
C
E

2

G
r
ee
d
y

+
S
H
C

2

T
S

2

S
H
C

T
S

G
r
ee
d
y

+
S
A

2

G
r
ee
d
y

+
S
H
C

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
C
E

2

G
r
ee
d
y

+
S
H
C

2

T
S

2

S
H
C

T
S

G
r
ee
d
y

+
S
A

2

G
r
ee
d
y

+
S
H
C

S
H
C

2

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
C
E

2

G
r
ee
d
y

+
S
H
C

2

T
S

2

S
H
C

T
S

G
r
ee
d
y

+
S
A

2

G
r
ee
d
y

+
S
H
C

S
H
C

2

G
r
ee
d
y

+
T
S

2

T
a
b

le
8
.7

:
M

in
-M

a
x
-G

a
p

O
p

ti
m

a
l

P
o
rt

fo
li

o
s

-
P

a
rt

2

P
o
rt

fo
li
o

S
iz

e
1
4

1
5

1
6

1
7

(r
)1

-7
P

o
rt

fo
li
o

m
em

b
er

s

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
C
E

2

G
r
ee
d
y

+
S
H
C

2

T
S

2

S
H
C

T
S

G
r
ee
d
y

+
S
A

2

G
r
ee
d
y

+
S
H
C

S
H
C

2

G
r
ee
d
y

+
T
S

G
r
ee
d
y

+
R
W

2

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
C
E

2

G
r
ee
d
y

+
S
H
C

2

T
S

2

S
H
C

T
S

G
r
ee
d
y

+
S
A

2

G
r
ee
d
y

+
S
H
C

S
H
C

2

G
r
ee
d
y

+
T
S

2

G
r
ee
d
y

+
R
W

2

G
r
ee
d
y

+
C
E

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
C
E

2

G
r
ee
d
y

+
S
H
C

2

T
S

2

S
H
C

T
S

G
r
ee
d
y

+
S
A

2

G
r
ee
d
y

+
S
H
C

S
H
C

2

G
r
ee
d
y

+
T
S

2

G
r
ee
d
y

+
R
W

2

G
r
ee
d
y

+
C
E

G
r
ee
d
y

+
R
S

G
r
ee
d
y

+
S
A

S
A

2

S
A

G
r
ee
d
y
L
O
O
P

G
r
ee
d
y

+
C
E

2

G
r
ee
d
y

+
S
H
C

2

T
S

2

S
H
C

T
S

G
r
ee
d
y

+
S
A

2

G
r
ee
d
y

+
S
H
C

S
H
C

2

G
r
ee
d
y

+
T
S

2

G
r
ee
d
y

+
R
W

2

G
r
ee
d
y

+
C
E

G
r
ee
d
y

+
R
S

G
r
ee
d
y

+
R
W

T
a
b

le
8
.8

:
M

in
-M

a
x
-G

a
p

O
p

ti
m

a
l

P
o
rt

fo
li

o
s

-
P

a
rt

3

71

P
o
rtfo

lio
S
ize

1
2

3
4

5
6

7
8

P
o
rtfo

lio
m

em
b

ers
G
reed

y
+
C
E

G
reed

y
L
O
O
P

S
H
C

G
reed

y
L
O
O
P

S
H
C

G
reed

y
+
C
E

G
reed

y
L
O
O
P

G
reed

y
+
S
H
C

2

S
H
C

T
S

2

G
reed

y
L
O
O
P

G
reed

y
+
S
H
C

S
H
C

T
S

S
A

G
reed

y
L
O
O
P

G
reed

y
+
C
E

2

S
H
C

S
H
C

2

T
S

2

S
A

G
reed

y
L
O
O
P

G
reed

y
+
C
E

2

S
H
C

S
H
C

2

T
S

2

S
A

G
reed

y
+
S
H
C

2

G
reed

y
L
O
O
P

G
reed

y
+
C
E

S
H
C

S
H
C

2

T
S

2

S
A

G
reed

y
+
S
H
C

2

T
S

T
ab

le
8.9:

M
in

-M
a
x
-G

a
p

O
p

tim
a
l

P
o
rtfo

lio
s,

H
a
rd

P
ro

b
lem

s
-

P
art

1

P
o
rtfo

lio
S
ize

9
1
0

1
1

1
2

1
3

1
4

1
5

P
o
rtfo

lio
m

em
b

ers

G
reed

y
L
O
O
P

G
reed

y
+
C
E

S
H
C

S
H
C

2

T
S

2

S
A

G
reed

y
+
S
H
C

2

T
S

G
reed

y
+
S
H
C

G
reed

y
L
O
O
P

G
reed

y
+
C
E

S
H
C

S
H
C

2

T
S

2

S
A

G
reed

y
+
S
H
C

2

T
S

G
reed

y
+
S
H
C

S
A

2

G
reed

y
L
O
O
P

G
reed

y
+
C
E

S
H
C

S
H
C

2

T
S

2

S
A

G
reed

y
+
S
H
C

2

T
S

G
reed

y
+
S
H
C

S
A

2

G
reed

y
+
S
A

2

G
reed

y
L
O
O
P

G
reed

y
+
C
E

S
H
C

S
H
C

2

T
S

2

S
A

G
reed

y
+
S
H
C

2

T
S

G
reed

y
+
S
H
C

S
A

2

G
reed

y
+
S
A

2

G
reed

y
+
C
E

2

G
reed

y
L
O
O
P

G
reed

y
+
C
E

S
H
C

S
H
C

2

T
S

2

S
A

G
reed

y
+
S
H
C

2

T
S

G
reed

y
+
S
H
C

S
A

2

G
reed

y
+
S
A

2

G
reed

y
+
C
E

2

G
reed

y
+
S
A

G
reed

y
L
O
O
P

G
reed

y
+
C
E

S
H
C

S
H
C

2

T
S

2

S
A

G
reed

y
+
S
H
C

2

T
S

G
reed

y
+
S
H
C

S
A

2

G
reed

y
+
S
A

2

G
reed

y
+
C
E

2

G
reed

y
+
S
A

G
reed

y
+
R
S

G
reed

y
L
O
O
P

G
reed

y
+
C
E

S
H
C

S
H
C

2

T
S

2

S
A

G
reed

y
+
S
H
C

2

T
S

G
reed

y
+
S
H
C

S
A

2

G
reed

y
+
S
A

2

G
reed

y
+
C
E

2

G
reed

y
+
S
A

G
reed

y
+
R
S

C
E

2

T
a
b

le
8
.1

0:
M

in
-M

a
x
-G

a
p

O
p

tim
a
l

P
o
rtfo

lio
s,

H
a
rd

P
ro

b
lem

s
-

P
art

2

72

Chapter 9

Conclusion

We summarize the thesis with a concise list of its contributions:

9.1 Contributions

• We described the problem of solving computationally hard problems in a short

and fixed amount of time, and defined the notion of a fixed-time variant of a hard

computational problem.

