
Core algorithms for SAT and

SAT-related problems

Vadim Ryvchin

Core algorithms for SAT and

SAT-related problems

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Vadim Ryvchin

Submitted to the Senate of

the Technion — Israel Institute of Technology

Shebat 5774 Haifa January 2014

This research thesis was done under the supervision of Associate Professor

Ofer Strichman in the Faculty of Industrial Engineering and Management.

I wish to express my sincere gratitude to my supervisor, Associate Profes-

sor Ofer Strichman, for his guidance and kind support. In addition to thesis

guidance I have learnt from Ofer analytical thinking, presentation and teach-

ing skills. His patience, encouragement, and immense knowledge were key

motivations throughout my PhD. Also I would like to thank my family for

their faith and support all the way.

The generous financial help of Technion Israel Institute of Technology is

gratefully acknowledged

Contents

Abstract 1

Abbreviations and Notations 2

1 Introduction 3

1.1 SAT Solving . 3

1.1.1 Local Restarts . 6

1.1.2 Clause Shrinking . 6

1.2 Incremental SAT Solving . 7

1.3 MUS and HLMUC . 10

1.3.1 High Level Minimal Unsatisfiable Core extraction . . . 13

2 Local Restarts 16

2.1 Global vs. Local Restarts . 18

2.2 Experimental Results and Conclusions 21

3 Assignment Stack Shrinking 25

3.1 Introduction . 27

3.2 Algorithmic Details and New Heuristics 28

3.3 Experimental Results and Discussion 29

3.4 Conclusion . 33

4 Preprocessing in Incremental SAT 34

4.1 Introduction . 36

4.2 Preliminaries . 38

4.3 Incremental preprocessing . 40

i

4.4 Experimental results . 47

4.5 Conclusion . 52

5 Efficient SAT Solving under Assumptions 54

5.1 Introduction . 56

5.2 Background . 58

5.3 Preprocessing under Assumptions 60

5.4 Transforming Temporary Clauses to Pervasive Clauses 62

5.5 Incremental SAT Solving under Assumptions with Step Look-

Ahead . 66

5.6 Experimental Results . 68

5.7 Conclusion . 70

6 Faster Extraction of High-Level Minimal Unsatisfiable Cores 75

6.1 Introduction . 77

6.2 Resolution-based high-level core minimization 80

6.3 Optimizations . 83

6.4 Experimental results . 91

6.5 Summary and future work . 94

7 Efficient MUS Extraction with Resolution 95

7.1 Introduction . 97

7.2 The Algorithms . 99

7.2.1 MUS-Biased Search . 99

7.2.2 Eager Model Rotation 100

7.2.3 Path Strengthening . 101

7.3 Experimental Results . 102

7.4 Conclusion . 103

8 Summary and Future Research 108

Bibliography 114

ii

List of Figures

1.1 Description of deletion-based minimization MUS algorithm

which works for both assumptions-based and resolution-based 12

1.2 An example of a resolution tree of an empty clause 13

2.1 Results, in hours, based on Minisat 2007. The original con-

figuration of Minisat 2007 is marked with *. 23

2.2 Results, in hours, based on Eureka. The original configura-

tion of Eureka is marked with *. 24

4.1 Overall run-time of the four compared methods. 49

4.2 Incremental preprocessing vs. full preprocessing: (top) pre-

processing time, (middle) SAT time, and (bottom) total time. 50

4.3 Incremental preprocessing vs. no-preprocessing. 51

4.4 Incremental preprocessing vs. look-ahead: (top) preprocessing

time, (middle) SAT time, and (bottom) total time. 53

5.1 An example of a resolution refutation for illustrating the T2P

transformation. The pervasive input clauses are F = α3∧α4∧α5∧

α6; the assumptions are α1 = a and α2 = b. The only pervasive

derived clause is α9; the rest of the derived clauses are temporary. 66

5.2 Left-hand side: variables to assumptions ratio; Right-hand

side: a comparison between plain LS and CLMS 10+T2P 100+SatELite

with respect to the number of satisfiable instances solved within

a given time. 72

iii

5.3 Comparison of CM and LS with respect to average conflict

cause length (left-hand side) and the percent of clauses re-

moved by database simplification (right-hand side). Note the

difference in the scales of the axes. 73

5.4 Comparison between CM and CM+T2P 100000 (left-hand side)

and between CM and CM+T2P 100 (right-hand side) in terms

of time in seconds spent in SatELite. 74

6.1 In these conflict graphs, dashed arrows denote IC-implications,

and the dotted lines denote 1-UIP cuts. In the top drawing,

where such implications are referred to as any other implica-

tions, the learned 1-UIP clause must be marked as an IC-

clause, since it is resolved from the IC-clause c. We can learn

instead a normal clause by taking, for example, the 1-UIP

clause in the bottom conflict graph. In that graph, c’s impli-

cation are considered as decisions, which changes the decision

levels labeling the nodes. 90

7.1 Total run-time in sec. and number of unsolved instances for

various solvers, when applied to the 295 instances from the

2011 MUS competition, excluding 12 instances which were

not solved by any of the solvers (the time-out value of 1800

sec. was added to the run-time when a memory-out occured).

Base is defined in Section 7.3, rot = Base+rotation, erot =

Base+eager rotation. A, B, C, and D correspond to the opti-

mizations defined in Section 7.2.1. ‘2’ in AB2CD means that

the optimization was invoked after the 2nd satisfiable result.

‘rr’ refers to redundancy removal combined with clause set re-

finement using MUSer2’s scheme, described in Section 7.2.3.

‘ps20’ means that path strengthening withN = 20 was applied

as described in Section 7.2.3. 105

7.2 Direct comparison of the new best configuration of Haifa-

MUC erot AB2CD ps20 (X-Axis) and Minisatabb (Y-Axis). 106

iv

7.3 Comparison of Base, MUSer2, Minisatabb, and the new

best configuration of Haifa-MUC erot AB2CD ps20. The

graph shows the number of solved instances (X-Axis) per time-

out in seconds (Y-Axis) for each solver. 107

v

List of Tables

3.1 Shrinking within Eureka . 30

3.2 Shrinking within Minisat . 31

4.1 The number of time-outs and the average total run time (incl.

preprocessing) achieved by the four compared methods. 48

5.1 The number of invocations completed within an hour for the

unsatisfiable instances from four families. The algorithms are

sorted by the sum of completed invocations in decreasing order. 69

5.2 Solving time in seconds for instances from three falsifiable fam-

ilies. The algorithms are sorted by overall solving time in in-

creasing order. 71

6.1 Summary of run-time results by family (144 instances all to-

gether). 93

6.2 Summary of the size of the high-level core by family. The ‘TO’

row indicates the number of time-outs. 93

vi

List of Algorithms

1 Modern CDCL SAT Solver . 5

2 Adjust Threshold for Shrinking (Threshold for shrinking x , Thresh-

old for number of learned clauses y) 30

3 A variable elimination algorithm similar to the one imple-

mented in MiniSat and in [30]. 39

4 Preprocessing, similar to the algorithm implemented in Min-

iSat 2.2. 41

5 Variable elimination for ϕi, where the eliminated variable v

was not eliminated in ϕi−1. 42

6 Variable elimination for ϕi, where the eliminated variable (lo-

cated in ElimV arQ[loc].v) was already eliminated in ϕi−1. . 43

7 Preprocessing in an incremental SAT setting 45

8 ReIntroduceVar with removal of resolvents that did not

participate in subsumption. 47

9 Transform π to T2P(π) . 64

10 CLMS Algorithm . 68

11 Resolution-based high-level MUC extraction (Based on Alg. 2

in [66]) . 82

12 An algorithm that attempts to find a remainder conflict clause

by reanalyzing the conflict graph as if the IC-implications

were decisions. Returns a remainder clause if one can be found,

and NULL otherwise. 87

13 The recursive model rotation of [10], where UnsatSet(S, h′) is

the subset of S’s clauses that are unsatisfied by the assignment

h′ . 103

vii

14 ERMR our modified version of RMP. K is a set of clauses

that is initialized to c before calling ERMR. K ⊆ M is an

invariant, and hence ERMR is called at least as many times

as RMR. 104

15 Deletion-based MUS extraction enhanced by eager rotation

and clause set refinement, where h is the satisfying assignment,

and core is the unsatisfiable core 104

16 An improvement based on path strengthening. In line 7 the

literals defined by {¬ci | ci ∈ P} are assumptions. 105

viii

Abstract

Boolean Satisfiability (SAT) is the canonical NP-complete problem, and has

numerous practical applications. This thesis focuses on three main topics

related to Conflict-Driven Clause Learning (CDCL) SAT technology: core

heuristics of SAT solving, Incremental SAT Solving, and Minimal Unsatis-

fiable Core extraction. All the suggested algorithms were implemented and

tested with hundreds of public benchmarks, which proved their effectiveness.

As an example of the techniques developed as part of the thesis, consider

the problem of minimal unsatisfiable core extraction. A variety of tasks in

formal verification require finding small or minimal unsatisfiable cores (un-

satisfiable subsets of the original set of clauses). As a result, MUS extraction

algorithms are currently a very active area of research. We provide several

optimizations to well- known algorithms and new ideas for modifications.