• We defined a particular optimization problem called Resource Allocation with

Forbidden Pairs (RAFP) and showed that its decision variant is NP-complete.

The rest of the thesis was dedicated to solving its fixed-time variant.

• We defined Fixed-Time Search as a heuristic framework for solving RAFP and

similar discrete optimization problems in real-time. We presented over ten different

known algorithms, most of which are based on local search (but also cross-entropy

and a deterministic greedy algorithm), and their adaptation for solving RAFP.

• We used automatic tuning of parameters to get the best quality in a real-time

setting, and showed empirically that it significantly improves the quality of all the

algorithms.

• We defined Algorithms Cover problems. The first is the problem of choosing k

out of n algorithms, k < n, to create the best parallel static portfolio with k cores,

where a given set of inputs serve as the training set. The second is the problem

of finding the smallest k for the best parallel static portfolio. These problems

can be instantiated with a measure. We defined and used the Max-Sum and

Min-Max-Gap measures.

• We suggested an SMT encoding for solving all the Algorithm Cover Problems

optimally. We also compared the optimal result to one that is computed via a

greedy polynomial method, which turned out to be, with our benchmarks, close to

optimal for the max-sum measure, but sub-optimal for the min-max-gap measure.

73

• All the algorithms, their tuned versions and optimized portfolios, were tested

empirically with hundreds of random instances with varying difficulty. The thesis

contains a comprehensive empirical study of their effectiveness in solving RAFP

in a short amount of time.

9.2 Future Work

We intend to explore several directions for improving the empirical results:

9.2.1 Individual Algorithms

Adding search algorithms From the algorithms that we implemented and described

in Chapter 5, the Cross-Entropy Method and the Tabu Search can benefit from a re-

design of the implementation. Specifically, the cross-entropy method may converge

before time-out, and so far we did not use the extra time for restarting it. In the tabu

search, the current conditions for a forbidden solution are still naive, and we intend

to explore other variants. In addition, there are more anytime algorithms than we

implemented, which are relevant for solving our problem, such as Variable Neighborhood

Search [MH97], Ant-Colony Optimization [DMC96], Genetic Algorithms [Mit98] and

Monte Carlo Tree Search [BPW+12]. An anytime method that was used for Weighted

Constraint Satisfaction Problems (see in appendix A) and is worth exploring is Depth-

First Branch and Bound [Zha00]. Using this method will require a fast way to compute

upper bounds on the quality of solutions that agree with a given partial solution.

9.2.2 Automatic Parameters Tuning

• Tuning for a portfolio So far we tuned each algorithm separately, despite the

fact that our end goal is to find an optimal portfolio. To that end, we can let the

choice of algorithms be a tunable parameter as well. This will require us to use

the conditional parameters of ParamILS in order to tune only the parameters that

correspond to the currently chosen algorithm.

74

• Improving parameters tuning In Chapter 6 we described our process of tuning

the parameters of the algorithms. We use the same tuning time of 1500 seconds

for each algorithm in ParamILS, with the BasicILS option of ParamILS. The

BasicILS option compares between two configurations by their quality over the

same number of runs. The objective of this uniform tuning is a fair tuning across

algorithms. In order to achieve a better performance, it might be useful to use a

tuning time which is proportional to the number of configurations. This way a large

configuration space will get more tuning time. Moreover, the FocusedILS option

of ParamILS might improve the results of the tuning process. The FocusedILS

option compare between two configurations using a dominance concept which

allows a different number of runs for each configuration. A last improvement

might be achieved by a longer tuning period.

• Tuning for anytime: In Chapter 5 we described a tuning of parameters which

is based on the quality at a specific timeout. Another approach for tuning will be

to tune in order to improve the anytime behavior. One such tuning method is

described in [RLIS13], where a measure similar to the area under the performance

profile is the scalar value which guides the tuning process. This process cannot

yield better performance for a specific timeout, but it might improve the overall

behavior in a real-time interval of 1 second, for example.

• Tuning & constructing portfolios In Chapter 7 we described our serial process

of tuning the algorithms and then constructing a portfolio. The greedy portfolio

construction in [HLBSS12], which we also described in chapter 7, might lead to a

better performance in our real-time setting.

9.2.3 Better Portfolio Construction

• Dynamic portfolios In Chapter 7, we described a construction of a static

portfolio. A dynamic portfolio, i.e., a per-instance portfolio [MS12], might be

better than a static one. This requires identifying features of problem instances,

that on the one hand predict well the performance of various algorithms, and

on the other are cheap to compute. To that end we may use machine learning

methods in order to identify such features.

• Collaborative portfolios In Chapter 7, we focused on algorithms that do not

communicate during their run. Communicating algorithms might be efficient in

portfolios [BSS15], [SS12]. In our real-time setting, this can be relevant only if the

cost of communication is low. Algorithms can share their best solutions, allowing

others to use them as a starting point for further improvements.

75

9.2.4 Exploring More Real Time Issues

• Flexible timeouts Our algorithms can be tuned and analyzed with several

different timeouts. Moreover, the model can be replaced with another reasonable

model: We can add to the input of the problem a function which defines the

utility of a specific computation time. This function can be combined with the

quality of the solution to create a new combined quality. The combined quality

has a maximum value, the point of the best trade-off between quality and its

computation time. We can tune the algorithms in order to maximize the combined

quality.