Several application (perhaps even most) require to minimize the High-Level

Unsatisfiable Core (HLMUC), which means that what needs to be minimized

is not the number of values that participate in the proof, rather the number of

pre-defined sets of constraints that participate in the proof. In the thesis we

propose seven heuristic improvements to the state-of-the-art which together

result in an overall reduction of 55% in run time and 73% in the size of the

resulting core, based on our experiments with hundreds of industrial test

cases. Our work on optimizations for MUC and HLMUC culminated in the

best known MUS and HLMUC solvers today: the solvers Haifa-MUC and

Haifa-HLMUC, which were developed as part of this thesis, won the gold

medals in the last annual competition for the fastest core- and high-level core

extraction engine. The thesis is a collection of six published articles, with a

joint introduction and summary.

1

Abbreviations and Notations

Notation Explanation

SAT Solver Boolean Satisfiability solver

DPLL DavisPutnamLogemannLoveland algorithm

CDCL Conict-Driven Clause Learning

CNF Conjunctive Normal Form

SAT Satisfiable

UNSAT Unsatisfiable

BCP Boolean Constraint Propagation

BMC Bounded Model Checking

SMT Satisfiability Modulo Theories

UC Unsatisfiable Core

MUC Minimal Unsatisfiable Core

MUS Minimal Unsatisfiable Subformula

HLMUC High-Level Unsatisfiable Core

GMUS Group Minimal Unsatifiable Subset/Subformula/Set

CM Clause-based Multiple instances

LM Literal-based Single instance

LSS Literal-based with Step look-ahead

CLMS Multiple instances Clause/Literal-based with Step look-ahead

T2P algorithm for transforming Temporary clauses To Pervasive clauses

IC Interesting Constraints

sec. seconds

2

Chapter 1

Introduction

Boolean Satisfiability (SAT) is the problem of determining the existence of

variables assignment which satisfies a given Boolean formula. SAT is a classic

and the first known NP-complete problem [26] which has numerous applica-

tions in many practical problems like formal verification [17,19,49,59,73,96],

planning [44, 74], bioinformatics [56], and combinatorics [8, 97]. The perfor-

mance of SAT Solvers has improved tremendously during the last decade and

the research in this area continues to be very active. This thesis focuses on

algorithms for solving three SAT-related problems: SAT, Incremental SAT,

and extraction of Minimal Unsatisfiable Cores (MUC) and High-Level Mini-

mal Unsatisfiable Cores (HLMUC).

1.1 SAT Solving

The SAT problem consists of determining a satisfying variable assignment

for a Boolean formula ϕ or proving that no such assignment exists. In case

such assignment exists we refer to a formula ϕ as satisfiable (SAT), and

otherwise as unsatisfiable (UNSAT). Let V = {v1, v2, . . .} denote Boolean

variables. A literal li is either a variable vi or its negation ¬vi, for i ≥ 1. All

propositional formulas in this thesis are represented in Conjunctive Normal

Form (CNF). A CNF formula ϕ consists of a conjunction of clauses, each of

which consists of a disjunction of literals. A CNF formula can also be viewed

as a set of clauses, and each clause c can be viewed as a set of literals. The

3

representation used will be clear from the context.

Example 1.1.1 (CNF Formula). An example of a CNF formula is:

ϕ = (v1 ∨ ¬v2) ∧ (v2 ∨ v3) ∧ (v2 ∨ ¬v4) ∧ (¬v1 ∨ ¬v2 ∨ ¬v3 ∨ ¬v4)

The alternative set representation is:

ϕ = {{v1,¬v2}, {v2, v3}, {v2,¬v4}, {¬v1,¬v2,¬v3,¬v4}}

In this thesis we refer only to Conflict-Driven Clause Learning (CDCL)

solvers operating on CNF formulas. All competitive SAT solvers these days

belong to this category. CDCL is similar to the earlier DavisPutnamLoge-

mannLoveland (DPLL) solvers [58], but includes in addition conflict-driven

learning. In Alg. 1 we show pseudo-code of a modern CDCL solver.

The six functions mentioned in the pseudocode are:

Boolean Constraint Propagation (BCP): propagates literals from unary

clauses and might find a conflict in case a literal should get an opposite

value of its current assignment.

Conflict Analyzer: In case BCP discovered a conflict, this function ana-

lyzes an implication graph and learns a new clause that prevents the

solver from exploring the same space again.

Decision: A function that chooses the next literal as a decision.

Restart: Performs restart if condition ”Restart-Condition” is true.

Clauses Deletion: Under the given condition ”Clause-Deletion-Condition”

some of the learnt clauses are deleted.

Inprocessing: Collection of different strategies for formula simplification.

We now mention two contributions we made in this thesis to core SAT

solving.

4

Algorithm 1 Modern CDCL SAT Solver

Input: Boolean formula in CNF form.
Output: SAT or UNSAT (or TIMEOUT).

1: Init();
2: while no timeout do
3: confl = BCP();
4: if confl != NULL then
5: if no decisions made then
6: return UNSAT

7: else
8: ConflictAnalyzer(confl)

9: else
10: if Inprocessing-Condition then
11: Inprocessing();

12: if Restart-Condition then
13: Restart();

14: if Clause-Deletion-Condition then
15: ClausesDeletion();

16: Decision();
17: if no new decision were made then
18: return SAT

19: return TIMEOUT ;

5

1.1.1 Local Restarts

In most or even all SAT solvers the restart strategy is based on the number of

conflicts during the solution process, but this number is a constant decided

by the developer and does not relate in any way to the solver’s state. We ad-

dressed this issue by correlating it to the solver’s search tree. The motivation

is to prevent useless restarts in case the solver only entered to a new search

space and on the other hand to perform restart when it spent a significant

effort under a specific search space. To measure the solver’s effort we use the

number of conflicts that occurred since entering a specific search space. If

the number of conflicts is higher than a specific threshold the solver performs

restart. This way the solver does not restart on newly entered branches and

restarts on the old ones. Full details of our work can be found in Chapter 2.

1.1.2 Clause Shrinking

Clauses learnt by the SAT solver can frequently be made stronger and hence

improve the search. This idea is called Shrinking [64], and was implemented

by A. Nadel in the solver Jerusat, which was a winner of the SAT’04 compe-

tition. After a conflict, Jerusat applies shrinking if its shrinking condition

is satisfied. The shrinking condition of Jerusat is satisfied if the conflict

clause contains no more than one variable from each decision level. The

solver then sorts the conflict clause literals according to its sorting scheme.

The sorting scheme of Jerusat sorts the clause by decision level from lowest

to highest. Afterwards it backtracks to the shrinking backtrack level, which

in the case of Jerusat is the highest possible decision level where all the

literals of the conflict clause become unassigned. It then guides the decision

heuristic to select the literals of the conflict clause according to the sorted

order and assigns them the value false whenever possible. As usual, BCP

follows each assignment. As result of a backtracking followed by specific de-

cisions, one can see in a shrinking strategy a combination between partial

restart combined with a decision strategy. In Chapter 3 we propose two

new heuristics for improving Clause Shrinking. First, we propose generaliz-

ing the shrinking condition of Jerusat. We count the number of decision

levels associated with a conflict clauses variables and perform shrinking if

6

this number is greater than a threshold x. Second, we propose using a new

sorting scheme, called activity ordering. Our scheme sorts the variables of

the conflict clause according to VSIDSs scores, from highest to lowest. Our

proposal is intended to make the solver even more dynamic, since it reorders

the relevant variables according to their contribution to the derivation of

recent conflict clauses.

1.2 Incremental SAT Solving

In numerous industrial applications the SAT solver is a component in a bigger

system that sends it satisfiability queries. For example, a program that plans

a path for a robot may use a SAT solver to find out if there exists a path

within k steps from the current state. If the answer is negative, it increases

k and tries again. The important point here is that the sequence of formulas

that the SAT solver is asked to solve is not arbitrary: these formulas have a

lot in common. Can we use this fact to make the SAT solver run faster? we

should somehow reuse information that was gathered in previous instances

to expedite the solution of the current one. To make things simpler, consider

two CNF formulas, C1 and C2, which are solved consecutively, and assume

that C2 is known at the time of solving C1. There are two kinds of information

that can be reused when solving C2:

• Reuse clauses. We should answer the following question: if c is a

conflict clause learned while solving C1, under what conditions is C2

and C2 ∧ c equisatisfiable? It is easier to answer this question if we

view C1 and C2 as sets of clauses. Let C denote the clauses in the

intersection C1 ∩ C2. Any clause learnt solely from C clauses can be

reused when solving C2. In practice, as in the path planning problem

mentioned above, consecutive formulas in the sequence are very similar,

and hence C1 and C2 share the vast majority of their clauses, which

means that most of what was learnt can be reused.

• Reuse heuristic parameters. Various weights are updated during the

solving process, and used to heuristically guide the search, e.g., variable

score is used in decision making, weights expressing the activity of

7

clauses in deriving new clauses are used for determining which learned

clauses should be maintained and which should be deleted, etc. If C1

and C2 are sufficiently similar, starting to solve C2 with the weights at

the end of the solving process of C1 can expedite the solving of C2.

To understand how modern SAT solvers support incremental solving, one

should first understand a mechanism called assumptions, which was intro-

duced with the SAT solver MiniSAT [32]. Assumptions are literals that are

known to hold when solving C1, but may be removed or negated when solv-

ing C2. The list of assumption literals is passed to the solver as a parameter.

The solver treats assumptions as special literals that dictate the initial set

of decisions. If the solver backtracks beyond the decision level of the last

assumption, it declares the formula to be unsatisfiable, since there is no so-

lution without changing the assumptions. For example, suppose a1, . . . , an
are the assumption literals. Then the solver begins by making the decisions

a1 = true, . . . , an = true, while applying BCP as usual. If at any point the

solver backtracks to level n or less, it declares the formula to be unsatisfiable.

The key point here, is that all clauses that are learnt are independent of the

assumptions and can therefore be reused when these assumptions no longer

hold. This is the nature of learning: it learns clauses that are independent

of specific decisions, and assumptions are just decisions. Hence, we can

start solving C2 while maintaining all the clauses that were learnt during the

solving process of C1. Note that this way we reuse both types of information

mentioned above, and save the time of re-parsing the formula.

We now describe how assumptions are used for solving the general incre-

mental SAT problem, which requires both addition and deletion of clauses

between instances. As for adding clauses, the solver receives the set of clauses

that should be added (C2 \C1 in our case) as part of its interface. Removing

clauses is done by adding a new assumption literal (corresponding to a new

variable) to every clause c ∈ (C1\C2), negated. For example, if c = (x1∨x2),

then it is replaced with c′ = (¬a ∨ x1 ∨ x2), where a is a new variable. Note

that under the assumption a =true, c = c′, and hence the added assumption

literal does not change the satisfiability of the formula. When solving C2,

however, we replace that assumption with the assumption a =false, which

is equivalent to erasing the clause c. Assumption literal used in this way are

8

called clause selectors.

One of the major breakthroughs in practical SAT solving in the last

few years has been the combined preprocessing techniques that were sug-

gested by [30]: non-increasing variable elimination through resolution, cou-

pled with subsumption and self-subsumption. Those preprocessing tech-

niques are widely adopted by most of the SAT solvers today. A known

problem with variable elimination is the fact that it is incompatible at least

in its basic form as published, with incremental SAT solving [32,81,92]. The

reason, as was pointed out already in [30], is that variables that are elimi-

nated may reappear in future instances. Soundness is not maintained in this

scenario. Several attempts were made to deal with the reappearing variables

problem, but those solutions require prior knowledge about the problem. For

example, if it is known in advance which variables are going to participate on

next incremental SAT solver calls, we could freeze them for elimination and

prevent the problem. In many real life application this prior knowledge is im-

possible to have, so the solution was not to solve the problem incrementally

but create a new formula instance each individual call. Using that solution

the SAT solver loses all its conflict clauses and heuristics adaptation param-

eters, which makes the solver run much slower and in many cases it makes

the use of preprocessing techniques un-beneficial. In addition, such prepro-

cessing techniques cannot handle assumptions as if they were unit clauses

because this would affect soundness. In case the number of assumptions is

high, the lack of such preprocessing hinders performance. In this thesis we

present two possible solutions:

1. Low number of assumptions — This solution can be used in any incre-

mental case, but more beneficial if the number of assumptions is low.

The idea is to track the eliminated variables, and maintain information

that enables us to retrieve them when needed. All clauses that contain

eliminated variables are kept for future use and not just one polarity

as was done in minisat [32]. In addition the order of elimination is

kept fixed. In case a new clause is added during an incremental call

and this clause contains one of the previously eliminated variables we

can decide to re-eliminate it using the saved clauses or re-introduce it

back to the formula. Assumptions are frozen for preprocessing and if

9

the eliminated variable appears as assumption in an incremental call,

it is re-introduced back to the formula. Full details on this technique

appear in Chapter 4.

2. High number of assumptions — In case the number of assumptions is

high and many of the assumptions repeat in several incremental calls it

is usually useful to treat those repeated assumptions as unit clauses and

activate formula simplification, in contrast to the current state-of-the-

art approach that models assumptions as first decision variables. We

show that a notable advantage of our approach is that it can make pre-

processing algorithms much more efficient. However, our initial scheme

renders assumption-dependent (or temporary) conflict clauses unusable

in subsequent invocations. To resolve the resulting problem of reduced

learning power, we introduce an algorithm that transforms such tem-

porary clauses into assumption-independent pervasive clauses. In ad-

dition, we show that our approach can be enhanced further when a

limited form of look-ahead information is available. Full details are in

Chapter 5.

1.3 MUS and HLMUC

Subset S of a given SAT problem ϕ is an unsatisfiable core (UC) of ϕ if S is

unsatisfiable. S is a Minimal Unsatisfiable Core (MUC) (Minimal Unsatisfi-

able Subformula (MUS)) if removal of any clause from S makes it satisfiable.

More formally:

Definition 1.3.1 if S ⊆ ϕ and S is unsatisfiable, then S is UC.

Definition 1.3.2 if ∀c ∈ S, S \ {c} is satisfiable, then S is MUS.

Example 1.3.1 (UC and MUS). An example of a CNF formula is:

c1 = (v1 ∨ v2) c2 = (¬v1 ∨ ¬v2) c3 = (¬v1 ∨ v2)

c4 = (v1 ∨ ¬v2) c5 = (v3 ∨ v4) c6 = (v4 ∨ ¬v5)

10

ϕ = c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6

Possible unsatisfiable core (UC) is :

S = {c1, c2, c3, c4, c5}

Minimal unsatisfiable subset (MUS) is:

S ′ = {c1, c2, c3, c4}

In this case there is only one MUS, but in general there can be many minimal

cores.

A variety of tasks in formal verification require finding small or minimal

unsatisfiable cores. For example, MUSes are used in a number of verification

tasks to extract a concise description of inconsistency. As a result, MUS

extraction algorithms are currently a very active area of research and some

recent work include [10, 29, 66, 82, 83, 89]. MUS solvers use SAT solvers as

their engines. The most recent overview of MUS extraction algorithms can be

found in [9]. As mentioned in [9] three main approaches have been proposed

for the MUS computation: constructive, destructive and dichotomic. Our

solver is based on the destructive algorithm as seen in Figure 1.1.

Most of the latest MUS solvers are based on addition of assumptions

literals to clauses. By manipulating those assumptions, clauses can be added

and removed. In addition, using those assumptions makes it easy to find

which clauses are required for deriving the empty clause. This approach has

an advantage of using any available SAT solver without any modifications,

but prevents using the fact that the SAT Solver is a part of the MUS extractor

and therefore additional optimizations can be performed. Use of assumptions

has the disadvantage that it increases the size of conflict clauses. There

are several works that are trying to solve this issue, like [3, 51]. To avoid

potential problems with assumptions, resolution-based SAT solver can be

used, as was published in [66]. Resolution-based SAT solver means that for

every new learnt clause we keep its resolution DAG. When the empty clause

is reached, all the input clauses in the resolution tree are marked as an

unsatisfiable core. Keeping resolution instead of using assumptions literals

11

Figure 1.1: Description of deletion-based minimization MUS algorithm which
works for both assumptions-based and resolution-based

12

c11 = �

c10 = c

c7 = v3 ∨ v4 c8 = ¬v4 c9 = ¬v3

c4 = ¬v2 ∨ ¬v4 c5 = ¬v3 ∨ v5 c6 = ¬v3 ∨ ¬v5

c1 = v1 c2 = v2 c3 = ¬v1 ∨ v3 ∨ v4

Figure 1.2: An example of a resolution tree of an empty clause

allows creating smaller conflict clauses and keep relations between clauses, in

addition to other optimizations that are detailed in Chapter 7. An example

of a resolution tree can be seen in Fig. 1.2.

Our first version of a MUS solver Haifa-MUC [76] won the two first

places in the SAT Competition 2011 on the MUS track [25] while the main

advantage over other solvers was the use of resolution graph instead of as-

sumptions (our assumptions-based solver got only to the 6th place). Later an

additional technique of model rotation was presented in [10, 53]. This tech-

nique has a major positive impact on run-times. In Chapter 7 we improved

model rotation to become more eager, which improved performance even fur-

ther. We show in that chapter various other modifications to the SAT core

engine based on the resolution graph, which makes our solver Haifa-MUC

faster than any other solver in existence.

1.3.1 High Level Minimal Unsatisfiable Core extrac-

tion

In most cases it is not the core itself that is being used, rather it is processed

further in order to check which clauses from a preknown set of Interesting

Constraints (where each constraint is modeled with a conjunction of clauses)

participate in the proof. The problem of minimizing the participation of

interesting constraints was recently coined high-level minimal unsatisfiable

core (HLMUC) in [66], also known as Group Minimal Unsatifiable Sub-

13

set/Subformula/Set (GMUS). The HLMUC input is a Boolean formula Ψ

and a set of interesting constraints IC. Each IC is a set of clauses. The

problem of HLMUC is to find a minimal number of interesting constraints

that are unsatisfiable in conjunction with the rest of the input formula. More

formally:

Definition 1.3.3 For formula Ψ =
∧

Ri∈IC
Ri ∧ Ω, if C is UC of Ψ then,

HUC = {Rj|∃c : c ∈ Rj ∧ c ∈ C} is a high-level unsatisfiable core. If in

addition ∀Rj, (C \Rj) ∧ Ω is satisfiable then HUC is a High-Level Minimal

Unsatisfiable Core (HLMUC).