• Considering Input’s Noise To consider uncertainty and inaccuracy of inputs,

we suggest two ways: In the first, instead of representing the inputs as real

numbers, we represent them as ranges of real numbers. Then we might be able

to solve a worst-case scenario of each problem. The second way of dealing with

noise in the inputs is to get a probability distribution of each input, and trying to

maximize the expectation of the utility function.

76

Appendix A

Appendix

A.1 Defining RAFP using Weighted Constraint Satisfac-

tion Problems

In what follows, we define RAFP using the Weighted Constraint Satisfaction Problem.

We follow the definitions of CSP, WCSP and VCSP of [Lar02] and [SFV+95] with

slight changes for a unified format.

A.1.1 Constraint Satisfaction Problem

Definition A.1.1 (Constraint Satisfaction Problem). A constraint satisfaction prob-

lem is a triple P = 〈V,D,C〉, where:

• V = {V1, ..., Vn} is a set of n variables

• D is a set of values for the variables

• Di ⊆ D is the set of values for variable Vi, i ∈ [1..n]

• C is a set of constraints, which defines the allowable values that the variables can

have simultaneously.

Definition A.1.2 (CSP Tuple). Given a CSP P = 〈V,D,C〉, An assignment tuple t is

an ordered set of values assigned to the ordered set of variables V t ⊆ V

Definition A.1.3 (CSP Tuple Consistency). Given a CSP P = 〈V,D,C〉, A tuple t is

consistent if it satisfies all constraints whose scope is included in V t.

Definition A.1.4 (CSP Tuple Global Consistency). Given a CSP, A tuple is globally

consistent if it can be extended to a consistent complete assignment.

Definition A.1.5 (CSP Solution). Given a CSP, A solution is a consistent complete

assignment

77

Definition A.1.6 (Binary Constraint Satisfaction Problem). A binary constraint sat-

isfaction problem is a triple P = 〈V,D,C〉, where:

• V = {V1, ..., Vn} is a set of n variables

• D is a set of values for the variables

• Di ⊆ D is the set of values for variable Vi, i ∈ [1..n]

• C is a set of unary and binary constraints:

– An unary constraint Ci ⊆ Di contains the permitted assignments to Vi

– A binary constraint Cij ⊆ Di × Dj contains the permitted simultaneous

assignments to Vi and Vj

A.1.2 Valued Constraint Satisfaction Problem

Definition A.1.7 (Valuation Structure). A valuation structure is a triple S = 〈E,~,�〉,
where:

• E is a set of costs, totally ordered by �, with maximum element noted >, and

minimum element noted ⊥

• ~ is a commutative, associative closed binary operator on E, used to combine

costs, with the following properties:

– Identity: ∀a ∈ E, a~⊥ = a

– Monotonicity: ∀a, b, c ∈ E, (a � b) =⇒ ((a~ c) � (b~ c))

– Absorbing element: ∀a ∈ E, (a~>) = >

Definition A.1.8 (Valued Constraint Satisfaction Problem). A valued constraint sat-

isfaction problem is a 5-tuple P = 〈V,D,C, S, ϕ〉, where:

• 〈V,D,C〉 is a constraint satisfaction problem

• S = 〈E,~,�〉 is a valuation structure

• ϕ : C → E is a valuation function

Definition A.1.9 (VCSP Tuple Valuation). Given a VCSP P = 〈V,D,C, S, ϕ〉 and a

tuple t, the valuation of t with respect to the VCSP is defined by:

V(t) = ~
c∈C

t violates c

(ϕ(c)) (A.1)

Definition A.1.10 (VCSP Tuple Consistency). Given a VCSP P = 〈V,D,C, S, ϕ〉, a

tuple t is consistent if V(t) < >

Definition A.1.11 (VCSP Solution). Given a VCSP, a solution is a consistent tuple

Definition A.1.12 (VCSP Objective). Given a VCSP, the objective is min
t
V(t)

78

A.1.3 Weighted Constraint Satisfaction Problem

Definition A.1.13 (S(k) Valuation Structure). S(k) is the valuation structure S =

〈[0, . . . , k],⊕,≥〉, where:

• k ∈ [1, . . . ,∞]

• ⊕ is the sum over the valuation structure defined as a⊕ b = min{k, a+ b}

• ≥ is the standard order among naturals

Definition A.1.14 (Weighted Constraint Satisfaction Problem). A weighted constraint

satisfaction problem is a valued constraint satisfaction problem, with S(k) as a valuation

structure, i.e. P = 〈V,D,C, S(k), ϕ〉

Definition A.1.15 (WCSP Valuation Function). Given a WCSP P = 〈V,D,C, S(k), ϕ〉
and a tuple t, the valuation function is defined using the S(k) valuation structure:

V(t) = ⊕
c∈C

t violates c

(ϕ(c)) (A.2)

Definition A.1.16 (Binary Weighted Constraint Satisfaction Problem). A binary weighted

constraint satisfaction problem is a weighted constraint satisfaction problem P =

〈V,D,C, S(k), ϕ〉, where 〈V,D,C〉 is a binary constraint satisfaction problem

Definition A.1.17 (BWCSP Valuation Function). Given a BWCSP P = 〈V,D,C, S(k), ϕ〉
and a tuple t, The valuation function is defined using the S(k) valuation structure:

V(t) =
∑
ci∈C

t violates ci

ϕ(ci)⊕
∑
cij∈C

t violates cij

ϕ(cij) (A.3)

A.1.4 The Resource Allocation with Forbidden Pairs Problem

Definition A.1.18 (The Resource Allocation with Forbidden Pairs Problem). RAFP

is a weighted constraint satisfaction problem P = 〈V,D,C, S(∞), ϕ〉 with the following

properties:

• V = {V1, ..., Vn} is a set of n variables

• D is a set of l values for the variables. Each value d ∈ D is a 2-tuple 〈a, r〉, where:

– a ∈ [1..l] is the tactic in use

– r ∈ [1..m] is the resource in use

• Di ⊆ D is the set of values for variable Vi, i ∈ [1..n]

• C is a set of constraints, ϕ is a valuation function where:

79

– An unary constraint Ci ⊆ Di contains costly (0 < ϕ(ci) <∞) assignments

to Vi

– A binary constraint Cij ⊆ Di ×Dj contains costly (0 < ϕ(cij) <∞) simulta-

neous assignments to Vi and Vj

– A resource constraint CR is a constraint with a non-constant arity defining

forbidden resource consumption:

(〈a1, r1〉, . . . , 〈as, rs〉) ∈ CR =⇒ ∃j ∈ [1..m] |{ri|ri = j}| > Bj

where Bj ∈ N for j ∈ [1..m] are bounds on the resources

– Valuation function

ϕ(c) =


0 < g <∞ c ∈ Ci ∪ Cij

0 < h <∞ c ∈ CR

0 otherwise

Definition A.1.19 (RAFP Valuation). Given a RAFP P = 〈V,D,C, S(k), ϕ〉 and a

tuple t, The valuation is defined using the S(k) valuation structure:

V(t) =
∑
ci∈C

t violates ci

ϕ(ci)⊕
∑
cij∈C

t violates cij

ϕ(cij)⊕
∑
cR∈C

t violates cR

ϕ(cR) (A.4)

A.2 Portfolios Construction – Random Matrices

In what follows, we describe an empirical evaluation that we conducted using random

matrices as an input for the optimal construction of max-sum portfolios.

We created two 10-row matrices with uniformly distributed random numbers in [0..1].

We used these matrices as the input to the modeling program we described in section

8.1, with k ∈ [1..10]. This setting simulates a quality matrix of 10 algorithms, with a

low correlation. We solved the SMT modeling using Z3. The results are shown in figure

A.1. In A.1a we simulated 15 inputs (matrix columns) and we can see several examples

that a non-increasing portfolio does not imply convergence (e.g. points 3,4 and 5,6,7).

In A.1b we simulated 40 inputs and we can see a smoother graph, with a slowing rate of

increase. Notice that the quality axis is not comparable to the one in figure 8.1, where

the results are normalized to the 1-portfolio quality.

80

0 2 4 6 8 10

1

1.1

1.2

1.3

1.4

1.5

1.6

Portfolio Size

Q
u
a
l
i
t
y

(a) 10 Algorithms, 15 Inputs

0 2 4 6 8 10

1

1.1

1.2

1.3

1.4

1.5

1.6

Portfolio Size

Q
u
a
l
i
t
y

(b) 10 Algorithms, 40 Inputs
Figure A.1: Max-Sum Portfolios, Random Matrices

81

Bibliography

[Ack] Wilhelm Ackermann. Solvable cases of the decision problem.

[AST09] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. A gender-

based genetic algorithm for the automatic configuration of algorithms.

In International Conference on Principles and Practice of Constraint

Programming, pages 142–157. Springer, 2009.

[BBNP04] Edmund Burke, Yuri Bykov, James Newall, and Sanja Petrovic. A

time-predefined local search approach to exam timetabling problems.

IIE Transactions on Operations Engineering, 36:1–19, 2004.

[BCD+11] Clark Barrett, Christopher Conway, Morgan Deters, Liana Hadarean,

Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli.

Cvc4. In Computer aided verification, pages 171–177. Springer, 2011.

[BDL98] Clark W Barrett, David L Dill, and Jeremy R Levitt. A decision

procedure for bit-vector arithmetic. In Proceedings of the 35th annual

Design Automation Conference, pages 522–527. ACM, 1998.

[BPW+12] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M

Lucas, Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego

Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte

carlo tree search methods. IEEE Transactions on Computational

Intelligence and AI in games, 4(1):1–43, 2012.

[Bro58] Samuel H. Brooks. A discussion of random methods for seeking

maxima. Operations Research, 6:244–251, 1958.

[Bro11] Jason Brownlee. Clever algorithms: nature-inspired programming

recipes. Jason Brownlee, 2011.

[BSS15] Tomas Balyo, Peter Sanders, and Carsten Sinz. Hordesat: a massively

parallel portfolio sat solver. arXiv preprint arXiv:1505.03340, 2015.

83

[CDH+09] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach,

Micha l Moskal, Thomas Santen, Wolfram Schulte, and Stephan

Tobies. VCC: A Practical System for Verifying Concurrent C, pages

23–42. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[Cla99] Jens Clausen. Branch and bound algorithms-principles and examples.

Dept. Comput. Sci., Univ. Copenhagen, [Online], 1999.

[CZ06] Sharlee Climer and Weixiong Zhang. Cut-and-solve: An iterative

search strategy for combinatorial optimization problems. Artificial

Intelligence, 170(8-9):714–738, 2006.

[DB88] T.L Dean and M.S. Boddy. An analysis of time-dependent planning.

AAAI, 17:49–54, 1988.

[DDM06] Bruno Dutertre and Leonardo De Moura. A fast linear-arithmetic

solver for dpll (t). In International Conference on Computer Aided

Verification, pages 81–94. Springer, 2006.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT

Solver, pages 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg,

2008.

[DMC96] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system:

optimization by a colony of cooperating agents. IEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1):29–

41, 1996.

[Dut14] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem,

editors, Computer-Aided Verification (CAV’2014), volume 8559 of

Lecture Notes in Computer Science, pages 737–744. Springer, July

2014.

[FM93] Stephanie Forrest and Melanie Mitchell. Relative Building-Block

Fitness and the Building-Block Hypothesis. Foundations of Genetic

Algorithms, 2:109–126, 1993.

[GJ79] M. R. Garey and David S. Johnson. Computers and intractability:

A guide to the theory of np-completeness. 1979.

[Glo86] Fred Glover. Future Paths for Integer Programming and Links

to Artificial Intelligence. Computers and Operations Research,

13(5):533–549, 1986.

[GS01] Carla P Gomes and Bart Selman. Algorithm portfolios. Artificial

Intelligence, 126(1-2):43–62, 2001.