Example 1.3.2 (HLMUC). An example of a CNF formula is:

c1 = (v1 ∨ v2) c2 = (¬v1 ∨ ¬v2) c3 = (¬v1 ∨ v2)

c4 = (v1 ∨ ¬v2) c5 = (v3 ∨ v4) c6 = (v4 ∨ ¬v5)

R1 = {c1, c4} R2 = {c5, c6}

Ω = c2 ∧ c3

Ψ = c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6

As in Example 1.3.1 our UC is:

S = {c1, c2, c3, c4, c5}

Then high-level UC is:

HLS = {R1, R2}

High-Level Minimal Unsatisfiable Core (HLMUC) is:

HLS ′ = {R1}

Because c5 and c6 are not required.

For HLMUC with Ω = ∅, and when all Ri are a single clause, then it is

a MUS problem; therefore MUS is just a special case of an HLMUC prob-

lem. Two prominent examples of verification techniques that need such small

14

cores are 1) abstraction-refinement model-checking techniques, which use the

core in order to identify the state variables that will be used for refinement

(smaller number of such variables in the core implies that more state vari-

ables can be replaced with free inputs in the abstract model), and 2) assump-

tion minimization, where the goal is to minimize the usage of environment

assumptions in the proof, because these assumptions have to be proved sep-

arately. We propose seven improvements to the recent solution given in [66],

which together result in an overall reduction of 55% in run time and 73%

in the size of the resulting core, based on our experiments with hundreds of

industrial test cases. The optimized procedure is also better empirically than

the assumptions-based minimization technique, and faster by more than an

order of magnitude than the best known general MUS solver. Similar to

MUS, HLMUC can be easily implemented using assumptions literals, but

performance wise using resolution is more beneficial. Our resolution based

solver Haifa-HLMUC [76] won the first place in the 2011 SAT Competition

in the High Level MUS track [24] (no competition was held since), while the

assumption-based solver Haifa-HLMUC-A took second and third places

with very significant performance difference. Our solver gives higher prior-

ity to clauses from Ω, so each unsatisfiable core returned by each invocation

contains a reduced number of important constraints clauses. Haifa-MUC

is currently the fastest published solver for High-Level MUS extraction. In

Chapter 6 the reader can find our suggested improvements.

15

Chapter 2

Local Restarts

Vadim Ryvchin1,2 and Ofer Strichman1

1 Information Systems Engineering, IE, Technion, Haifa, Israel
2 Design Technology Solutions Group, Intel Corporation, Haifa,

Israel

16

Abstract

Most or even all competitive DPLL-based SAT solvers have a restart policy,

by which the solver is forced to backtrack to decision level 0 according to

some criterion. Although not a sophisticated technique, there is mounting

evidence that this technique has crucial impact on performance. The common

explanation is that restarts help the solver avoid spending too much time

in branches in which there is neither an easy-to-find satisfying assignment

nor opportunities for fast learning of strong clauses. All existing techniques

rely on a global criterion such as the number of conflicts learned as of the

previous restart, and differ in the method of calculating the threshold after

which the solver is forced to restart. This approach disregards, in some sense,

the original motivation of focusing on ‘bad’ branches. It is possible that a

restart is activated right after going into a good branch, or that it spends all

of its time in a single bad branch. We suggest instead to localize restarts,

i.e., apply restarts according to measures local to each branch. This adds a

dimension to the restart policy, namely the decision level in which the solver

is currently in. Our experiments with both Minisat and Eureka show that

with certain parameters this improves the run time by 15% - 30% on average

(when applied to the 100 test benchmarks of SAT-race’06), and reduces the

number of time-outs.

17

2.1 Global vs. Local Restarts

Most or even all competitive DPLL SAT solvers have a “restart” policy, a

strategy initially proposed by Gomes et. al [38]. The solver is restarted after

a certain number of conflict clauses have been learned. The fact that new

clauses have been added to the clause database deviates the search from one

restart to the next. In those solvers that is relevant, the search is changed

also owing to randomness.

Different restart policies are used by different solvers. A recent survey

by Huang [43] includes several types of restart policies. We briefly describe

various types of popular restart techniques based on that survey and on some

new developments.

1. Arithmetic (or fixed) series. Parameters: x, y. A policy in which there

is a restart every x conflicts, which is increased by y every restart.

Some sample values are: in zchaff 2004 x = 700, in Berkmin x = 550,

in Siege x = 16000 and in Eureka x = 2000. In all of these solvers

the series is in fact fixed (i.e., y = 0), owing to the observation that

completeness is meaningless in the realm of timeouts.

2. Geometric series. Parameters: x, y. A policy in which the initial inter-

val is x, which is then multiplied by a factor of y in each restart, for

some y > 1. This policy is used in Minisat-2 with x = 100 conflicts

and y = 1.5.

3. Inner-Outer Geometric series. Parameters: x, y, z. An idea suggested

by Biere and implemented in PicoSAT [16], by which restarts follow

what can be seen as a two dimensional pattern that increases geo-

metrically in both dimensions. The inner loop multiplies a number

initialized to x, by z, at each restart. When this number is larger than

a threshold y, it is reset back to x and the threshold y is also multiplied

by z (this is the outer loop). Hence, both the inner and outer loops

follow a geometric series, and the whole series creates an oscillating

pattern.

4. Luby et al. series [54]. Parameter: x. A policy in which restarts are

performed according to the following series of numbers:

18

1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,... multiplied by the constant x (called the

unit-run). Formally, let ti denote the i-th number in this series. Then

ti is defined recursively:

ti =

{

2k−1 if ∃k ∈ N. i = 2k − 1

ti−2k−1+1 if ∃k ∈ N. 2k−1 ≤ i < 2k − 1

This is a well-defined series, as the two conditions are mutually-exclusive.

This policy has some nice theoretical characteristics in a class of ran-

domized algorithms called Las Vegas algorithms1, but the relevance of

these results to DPLL has only been empirical so far – it is not clear

what is the reason that it works well in practice. The experiments

reported in [43] show that it outperforms the other restart strategies,

and indeed this is now the restart method of choice of several state-of-

the-art solvers, such as TinySAT [43] and RSAT [72].

For completeness of this list, we should also mention that there is a family

of techniques in which ‘restart’ does not entail backtracking to level 0, but

rather to some decision level which is lower than what is computed as the

backtracking level by a conflict analysis procedure. Such a procedure was

proposed, for example, by Lynch [55]. We did not experiment with these

techniques, however.

All of the strategies listed above are based on a global counter of conflict

clauses, and therefore they measure progress over many branches together.

Assuming that the motivation for restarts is to prevent the solver from getting

stuck in a bad branch (which can, informally, be defined as a branch which

neither contains an easy-to-find satisfying assignment nor leads to efficient

learning that directs the solver to a different search-space or to a proof of

unsatisfiability), such a global policy may miss the point.

For example, it is possible that the solver spent a significant amount

of time searching in a branch, eventually left it, and very soon after that

it restarts (since the global threshold was reached), although there is no

knowledge yet about the potential of the current branch. It is also possible

1Algorithms that use randomness, but the quality of the result is not affected by it.
Typically randomness in such algorithms only affects run-times.

19

that the restart is too late, for example if it spends all its time between

restarts in a single bad branch.

A possibly better strategy is to localize the measure of difficulty of branches,

and restart when the branch is more difficult than some threshold. Each of

the global strategies mentioned above can be applied locally, because we can

count the number of conflicts under each branch easily, as follows. For each

decision level d we maintain a counter c(d), which is initially (when a decision

is made at that level) set to the global number of conflicts. When backtrack-

ing back to that level, we examine the difference between the current global

number of conflicts, and c(d). This difference reflects the number of con-

flicts that were encountered above level d, since the last time a decision was

made at this level. If this difference is larger than some strategy-dependent

threshold, we restart.

Locality opens a new dimension, namely that of the decision level. In

other words, the threshold can be a function of the level in which the solver

is currently in. We call such strategies dynamic. It can be expected that

the work done between two visits to a decision level (from decision to back-

tracking back to that level) will be smaller as the level increases. Also, we

collected statistics regarding the size of learned clauses at each level, and

it shows that conflict clauses at low decision levels are smaller on average.

Hence giving less chance to deeper levels forces the solver to learn stronger

facts first. Each of the strategies above can be made dynamic, although in

strategies in which the series oscillates as in Luby et al. and the Inner-Outer

strategy, it is not clear how to add this new dimension. We focused, then,

on the following strategy:

5. Dynamic-fix. Parameters: x, y, d,min. A policy in which at decision

level i there is a restart every max(x − i · d,min) conflicts, which is

increased by y every restart.

Making the strategy local instead of global requires re-tuning of the pa-

rameters – there is no reason to believe that parameters that optimize a global

restart policy also optimize a local one. Hence a major empirical evaluation

is needed in order to check the effect of locality on each of these strategies.