84

[HBHH07] Frank Hutter, Domagoj Babic, Holger H. Hoos, and Alan J. Hu.

Boosting verification by automatic tuning of decision procedures.

In Formal Methods in Computer Aided Design, 2007. FMCAD ’07,

pages 27 –34, nov. 2007.

[HHLB10] Frank Hutter, HolgerH. Hoos, and Kevin Leyton-Brown. Automated

configuration of mixed integer programming solvers. In Andrea

Lodi, Michela Milano, and Paolo Toth, editors, Integration of AI

and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems, volume 6140 of Lecture Notes in Computer

Science, pages 186–202. Springer Berlin Heidelberg, 2010.

[HHLB11] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential

model-based optimization for general algorithm configuration. In

International Conference on Learning and Intelligent Optimization,

pages 507–523. Springer, 2011.

[HHLBS09] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas

Stützle. ParamILS: an automatic algorithm configuration framework.

Journal of Artificial Intelligence Research, 36:267–306, October 2009.

[HLBSS12] Holger Hoos, Kevin Leyton-Brown, Torsten Schaub, and Marius

Schneider. Algorithm configuration for portfolio-based parallel sat-

solving. In Workshop on Combining Constraint Solving with Mining

and Learning, 2012.

[HLH97] Bernardo A Huberman, Rajan M Lukose, and Tad Hogg. An

economics approach to hard computational problems. Science,

275(5296):51–54, 1997.

[HS04] Holger H. Hoos and Thomas Stutzle. Stochastic Local Search: Foun-

dations and Applications. Morgan Kaufmann, 2004.

[JV83] Scott Kirkpatrick , C. Daniel Gelatt Jr. and Mario P. Vecchi. Opti-

mization by Simulated Annealing. Science, 220:671–680, 1983.

[KBS10] D. Kroening, R.E. Bryant, and O. Strichman. Decision Procedures:

An Algorithmic Point of View. Texts in Theoretical Computer

Science. An EATCS Series. Springer Berlin Heidelberg, 2010.

[Lar02] Javier Larrosa. Node and arc consistency in weighted csp. In

Proceedings of the National Conference on Artificial Intelligence,

pages 48–53, 01 2002.

85

[Lei10] K Rustan M Leino. Dafny: An automatic program verifier for

functional correctness. In International Conference on Logic for

Programming Artificial Intelligence and Reasoning, pages 348–370.

Springer, 2010.

[LIDLC+16] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres,

Mauro Birattari, and Thomas Stützle. The irace package: Iterated

racing for automatic algorithm configuration. Operations Research

Perspectives, 3:43–58, 2016.

[Lou03] Samir Loudni. Solving constraint optimization problems in anytime

contexts. IJCAI, pages 251–256, 2003.

[McC62] John McCarthy. Towards a mathematical science of computation.

In IFIP Congress, volume 62, pages 21–28, 1962.

[MH97] Nenad Mladenović and Pierre Hansen. Variable neighborhood search.

Computers & operations research, 24(11):1097–1100, 1997.

[Mit98] Melanie Mitchell. An introduction to genetic algorithms. The MIT

Press, 1998.

[MS12] Yuri Malitsky and Meinolf Sellmann. Instance-specific algorithm

configuration as a method for non-model-based portfolio generation.

Integration of AI and OR Techniques in Contraint Programming for

Combinatorial Optimzation Problems, pages 244–259, 2012.

[OD12] Lars Otten and Rina Dechter. Anytime and/or depth-first search

for combinatorial optimization. AI Communications, 25(3):211–227,

2012.

[PZ06] Marek Petrik and Shlomo Zilberstein. Learning parallel portfolios

of algorithms. Annals of Mathematics and Artificial Intelligence,

48(1):85–106, 2006.

[QYZ15] Chao Qian, Yang Yu, and Zhi-Hua Zhou. Subset selection by pareto

optimization. Advances in Neural Information Processing Systems,

pages 1774–1782, 2015.

[RK04] Reuven Rubinstein and Dirk Kroese. The Cross-Entropy Method:

A Unified Approach to Combinatorial Optimization, Monte-Carlo

Simulation, and Machine Learning. Springer-Verlag, New York, 2004.

[RLIS13] Andreea Radulescu, Manuel López-Ibánez, and Thomas Stützle.

Automatically improving the anytime behaviour of multiobjective

evolutionary algorithms. In International Conference on Evolutionary

Multi-Criterion Optimization, pages 825–840. Springer, 2013.

86

[SBLI12] Thomas Stützle, Mauro Birattari, and Manuel López-Ibáñez. Any-

time Local Search for Multi-Objective Combinatorial Optimization:

Design, Analysis and Automatic Configuration. PhD thesis, Citeseer,

2012.

[SFV+95] Thomas Schiex, Helene Fargier, Gerard Verfaillie, et al. Valued

constraint satisfaction problems: Hard and easy problems. IJCAI

(1), 95:631–639, 1995.

[Sin05] Carsten Sinz. Towards an optimal cnf encoding of boolean cardinality

constraints. CP, 3709:827–831, 2005.

[SS12] Holger Hoos , Kevin Leyton-Brown , Torsten Schaub and Marius

Schneider. Algorithm Configuration for Portfolio-based Parallel

SAT-Solving. CoCoMile, 2012.

[VFG+11] M. Vallati, C. Fawcett, A. Gerevini, H.H. Hoos, and A. Saetti.

Automatic generation of efficient domain-optimized planners from

generic parametrized planners. In Proceedings of the Eighth RCRA

International Workshop on Experimental Evaluation of Algorithms

for Solving Problems with Combinatorial Explosion, 2011.

[WC00] Benjamin W Wah and Yi Xin Chen. Optimal anytime constrained

simulated annealing for constrained global optimization. In In-

ternational Conference on Principles and Practice of Constraint

Programming, pages 425–440. Springer, 2000.

[WPF+10] Yi Wei, Yu Pei, Carlo A Furia, Lucas S Silva, Stefan Buchholz,

Bertrand Meyer, and Andreas Zeller. Automated fixing of programs

with contracts. In Proceedings of the 19th international symposium

on Software testing and analysis, pages 61–72. ACM, 2010.

[WS11] David P Williamson and David B Shmoys. The design of approxi-

mation algorithms. Cambridge university press, 2011.

[XHHLB12] Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Eval-

uating component solver contributions to portfolio-based algorithm

selectors. Theory and Applications of Satisfiability Testing–SAT

2012, pages 228–241, 2012.

[Yan10] Xin-She Yang. Nature-Inspired Metaheuristic Algorithms, Second

Edition. Luniver Press, pages 12–13, 2010.

[Zha00] Weixiong Zhang. Depth-first branch-and-bound versus local search:

A case study. In AAAI/IAAI, pages 930–935, 2000.

87

[Zil96] Shlomo Zilberstein. Using anytime algorithms in intelligent systems.

AI magazine, 17(3):73, 1996.

88

לביצועים זהים כמעט החמדנית השיטה ביצועי האיכויות, סכום מדד עבור כי מראים הממצאים

ביותר הטובים האלגוריתמים k בחירת שיטת ביצועי הבעיות. של הקבוצות שתי עבור האופטימליים,

מקסימלי איכות שיפור מקבלים אנו הכלליות הבעיות בקבוצת האחרות. השיטות שתי לעומת נחותים

בקבוצת ה־24. מתוך אלגוריתמים 17 שבו במערך ביותר, הטוב האלגוריתם לעומת אחוזים 2 של

שבו במערך ביותר, הטוב האלגוריתם לעומת אחוזים 11 של איכות שיפור מקבלים אנו הקשות הבעיות

החמדנית שהשיטה נראה מהאופטימום, ביותר הגדול המרחק מדד עבור ה־24. מתוך אלגוריתמים 15

ממנה. גרועה ביותר הטובים האלגוריתמים k של והשיטה האופטימלית, השיטה לביצועי מגיעה אינה

האופטימום מול פער יש עדיין בו ביותר הגדול האופטימלי המערך הכלליות הבעיות קבוצת עבור

המרחק מכך גדולים במערכים ביותר. הטוב היחיד האלגוריתם לעומת מיליון 2 פי האיכות את משפר

ביותר הגדול האופטימלי המערך הקשות, הבעיות קבוצת עבור ההגדרה. על־פי ,0 הוא לאופטימום

ביותר. הטוב היחיד האלגוריתם לעומת 2000 פי האיכות את משפר האופטימום מול פער יש עדיין בו

ליבות בפחות שימוש של האפשרי המחיר את ומדגישות משמעותיות הן האחרונות התוצאות שתי

בעיה. פיתרון לצורך מהנדרש

iv

אלגוריתמים של מקבילי מערך בניית

מיחשוב משאבי לנצל כדי אלגוריתמים, של מקבילי מערך בניית של בבעיה דנים אנו זה בחלק

k<n מספר אלגוריתמים, n בהנתן כללי. באופן אמת בזמן הביצועים את יותר עוד ולשפר מקבילי

קבוצה לבחור מעוניינים אנו שונים, קלטים על האלגוריתמים ריצות ותוצאות חישוביות, ליבות של

ניתן כיצד מראים אנו ביותר. טובים יהיו מקבילי כמערך יחד שביצועיהם n מתוך אלגוריתמים k של

הספיקות בעיית של עשירה הרחבה ,Satisfiability Modulo Theories (SMT) באמצעות הבעיה את למדל

Quantifier־Free Linear Real Arithmetic (QF LRA) של בתיאוריה משתמשים אנו המידול לצורך .SAT

אנו ממשיים. משתנים מעל מאי־שיוויונים הבנויים פרדיקטים של בוליאניות נוסחאות המאפשרת

הוא אלגוריתמים מערך לטיב הראשון המדד אלגוריתמים. מערך לביצועי טבעיים מדדים שני מציעים

.K־Algorithms Max־Sum זו בעיה מכנים אנו למקסימום. להביא יש אותו הקלטים, על איכויותיו סכום

האלגוריתם לאיכות המערך איכות בין המרחק של הקלטים, על־פני המקסימום הוא השני המדד

בעיות .K־Algorithms Min־Max־Gap זו בעיה מכנים אנו למינימום. להביא יש זה מדד ביותר. הטוב

שני עבור אופטימליים, ביצועים לקבל ניתן עבורו המינימלי kה־ מציאת הן לפתור נרצה אותן דומות

מקבוצת היכולת למיצוי נדרשות ליבות כמה להבין לנו יאפשר אלה בעיות פיתרון שהזכרנו. המדדים

נתונה. ליבות כמות לנצל כדי אלגוריתמים עוד לפתח שיש מידע קבלת או נתונה, אלגוריתמים

המקבילי האלגוריתמים מערך של השוואתי ביצועים ניתוח

קלט, כל על אלגוריתם כל של איכויות מטריצת הוא שלה שהקלט ,SMT לקידוד תכנית מממשים אנו

מודלי פתרון לצורך הקודמת. בפסקה שהזכרנו הבעיות שתי של הקידודים הם שלה והפלט ,k ומספר

24 מתוצאות בונים אנו שאותם אלגוריתמים מערכי מנתחים אנו .Z3 בפותרן משתמשים אנו SMTה־

האופטימלי האלגוריתמים מערך מול השוואה לצורך קודם. דנו בהם הקלטים 500 מול האלגוריתמים

חמדנית שיטה היא הראשונה אלגוריתמים. מערך לבניית נוספות פשוטות שיטות שתי מממשים אנו

בצורה שישלים האלגוריתם את איטרציה בכל ובוחרים ריק אלגוריתמים ממערך מתחילים אנו בה

את ממיינים אנו השניה בשיטה איטרציות. k למשך הקיים, האלגוריתמים מערך את ביותר הטובה

אלגוריתמים מערכי בונים אנו ביותר. הטובים האלגוריתמים k את ובוחרים טיבם על־פי האלגוריתמים

הקשות הבעיות קבוצת ועבור הכלליות הבעיות קבוצת עבור הראשונים kו־ חמדניים אופטימליים,