20

2.2 Experimental Results and Conclusions

The table in Figure 2.1 shows results with 40 different restart configurations,

when implemented on top of Minisat 2007 [34], and ran on the 100 in-

dustrial benchmarks that were used as preparation for SAT-race’06 (divided

evenly to the two test-sets TS1 and TS2). A similar table for the latest ver-

sion of Eureka [67], with 41 configurations, appears in Figure 2.2. The set

of configurations is not identical, but close, because we chose them dynami-

cally: when a good strategy was found, we tried to change it incrementally.

The tables are sorted according to the type of strategy, local/global, and pa-

rameters. The third column indicates whether this strategy is implemented

globally or locally. Timeout was set to 30 minutes. Instances that timed-

out are included and contribute 30 minutes (we added them to the SAT or

UNSAT column according to our prior knowledge of the expected result).

Instances that none of our configurations nor any SAT’06-race competitor

can solve are not included. The overall number of timeouts and total run

time are given in the last two columns, where time is measured in hours. All

together the two tables represent over 40 days of CPU time.

The first column indicates the position of each solver when measured

by the total run time, and the best three configurations according to this

measure are preceded by ‘X’. With both solvers, the best three configurations

that we tried are local (also when measured by time-outs).

To the extent that the benchmark set is representative of industrial prob-

lems, and that MiniSat 2007 and Eureka represent state-of-the-art solvers, it

seems that locality can help with the four types of strategies that we tried.

The following table shows, for the Luby and Inner-Outer strategies, the fig-

ures corresponding to the best local and best global configurations that we

could find.

Minisat Eureka

Strategy Global Local Global Local

TO Time TO Time TO Time TO Time

Luby 11 8.98 9 7.89 9 8.90 8 8.40

IO 10 8.86 8 7.38 9 8.64 8 8.12

There seems to be such an advantage for the local geometric and local

arithmetic strategies as well, but more global configurations of these strate-

21

gies need to be tested in order to draw concrete conclusions. If we take the

default parameters of Minisat and Eureka as best of their respective global

strategies, then this can be said with some confidence.

What about the dynamic strategy? It does not seem to score well in

general, at least not with the 4 parameters set that we tried, but it performs

well with unsatisfiable instances. In the case of the first table (Minisat), the

dynamic strategies with parameters 1000,0.1,20,10 and 1000,0.1,10,10 arrive

at the second and third places, respectively, if we measure only unsatisfiable

instances. More parameters and variations of this strategy are necessary in

order to see if it can become competitive in the general case.

We are currently trying more configurations and looking for other mea-

sures for the quality of the branch that can be checked with a marginal cost

in run-time. It is possible that measures such as the size of the backtrack

can be factored in the restart policy.

22

G/ TS1 TS2 Overall
Place Strategy L Parameters SAT UNSAT TO Total SAT UNSAT TO Total TO Time
X3 Arith L 100,10 1.12 2.06 4 3.18 2.17 2.59 6 4.75 10 7.93
26 Arith L 10,1 2.12 2.62 6 4.74 2.42 2.99 6 5.41 12 10.15
8 Arith L 100,1 1.89 1.96 4 3.85 2.37 2.84 6 5.21 10 9.05
6 Arith L 100,20 2.49 1.99 6 4.48 2.32 2.21 5 4.53 11 9.02
12 Arith L 100,40 2.51 1.95 6 4.47 2.11 2.74 6 4.86 12 9.33
10 Arith L 1000,0.1 2.3 2.05 4 4.35 1.89 2.85 6 4.74 10 9.09
9 Arith L 1000,1 2.15 1.93 5 4.08 2.07 2.9 6 4.97 11 9.05
32 Arith L 1000,10 2.76 2.13 7 4.89 2.72 2.99 8 5.71 15 10.6
34 Arith L 1000,20 3.13 2.07 8 5.2 2.61 2.93 5 5.54 13 10.74
21 Arith L 2500,1 2.11 2.38 6 4.49 2.37 3.03 7 5.39 13 9.89
24 Arith L 3,1 2.47 1.87 3 4.34 2.88 2.81 9 5.69 12 10.03
29 Arith L 3,10 2.69 1.92 6 4.61 2.95 2.92 9 5.87 15 10.48
14 Arith L 5,0.2 2.41 1.62 6 4.04 2.59 2.85 8 5.43 14 9.47
15 Arith L 5000,1 2.33 2.48 7 4.81 2.13 2.56 4 4.69 11 9.5
18 Arith L 6,1 2.02 2.23 5 4.25 2.61 2.86 8 5.46 13 9.71
27 Geom. L 10,1.1 2.53 2.03 6 4.56 2.5 3.18 8 5.68 14 10.24
37 Geom. L 10,1.5 2.46 2.63 7 5.08 2.62 3.29 6 5.91 13 10.99
40 Geom. L 10,2 2.89 2.77 9 5.65 3.03 3.39 9 6.42 18 12.07
16 Geom. L 100,1.1 1.71 2.16 3 3.86 2.55 3.14 8 5.69 11 9.56
38 Geom. L 100,1.5 3.33 2.71 9 6.03 2.94 2.77 6 5.71 15 11.75
36 Geom. L 100,2 2.33 2.86 7 5.19 2.42 3.35 7 5.76 14 10.95
33 Geom. * G 100,1.5 1.6 2.76 6 4.36 3.06 3.22 8 6.28 14 10.64
11 IO G 100,1000,1.1 2.68 2.07 6 4.75 1.72 2.86 7 4.57 13 9.32
4 IO G 100,1000,1.5 1.81 2.04 4 3.86 2.04 2.97 6 5 10 8.86
39 IO G 100,1000,2 2.81 2.16 8 4.97 3.33 3.48 10 6.81 18 11.78
X1 IO L 100,1000,1.1 1.59 2 4 3.59 1.27 2.51 4 3.78 8 7.38
7 IO L 100,1000,1.5 2.22 2.02 5 4.24 1.92 2.88 6 4.8 11 9.04
30 IO L 100,1000,2 2.89 2.22 8 5.11 2.6 2.79 7 5.39 15 10.5
22 Luby G 32 2.22 1.49 3 3.71 3.06 3.15 10 6.21 13 9.91
23 Luby G 128 3.08 1.76 6 4.84 2.21 2.89 7 5.1 13 9.94
13 Luby G 512 2.84 1.93 7 4.77 1.92 2.64 5 4.56 12 9.33
5 Luby G 1024 2.26 1.97 5 4.22 2.02 2.74 6 4.76 11 8.98
X2 Luby L 32 1.6 1.15 3 2.75 2.22 2.92 6 5.14 9 7.89
25 Luby L 128 2.75 2.01 7 4.76 2.29 3.02 7 5.32 14 10.08
17 Luby L 512 2.18 2.08 5 4.26 2.33 3.1 6 5.43 11 9.69
19 Luby L 1024 2.71 2.02 4 4.73 1.94 3.05 7 5 11 9.73
28 D-arith L 1000,0.1,10,10 3.45 1.02 6 4.47 2.7 3.13 8 5.84 14 10.31
20 D-arith L 1000,0.1,20,10 2.92 0.99 4 3.91 2.77 3.1 8 5.87 12 9.78
31 D-arith L 1000,10,10,10 3.5 2 8 5.51 1.64 3.41 7 5.05 15 10.56
35 D-arith L 1000,10,20,10 3.22 2.02 8 5.24 2.25 3.4 8 5.65 16 10.89

Figure 2.1: Results, in hours, based on Minisat 2007. The original config-
uration of Minisat 2007 is marked with *.

23

G/ TS1 TS2 Overall
Place Strategy L Parameters SAT UNSAT TO Total SAT UNSAT TO Total TO Time
39 Arith L 10,0.1 2.34 1.26 4 3.6 2.78 4.22 11 7 15 10.59
38 Arith L 10,1 1.92 1.67 4 3.59 2.93 4.06 10 6.98 14 10.58
41 Arith L 100,1 2.19 1.63 3 3.81 3.24 4.04 10 7.28 13 11.09
17 Arith L 100,10 1.78 1.11 2 2.89 2.8 3.44 7 6.24 9 9.13
X2 Arith L 1000,1 1.6 1.04 2 2.64 2.74 2.72 6 5.46 8 8.09
5 Arith L 1000,10 1.63 0.96 2 2.59 3.05 2.68 5 5.72 7 8.31
X1 Arith L 1000,20 1.83 0.92 2 2.75 2.57 2.67 5 5.24 7 7.98
40 Arith L 20,0.1 2.47 1.35 4 3.82 2.65 4.23 11 6.87 15 10.69
31 Arith L 20,1 2.4 1.32 3 3.72 2.63 3.69 9 6.32 12 10.04
14 Arith L 2000,1 1.76 1.1 2 2.86 3.4 2.81 6 6.21 8 9.08
32 Arith L 3,1 2.04 1.19 3 3.23 3.4 3.43 9 6.83 12 10.06
8 Arith L 3,10 1.63 1 2 2.63 2.66 3.24 6 5.89 8 8.52
4 Arith L 3,20 1.7 0.9 2 2.6 2.47 3.21 7 5.68 9 8.28
21 Arith L 3,40 1.79 0.92 2 2.71 3.54 3.39 8 6.93 10 9.64
37 Arith L 5,0.2 2.29 1.23 3 3.53 3.17 3.85 10 7.02 13 10.55
18 Arith L 5000,1 1.71 1.08 2 2.79 3.01 3.44 7 6.45 9 9.24
19 Arith* G 2000,0 2.15 1.07 3 3.22 3.17 3 6 6.17 9 9.39
29 Geom. L 10,1.1 2.2 1.07 3 3.26 3.27 3.49 9 6.76 12 10.03
36 Geom. L 10,1.5 1.89 1.1 2 2.99 3.17 4.23 10 7.4 12 10.39
25 Geom. L 10,2 1.96 1.32 2 3.28 3.14 3.38 9 6.52 11 9.80
11 Geom. L 100,1.1 1.98 0.9 2 2.88 2.8 3.1 7 5.9 9 8.78
28 Geom. L 100,1.5 1.73 0.95 2 2.68 3.46 3.78 9 7.24 11 9.93
30 Geom. L 100,2 2.11 1.01 2 3.12 3.16 3.75 7 6.91 9 10.04
10 IO G 100,1000,1.1 1.54 0.93 2 2.47 3.05 3.12 7 6.17 9 8.64
15 IO G 100,1000,1.5 1.59 0.9 1 2.49 3.01 3.57 8 6.58 9 9.08
26 IO G 100,1000,2 2.12 0.87 3 2.99 3.34 3.48 8 6.83 11 9.82
X3 IO L 100,1000,1.1 1.72 0.88 2 2.6 2.82 2.7 6 5.52 8 8.12
22 IO L 100,1000,1.5 2.19 0.86 3 3.05 3.14 3.55 8 6.68 11 9.73
34 IO L 100,1000,2 2.34 1.1 3 3.44 3.13 3.76 8 6.88 11 10.32
16 Luby G 32 1.83 1.03 3 2.86 2.97 3.29 7 6.26 10 9.12
12 Luby G 128 2.17 0.87 2 3.05 2.92 2.94 7 5.86 9 8.90
13 Luby G 512 1.59 1 2 2.59 3.18 3.27 7 6.46 9 9.05
23 Luby G 1024 2.22 1.09 3 3.31 3.58 2.88 6 6.46 9 9.76
9 Luby L 32 1.67 0.94 1 2.61 2.75 3.17 7 5.92 8 8.53
7 Luby L 128 1.71 0.91 1 2.62 2.84 2.96 6 5.79 7 8.41
6 Luby L 512 1.6 0.94 2 2.54 3.14 2.72 6 5.86 8 8.40
27 Luby L 1024 2.33 1.1 3 3.43 3.6 2.87 7 6.47 10 9.90
24 D-arith L 1000,0.1,10,10 1.91 1.34 3 3.25 3.26 3.27 8 6.53 11 9.77
35 D-arith L 1000,0.1,20,10 1.86 1.71 4 3.57 3.15 3.66 9 6.81 13 10.38
20 D-arith L 1000,10,10,10 1.88 1.2 2 3.08 3.25 3.28 5 6.53 7 9.61
33 D-arith L 1000,10,20,10 1.82 1.31 2 3.13 3.25 3.74 8 6.98 10 10.11

Figure 2.2: Results, in hours, based on Eureka. The original configuration
of Eureka is marked with *.

24

Chapter 3

Assignment Stack Shrinking

Alexander Nadel1 and Vadim Ryvchin1,2

1 Intel Corporation, P.O. Box 1659, Haifa 31015 Israel
2 Information Systems Engineering, IE, Technion, Haifa,

Israel

25

Abstract

Assignment stack shrinking is a technique that is intended to speed up the

performance of modern complete SAT solvers. Shrinking was shown to be

efficient in SAT’04 competition winners Jerusat and Chaff. However, existing

studies lack the details of the shrinking algorithm. In addition, shrinking’s

performance was not tested in conjunction with the most modern techniques.

This paper provides a detailed description of the shrinking algorithm and

proposes two new heursitics for it. We show that using shrinking is critical

for solving well-known industrial benchmark families with the latest versions

of Minisat and Eureka.

26

3.1 Introduction

Modern SAT solvers are known to be extremely efficient on many indus-

trial problems which may comprise up to millions of variables and clauses.

Among the key features that enable the solvers to be so efficient, despite the

apparent difficulty of solving huge instances of NP-complete problems, are

dynamic behavior and search locality, that is, the ability to maintain the set

of assigned variables and recorded clauses relevant to the currently explored

space. This effect is achieved by applying various techniques, such as the

VSIDS decision heuristic [62] (which gives preference to variables that par-

ticipated in recent conflict clause derivations) and local restarts (such as [77]).

Another important feature of modern SAT solvers is that they tend to pick

interrelated variables, that is, variables whose joint assignment increases the

chances of quickly reaching conflicts in unsatisfiable branches and satisfying

clauses in satisfiable branches. Clause-based heuristics (such as CBH [27]),

which prefer to pick variables from the same clause, increase the interrelation

of the assigned variables.

Assignment stack shrinking (or, simply, shrinking) is a technique that

seeks to boost the performance of modern SAT solvers by making their be-

havior more local and dynamic, as well as by improving the interrelation of

the assigned variables.

Shrinking was introduced in [64] and implemented in the Jerusat SAT

solver. After a conflict, Jerusat applies shrinking if its shrinking condition is

satisfied. The shrinking condition of Jerusat is satisfied if the conflict clause

contains no more than one variable from each decision level. The solver then

sorts the conflict clause literals according to its sorting scheme. The sorting

scheme of Jerusat sorts the clause by decision level from lowest to highest.

Afterwards Jerusat backtracks to the shrinking backtrack level. The shrinking

backtrack level for Jerusat is the highest possible decision level where all the

literals of the conflict clause become unassigned. Jerusat then guides the

decision heuristic to select the literals of the conflict clause according to the

sorted order and assign them the value false, whenever possible. As usual,

Boolean Constraint Propagation (BCP) follows each assignment.

One can pick out three important components of the shrinking algorithm

27

that can be tuned heuristically: the shrinking condition, the sorting scheme,

and the determination of the shrinking backtrack level. Shrinking was im-

plemented in the 2004 version of the Chaff SAT solver [57] with important

modifications in each one of these components, as described below.

3.2 Algorithmic Details and New Heuristics

Chaff had two versions: zchaff.2004.5.13 and zchaff rand . We concentrate on

zchaff rand ’s version of shrinking, since it was shown to be more useful in [57],

and also performed better in the SAT’04 competition [13]. Suppose Chaff

encounters a conflict. Chaff considers applying shrinking if the length of the

conflict clause exceeds a certain threshold x . The clause is sorted according to

decision levels. The algorithm finds the lowest decision level that is less than

the next higher decision level by at least 2. (If no such decision level is found,

shrinking is not performed.) The algorithm backtracks to this decision level,

and the decision strategy starts reassigning the value false to the unassigned

literals of the conflict clause, whenever possible. Chaff reassigns the variables

in the reverse order, that is, in descending order of decision levels, since this

sorting scheme was found to perform slightly better than Jerusat’s in [57].

The threshold value x for applying shrinking is set dynamically using some

measured statistics. More specifically, Alg. 2 is used in Chaff for adjusting

x after every y conflicts. Chaff measures the mean and standard deviation

of the lengths of the recently learned conflict clauses and tries to adjust x to

keep it at a value greater than the mean. The threshold on the number of

conflicts y is 600 for Chaff.

Chaff’s shrinking algorithm was implemented in Intel’s SAT solver Eureka

with two minor differences: (1) The threshold on the number of conflicts y

is 2000; (2) Eureka forbids performing shrinking for two conflicts in a row.

An important detail for understanding the reasons for the efficiency of

shrinking is that a conflict clause is recorded even when shrinking is applied.

Hence the solver always explores a different subspace after performing shrink-

ing. Previous works [57, 64, 65] claimed that a “similar” conflict must follow

an application of shrinking, on the assumption that a conflict clause is not

recorded when shrinking is applied, but this claim does not fit the actual way

28

shrinking is implemented in Jerusat, Chaff, and Eureka.

Applying shrinking contributes to search locality and makes the solver

more dynamic, since the set of assigned variables becomes more relevant to

the recently explored search space as irrelevant variables become unassigned.

Also, since the variables on the assignment stack are precisely those that

appeared in recent conflict clauses, conflict clauses are more likely to share

common interrelated variables. Shrinking often reduced the average length

of learned conflict clauses and led to faster solving times, especially for the

microprocessor verification benchmarks in Chaff [57].

We propose two new heuristics for shrinking. First, we propose general-

izing the shrinking condition of Jerusat. We count the number of decision

levels associated with a conflict clause’s variables and perform shrinking if

this number is greater than a threshold x . The threshold is calculated exactly

like the conflict clause size threshold in Chaff in Alg. 2, using the number of

decision levels in the clauses instead of their lengths. We dub our proposal

the decision-level-based shrinking condition. Interestingly, Jerusat’s shrinking

condition and its proposed generalization correspond to the recent observa-

tion that a “good” clause should contain as few decision levels as possible [4].

The clause deletion scheme of SAT’09 competition winner Glucose is based

on this observation. Second, we propose using a new sorting scheme, called

activity ordering. Our scheme sorts the variables of the conflict clause ac-

cording to VSIDS’s scores, from highest to lowest. Our proposal is intended

to make the solver even more dynamic, since it reorders the relevant variables

according to their contribution to the derivation of recent conflict clauses.