קודם. בהן שדנו יותר

iii

הבעיה לפיתרון מתאימים אלגוריתמים

המתאימה החישוב כסכמת Fixed־Time Search מכנים אנו אותה אלגוריתמית סכמה מגדירים אנו

כגון ידועים מקומי חיפוש אלגוריתמי מספר בסכמה כוללים אנו ראשית שלנו. anytimeה־ לדרישות

אנו בנוסף, לבעיה. אותם ומתאימים Simulated Annealing, Tabu Search ,Stochastic Hill־Climbing

.The Cross־Entropy Method קרלו המונטה חיפוש ואת לבעיה, פשוט חמדני חיפוש בסכמה מממשים

האלגוריתמים אחד את מפעילים שלאחריו חמדני חיפוש שהן כלאיים, גרסאות מספר מממשים אנו

ו־ Random Search הנאיביים האקראיים באלגוריתמים משתמשים אנו השוואה כנקודות שהוזכרו.

אחת, שניה של ריצה זמן עבור ביצועיהם את ומנתחים האלגוריתמים את מממשים אנו .Random Walk

כפונקציה האלגוריתמים של האיכות פרופיל .RAFP עבור שיצרנו אקראיים קלטים 50 על כממוצע

לאלגוריתמים שניה. לאחר וטובה דומה איכות בעלי הם הכלאיים שאלגוריתמי מראה הזמן של

ופחותים שונים ביצועים יש החמדני, האלגוריתם של מקדימה ריצה על מבוססים שאינם האחרים,

דירוג משתנה אחת שניה של ריצה זמן לאורך כללי, באופן שנייה. לאחר הכלאיים אלגוריתמי מביצועי

שנבחר המדויק הריצה בזמן תלויה להשתמש בודד אלגוריתם באיזה שההמלצה כך האלגוריתמים

אחת. שניה של המרווח בתוך

ביצועים וניתוח אוטומטי פרמטרים כיוונון

השוואה לצורך והכרחי ביצועיהם, בשיפור משמעותי גורם הוא אלגוריתמים של פרמטרים כיוונון

משתמשים אנו רצויות. שאינן הטיות כנגד יותר עמיד אוטומטי פרמטרים כיוונון ביניהם. הוגנת

פרמטרי כיוונון לצורך ParamILS שנקרא הראשונה השורה מן פרמטרים לכיוונון אוטומטי בכלי

ביותר הטובים לביצועים האלגוריתמים פרמטרי את מכוונים אנו ראשית שמימשנו. האלגוריתמים

משתפרים חמדני פיתרון על מבוססים שאינם אלגוריתמים ביצועי כיצד ורואים אחת, שניה לאחר

כיוונון תהליך מבצעים אנו מכן לאחר הכלאיים. אלגוריתמי ביצועי על עולים וחלקם משמעותית

בודד אלגוריתם ריצת וזמן שניות 1500 למשך RAFP מסוג אקראיות בעיות 500 באמצעות הפרמטרים

הפרמטרים כיוונון לאחר האלגוריתמים של הפיתרונות איכות כי מראים אנו השניה. עשירית של

הדירוג כן, כמו הפרמטרים. של ההתחלתיים הערכים עם ביצועיהם לעומת אחוזים 35 בעד משתפרת

את יותר עוד שמדגיש מה הפרמטרים, כיונון תהליך במהלך משתנה האלגוריתמים של ההשוואתי

אקראיות בעיות 500 עבור גם בנפרד תוצאות וניתוח פרמטרים כיוונון מבצעים אנו התהליך. חשיבות

למשתנים ערכים זוג שכל לכך 0.5 של הסתברות בחירת על־ידי נבנו הקשות הבעיות יותר. קשות

במעט שונה אלגוריתמים דרוג מראה יותר הקשות הבעיות על האלגוריתמים ביצועי ניתוח חוקי. יהיה

הפרמטרים כיוונון לאחר הקשות. הבעיות על פחות טובים האלגוריתמים כלל של שהביצועים וניכר

בעיות 500 מול הרצתם על־ידי הסופית בתצורתם האלגוריתמים ביצועי של הערכה מבצעים אנו

מונחה כיוונון שעל־ידי מראים אנו הפרמטרים. כיוונון לצורך ששימשו אלה מאשר אחרות אקראיות

גרסאות שתי יוצרים ואנו בר־כיוונון, שהוא אלגוריתם כל של גרסאות כמה ליצור ניתן שונה, seed

.RAFP לפיתרון שונים אלגוריתמים 24 מתקבלים כך כזה. אלגוריתם לכל

ii

תקציר

הקדמה

לצורך מאד. וקצר קבוע בזמן חישובית קשות בעיות לפתור לעיתים נדרשות זמן־אמת מערכות

שאלו כיוון אופטימלית הבעיה את הפותרים באלגוריתמים להעזר נוכל לא זו, שאפתנית דרישה קיום

בעל פיתרון מספקים PTAS מסוג קירוב אלגוריתמי הקלט. בגודל אקספוננציאלי ריצה זמן דורשים

ולכן הקלט, בגודל פולינומיאלי בזמן עושים הם זאת האופטימלי. מהפיתרון מרחקו על עליון חסם

חישובית קשות בבעיות מתמקדים אנו לרשותינו. העומד הקבוע הריצה מזמן לחרוג עלולים הם גם

נוכל וכך Constraints Optimization Problem לבעיית רדוקציה לבצע ניתן שלהן ,NP־optimization מסוג

לקיים יש אותם קשים, לאילוצים נחלקים אלה בבעיות האילוצים מכילות. הן אותן באילוצים לדון

יש אותה מטרה פונקציית לבעיה תתכן בנוסף למקסם. יש ערכם שאת רכים ואילוצים פשרות, ללא

האילוצים על משקלים בעיה, בהנתן עוד. בה נדון לא ולכן רכים לאילוצים שקולה היא אך למקסם,

הופכים הקשים האילוצים שבה כבעיה הבעיה של זמן־קבוע' 'גרסת את מגדירים אנו נדרש, ריצה וזמן