3.3 Experimental Results and Discussion

We used Eureka and Minisat for our experiments. Minisat was enhanced

by a restart strategy that was found to be optimal for this solver in [77].

We used eight publicly available benchmark families: sat04-ind-goldberg03-

hard eq check [13] (henceforth, abbreviated to ug), sat04-ind-maris03-gripper [13]

(mm), sat04-ind-velev-vliw unsat 2.0 [91] (uv2), SAT-Race TS 1 [85] (ms1), SAT-

Race TS 2 [85] (ms2), velev fvp-sat.3.0 [90] (sv3), velev fvp-unsat.3.0 [90] (uv3),

velev vliw unsat 4.0 [91] (uv4).

29

Algorithm 2 Adjust Threshold for Shrinking (Threshold for shrinking x , Thresh-
old for number of learned clauses y)

Require: x is initialized with the value 95 at the beginning of SAT solving.
1: (mean, stdev) := mean and standard deviation of last y learned clause lengths
2: center := mean + 0.5 ∗ stdev ; ulimit := mean + stdev
3: if x ≥ center then
4: x := x− 5

5: if x < center then
6: x := x+ 5

7: if x > ulimit then
8: x := ulimit
9: if x < 5 then

10: x := 5
11: return x

No Shr. Base Shr. Act. Order Dec. Cond.

Family SAT? Inst. Solved Time Solved Time Solved Time Solved Time

ug UNS 13 10 67005 13 12041 13 14389 12 28457
mm MIX 10 5 66602 7 39870 7 39426 8 44404
uv2 UNS 8 1 78870 8 12129 8 10283 8 10914
ms1 MIX 50 47 51117 49 27352 48 38208 50 16279
ms2 MIX 50 42 109899 44 92813 43 96564 42 99882
sv3 SAT 20 20 767 20 1119 20 788 20 1375
uv3 UNS 6 1 62038 6 10863 6 11761 6 11251
uv4 UNS 4 0 43200 4 10874 4 9018 4 10677
Sum 161 126 479498 151 207061 149 220437 150 223239

Table 3.1: Shrinking within Eureka

For each solver, we compared the following four versions, applying: (1)

no shrinking; (2) the base version of shrinking, corresponding to Eureka’s

version of shrinking (recall from Section 3.2 that Eureka’s shrinking algorithm

is largely similar to Chaff’s: its shrinking condition is based on clause length

and the sorting scheme picks variables in descending order of decision levels);

(3) the base version, modified by applying activity ordering; (4) the base

version, modified by using the decision-level-based shrinking condition.

Table 3.1 provides some statistics regarding the benchmark families as

well as Eureka’s results. The first column of the table contains the fam-

ily name, the second column specifies whether the instances are satisfiable,

unsatisfiable, or mixed, and the third column contains the number of in-

30

No Shr. Base Shr. Act. Order Dec. Cond.

Family SAT? Inst. Solved Time Solved Time Solved Time Solved Time

ug UNS 13 7 82310 10 43007 10 43686 11 44140
mm MIX 10 0 108000 4 71234 0 108000 4 76680
uv2 UNS 8 1 85508 8 12235 8 10817 8 11743
ms1 MIX 50 48 36771 47 37771 49 26894 49 20557
ms2 MIX 50 44 82982 41 122233 42 107147 41 107780
sv3 SAT 20 16 53968 20 9330 20 10084 20 6954
uv3 UNS 6 0 64800 3 38056 0 64800 3 39652
uv4 UNS 4 1 33370 4 15230 4 9912 4 14798
Sum 161 117 547709 137 349096 133 381340 140 322304

Table 3.2: Shrinking within Minisat

stances in the family. Each subsequent pair of columns shows the number

of instances solved by Eureka within a three hour timeout and the overall

run-time for the particular version in seconds (10800 seconds, that is, three

hours, is added for an unresolved benchmark). Table 3.2 provides Minisat’s

results in the same format. (A table with all the details of the experimental

results appears in [68].)

Compare the empirically best shrinking algorithm versus the version with-

out shrinking for each solver. For Eureka, shrinking (the base version) is

helpful for solving seven out of eight families, and critical for solving ug, uv2,

uv3 and uv4. For Minisat, shrinking (with the decision-level-based shrinking

condition) is critical for solving seven out of eight families (ms2 is an excep-

tion). Overall, shrinking enables Eureka and Minisat to solve, respectively,

25 and 23 more benchmarks within the timeout. Hence employing shrinking

is highly advantageous.

Compare now our two variations of shrinking versus the base version. The

effect of applying the decision-level-based shrinking condition in Minisat is

clearly positive as it leads to better overall performance in terms of both

the number of solved instances and the run-time. Although applying the

decision-level-based ordering condition within Eureka does not lead to better

results overall, the solver does perform better for four families (the gap is

especially significant for ms1) than with the base version. While the impact

of activity ordering is negative for Minisat overall, it performs better than

best version (the version with the decision-level-based shrinking condition)

for three families. Activity ordering is not helpful overall for Eureka, but is

does help solve four families more quickly than the best version (the version

31

with base shrinking). Hence it is recommended that shrinking be tuned for

each specific solver and benchmark family.

An important question is whether the effect of shrinking can be achieved

by applying other algorithms, proposed after shrinking. Consider the fol-

lowing three techniques: (1) Frequent restarts [16, 77]; (2) A clause-based

heuristic, such as CBH [27]; and (3) RSAT’s polarity selection heuristic [71],

which assigns every decision variable the last value it was assigned. Observe

that the combined effect of these three techniques seems to be similar to

that of shrinking. First, restarting the search when a certain condition holds

corresponds to backtracking when the shrinking condition is met. Second,

applying a clause-based heuristic and RSAT’s polarity selection heuristic re-

sults in selecting the last conflict clause and assigning its literals the value

false, similar to what happens in shrinking. It was claimed in [16] that the

impact of conflict clause minimization [7, 87] could be considered somewhat

similar to the impact of shrinking, since minimization reduces the size of

conflict clauses, as does shrinking, according to [57].

However, we have seen that shrinking is extremely useful within Eureka,

which employs all the above-mentioned techniques, and Minisat with local

restarts, which uses some of them. Thus empirically the effect of shrinking

is not achieved by combining other techniques. Let us take a closer look at

the differences between our basic version of shrinking and the combination of

frequent restarts, CBH, and RSAT’s polarity selection heuristic. First, the

shrinking condition differs from the restart condition of any known restart

strategy. Second, shrinking restarts the search only partially, in contrast

to most modern restart strategies. Third, unlike clause-based heuristics,

shrinking continues selecting variables from the last conflict clause, even if

it is satisfied. Fourth, shrinking re-orders the variables in the last conflict

clause. It is, therefore, the simultaneous effect of these features, achieved

by carefully choosing the shrinking condition, the sorting scheme, and the

shrinking backtrack level, that makes shrinking highly efficient.

32

3.4 Conclusion

Assignment stack shrinking is a technique that boosts the performance of

modern complete SAT solvers by making them more dynamic and local, and

by enhancing the interrelation of the assigned variables. We have described

in detail different variations of the shrinking algorithm, including two new

heuristics, one of which improves Minisat’s overall performance. We have

shown that shrinking is extremely efficient within Minisat and Eureka, and

that its effects cannot be achieved by other modern algorithms. Shrinking

is proving to be a useful concept (that is, a collective name for a family of

algorithms) that can be enhanced independently of the other components of

SAT solvers, such as restart strategies or decision heuristics.

33

Chapter 4

Preprocessing in Incremental

SAT

Alexander Nadel1, Vadim Ryvchin1,2 and Ofer Strichman2

1 Intel Corporation, P.O. Box 1659, Haifa 31015 Israel
2 Information Systems Engineering, IE, Technion, Haifa,

Israel

34

Abstract

Preprocessing of CNF formulas is an invaluable technique when attempt-

ing to solve large formulas, such as those that model industrial verification

problems. Unfortunately, the best combination of preprocessing techniques,

which involve variable elimination combined with subsumption, is incompat-

ible with incremental satisfiability. The reason is that soundness is lost if a

variable is eliminated and later reintroduced. Look-ahead is a known tech-

nique to solve this problem, which simply blocks elimination of variables that

are expected to be part of future instances. The problem with this technique

is that it relies on knowing the future instances, which is impossible in several

prominent domains. We show a technique for this realm, which is empirically

far better than the known alternatives: running without preprocessing at all

or applying preprocessing separately at each step.

35

4.1 Introduction

Whereas CNF preprocessing techniques have been known for a long time

(e.g., [5,12]), most are not cost-effective when it comes to formulas with mil-

lions of clauses – a typical size for industrial verification problems that are

being routinely solved these days in the EDA industry. In that respect one

of the major breakthroughs in practical SAT solving in the last few years

has been the combined preprocessing techniques that were suggested by Een

and Biere [30]: non-increasing variable elimination through resolution, cou-

pled with subsumption and self-subsumption. These three techniques remove

variables, clauses and literals, respectively. They are implemented in Min-

iSat [32] and the stand-alone preprocessor SatELite, and are in common use

by many SAT solvers. Our experience with industrial verification instances

shows that these techniques frequently remove more than half of the for-

mula, and enable the solving of large instances that otherwise cannot be

solved within a reasonable time limit. We will describe these techniques in

more detail in Section 4.2.