את לפתור כדי הנתון. הריצה זמן תוך לפתור יש ואותה הנתונים, המשקלים עם רכים לאילוצים

של סדרה המחזירים Anytime באלגוריתמי להשתמש ניתן חישובית קשה בעיה של הקבוע הזמן גרסת

הנתון. הריצה זמן תוך יוחזר מהם אחד שלפחות כך עולה, באיכות פתרונות

מוחשית אופטימיזציה בעיית

בבחירת עוסקת זו בעיה .RAFP לה קוראים שאנו מוחשית בעיה מגדירים אנו הנושא לימוד לצורך

מספר מוגדר משתנה לכל ספציפית. דרך־פעולה מייצג ערך שכל כך בדידים, למשתנים ערכים

בו־זמנית, בהם לשים שניתן הערכים על אילוצים קיימים משתנים זוג ולכל חוקיים, ערכים של מסוים

מתוך מתכלה משאב הקצאת גוררת למשתנה ערך של השמה כל בנוסף, בינאריים. אילוצים ונקראים

בעיות שתי של ייצוג מדגימים אנו מהם. לחרוג ואין נתונים, וכמויותיהם שסוגיהם משאבים אוסף

החלטות וקבלת רפואיים חירום שירותי לשיבוץ החלטות קבלת :RAFP באמצעות בדידה אופטימיזציה

על־ידי NP־Complete היא שהגדרנו הבעיה של ההכרעה גרסת כי מוכיחים אנו אוטומטי. למסחר

חישובית. כקשה הידועה צביעה, בעיית של מגרסה אליה פולינומיאלית רדוקציה

i

וניהול. תעשייה להנדסת בפקולטה שטרייכמן, עופר פרופסור של בהנחייתו בוצע המחקר

תודות

ללמוד. אותי שעודדו להוריי, תודה הנכונה. הדרך את לי שהראה שלי, למנחה להודות רוצה אני

בסבלנותם. התזה, השלמת את שאפשרו והוריה אשתי לילדיי, תודה

אמת בזמן פיתרון
דיסקרטית אופטימיזציה בעיות של

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

מידע ניהול בהנדסת למדעים מגיסטר

נוף יאיר

לישראל טכנולוגי מכון – הטכניון לסנט הוגש

2018 מרץ חיפה התשע"ח אדר

אמת בזמן פיתרון
דיסקרטית אופטימיזציה בעיות של

נוף יאיר

	List of Figures
	List of Tables
	Abstract
	Abbreviations and Notations
	1 Introduction
	2 Preliminaries
	2.1 Stochastic Search Algorithms
	2.1.1 Random Search
	2.1.2 Random Walk
	2.1.3 Stochastic Hill Climbing
	2.1.4 Tabu Search
	2.1.5 Simulated Annealing
	2.1.6 The Cross-Entropy Method

	3 Problem Formulation
	3.1 The Resource Allocation with Forbidden Pairs (RAFP) Problem
	3.2 Examples
	3.2.1 Computer Aided Dispatch for Medical Services
	3.2.2 Automated Trading System

	3.3 The Fixed Time Variant of RAFP

	4 RAFP's Complexity
	4.1 The Maximum k-Colorable Subgraph Problem
	4.2 The Decision Variants of RAFP and k-MCSP
	4.3 The Decision Variant of RAFP is NP-Complete

	5 Algorithms for RAFP
	5.1 Local Search
	5.2 Beyond Local Search
	5.3 A Unifying Approach For Algorithms
	5.3.1 Fixed-Time Search
	5.3.2 The Procedure GenerateRandomNeighbor
	5.3.3 The Procedure EvaluateSolution

	5.4 Instances of Fixed-Time Search
	5.4.1 Random Search
	5.4.2 Random Walk
	5.4.3 Stochastic Hill Climbing
	5.4.4 Tabu Search
	5.4.5 Simulated Annealing
	5.4.6 The Cross-Entropy Method
	5.4.7 A Greedy Algorithm

	5.5 Leveraging the Greedy Algorithm
	5.5.1 Iterated Greedy
	5.5.2 Hybrid: Greedy + Search
	5.5.3 Hybrid for the Cross-Entropy Method

	6 Empirical Results: Individual Algorithms
	6.1 Implementation
	6.1.1 Inputs
	6.1.2 Anytime behavior

	6.2 Automatic Parameters Tuning
	6.2.1 Automatic Parameters Tuning for RAFP
	6.2.2 Tuning of a Single Algorithm
	6.2.3 Comparison of Algorithms During Tuning

	6.3 Validation of Final Configurations
	6.4 Harder Problems
	6.5 Algorithms Configurations

	7 Constructing The Best Portfolio
	7.1 Constructing a Portfolio as an Optimization Problem
	7.2 K-Algorithms Cover Problems
	7.2.1 Definitions
	7.2.2 Examples

	7.3 Minimum Algorithms Cover Problems
	7.3.1 Definitions
	7.3.2 Examples

	7.4 Modeling the K-Algorithms Cover Problem with SMT
	7.4.1 Modeling the K-Algorithms Max-Sum Problem with QF_LRA
	7.4.2 Modeling the K-Algorithms Min-Max-Gap Problem with QF_LRA

	8 Empirical Results: Portfolios
	8.1 SMT Modeling
	8.2 SMT Solving
	8.3 Portfolios Construction – Tuned Algorithms
	8.3.1 Three Portfolio Models
	8.3.2 Results

	9 Conclusion
	9.1 Contributions
	9.2 Future Work
	9.2.1 Individual Algorithms
	9.2.2 Automatic Parameters Tuning
	9.2.3 Better Portfolio Construction
	9.2.4 Exploring More Real Time Issues

	A Appendix
	A.1 Defining RAFP using Weighted Constraint Satisfaction Problems
	A.1.1 Constraint Satisfaction Problem
	A.1.2 Valued Constraint Satisfaction Problem
	A.1.3 Weighted Constraint Satisfaction Problem
	A.1.4 The Resource Allocation with Forbidden Pairs Problem

	A.2 Portfolios Construction – Random Matrices

	Bibliography
	Hebrew Abstract