A known problem with variable elimination is the fact that it is incom-

patible, at least in its basic form as published, with incremental SAT solv-

ing [32,81,92]. The reason, as was pointed out already in [30], is that variables

that are eliminated may reappear in future instances. Soundness is not main-

tained in this scenario. For example, suppose that a formula contains the two

clauses (a ∨ v), (b ∨ v̄). Eliminating v results in removing these two clauses

and adding the resolvent (a ∨ b). Suppose, now, that in the next instance

the clauses (ā), (v̄) are added, which clearly contradict (a ∨ v). Yet since we

erased that clause and since there is no contradiction between the resolvent

and the new clauses, the new formula is possibly satisfiable — soundness is

lost.

A possible remedy to this problem which was already suggested in [30]

and experimented with in [50], is look-ahead. This means that variables that

are known to be added in future instances are not eliminated. The problem

with look-ahead is that it is not always possible, because information about

future instances is not always available. Examples of such problem domains

are:

36

• Some applications require interactive communication with the user for

determining the next portion of the problem. For example, a recent ar-

ticle from IBM [3] describes a process in which the verification engineer

may re-invoke the same instance of the SAT-based model checker for

verifying a new property, which is not known a-priory (it depends on

the result of the previous property). In such a case only a small part

of the formula is changed, and hence incremental satisfiability may be

crucial for performance.

• In some applications the calculation of the next portion of the problem

depends on the results of the previous invocation of the SAT solver.

For example, various tasks in MicroCode validation [35] are solved by

using a symbolic execution engine to explore the paths of the program.

The generated proof obligations are solved by an incremental SAT-

based SMT solver. In this application, the next explored path of the

program is determined based on the result of the previous computation.

• In Intel, the conversion of BMC problems to CNF is done after apply-

ing a ‘saturation’ optimization at the circuit level. Saturation divides

all the variables into equivalence classes and tries to unite them by

propagating short clauses that were learned in a previous instance —

hence the dependency that prevents precalculating the instances. The

SAT solver is provided only with the representatives of the equivalence

classes. As a result, simple unrolling cannot predict those variables

that will be present or absent in future instances.

Another possible remedy is called full preprocessing. It was briefly men-

tioned in [50] as an option that is expected not to scale, although in our exper-

iments it is occasionally competitive. The idea is to perform full preprocess-

ing before each instance. This means that all variables that were previously

eliminated are returned to the formula and resolvents are removed, other than

those that subsumed other clauses and hence cannot be removed. Therefor

preprocessing is performed independently of past or future instances, other

than the fact that it marks subsuming resolvents. The disadvantage of this

approach comparing to incremental preprocessing — the main contribution

37

of this article — is that it repeats a lot of work that has already been done

in previous instances. Our experiments with large instances show that this

extra overhead can add more than an hour to the preprocessing time.

In this article we suggest a method for combining the method of [30]

with assumptions-based incremental SAT [32]. Our experiments show that

it is much better than either running without preprocessing at all or full

preprocessing. Look-ahead is still better overall, however, when possible.

The solution we suggest is simple and rather easy to implement. Basically

we eliminate variables regardless of future instances, and every time a vari-

able is reintroduced into the formula we choose whether to reeliminate, or

reintroduce it. An exception is made for the assumptions variables, which

must be reintroduced. For both routes we need to save the clauses that were

erased in the process of elimination: these need to be resolved with the new

clauses for the former, and returned to the formula for the latter. As we

show, the order in which variables are reeliminated or reintroduced matters

for correctness. Specifically, the order must be consistent between instances.

The order also changes the resulting reduced formula and hence the solving

time. Our experiments show that in most cases the consistent order reduces

the solving time.

We continue in the next section by describing the technical details of

variable elimination, subsumption and self-subsumption. In Section 4.3 we

present incremental preprocessing, which is an adaptation of these algorithms

to the setting of incremental SAT. In Section 4.4 we summarize the results

of our extensive experiments with industrial verification benchmarks from

Intel.

4.2 Preliminaries

Let ϕ be a CNF formula. We denote by vars(ϕ) the variables used in ϕ. For

a clause c we write c ∈ ϕ to denote that c is a clause in ϕ. For v ∈ vars(ϕ)

we define ϕv = {c | c ∈ ϕ ∧ v ∈ c} and ϕv̄ = {c | c ∈ ϕ ∧ v̄ ∈ c} (somewhat

abusing notation, as we refer here to v as both a variable and a literal). Our

setting includes the use of assumptions [32].

38

Variable elimination

Input: formula ϕ and a variable v ∈ vars(ϕ).

Output: formula ϕ′ such that v 6∈ vars(ϕ′) and ϕ′ and ϕ are equisatisfiable.

Typically this preprocessing is applied only if the number of clauses in ϕ′

is not larger than in ϕ. More generally one may define a positive limit on the

growth in the number of clauses, but for simplicity we will assume here that

this limit is 0. Alg. 3 presents a variable elimination algorithm, where the

eliminated variable v is the parameter. The variable v must be unassigned.

Algorithm 3 A variable elimination algorithm similar to the one imple-
mented in MiniSat and in [30].

1: function Resolve(clauseset pos, clauseset neg)
2: clauseset res = ∅;
3: for each clause p ∈ pos do
4: for each clause n ∈ neg do
5: if p and n have a single possible pivot then
6: res = res ∪ resolution(p, n);

7: return res;

1: function EliminateVar(var v)
2: clauseset Res = Resolve (ϕv, ϕv̄);
3: if |Res| > |ϕv|+ |ϕv̄| then return ∅; ⊲ no variable elimination

4: ϕ = (ϕ ∪Res) \ (ϕv ∪ ϕv̄);
5: ClearDataStructures(v); ⊲ clearing occurrence list, watch-list, scores-list
6: TouchedV ars = TouchedV ars ∪ vars(Res); ⊲ used in Alg. 4
7: return Res;

The function Resolve computes the set of non-tautological resolvents of

two sets of clauses given to it as input (the check in line 5 excludes tautological

resolvents). Function EliminateVar uses Resolve to compute the set Res

of such resolvents of ϕv and ϕv̄. If this set is larger than |ϕv|+ |ϕv̄| it simply

returns, and hence v is not eliminated. Otherwise in line 4 it adds the

resolvents Res and discards the resolved clauses. All the variables in the

resolvents are added to a list TouchedV ars in line 6. This list will be used

39

later, in Alg. 4, for driving further subsumption and self-subsumption.

Subsumption

Input : ϕ ∧ (l1 ∨ · · · ∨ li) ∧ (l1 ∨ · · · ∨ li ∨ li+1 ∨ · · · ∨ lj).

Output : ϕ ∧ (l1 ∨ · · · ∨ li).

Self-subsumption

Input : ϕ ∧ (l1 ∨ · · · ∨ li ∨ l) ∧ (l1 ∨ · · · ∨ li ∨ li+1 ∨ · · · ∨ lj ∨ l̄).

Output : ϕ ∧ (l1 ∨ · · · ∨ li ∨ l) ∧ (l1 ∨ · · · ∨ li ∨ li+1 ∨ · · · ∨ lj).

Preprocessing

The preprocessing algorithm described in Alg. 4 is similar to that imple-

mented in MiniSat 2.2 [32] (based on the stand-alone preprocessor SatELite [30]).

SubsumptionQ is a global queue of clauses. For each c ∈ SubsumptionQ,

and each c′ ∈ ϕ, RemoveSubsumptions (1) checks if c ⊂ c′ and if yes per-

forms subsumption, and otherwise (2) if c self-subsumes c′ then it performs

self-subsumption. Essentially it is similar to the implementation suggested

in [30]. Self-subsumption is followed by adding the reduced clause back to the

queue. The function runs until the queue is empty. Note that assumptions

are not eliminated. Eliminating assumptions would render the algorithm

unsound.

In line 5 the variables are scanned in an increasing order of occurrences

count. Note that in line 7 RemoveSubsumptions is applied only to the set

of newly generated resolvents.

4.3 Incremental preprocessing

We now describe an incremental version of the preprocessing algorithm. In

contrast to the full-preprocessing algorithm that was briefly described in the

introduction (performing preprocessing of the new formula, together with

40

Algorithm 4 Preprocessing, similar to the algorithm implemented in Min-
iSat 2.2.

1: function Preprocess
2: SubsumptionQ = ϕ;
3: while SubsumptionQ 6= ∅ do
4: RemoveSubsumptions ();
5: for each unassigned non-assumption variable v do ⊲ order

heuristically
6: SubsumptionQ = EliminateVar (v);
7: if SubsumptionQ 6= ∅ then RemoveSubsumptions ();

8: SubsumptionQ = {c | vars(c) ∩ TouchedV ars 6= ∅};
9: TouchedV ars = ∅;

learned clauses from previous instances), our suggested algorithm does not

repeat preprocessing work that was done in previous instances.

In our setting of incremental SAT, each instance is given as a set of

clauses that should be added to the formula accumulated thus far. Removal

of clauses is done indirectly, by using assumptions that are clause selectors.

For example, if v is an assumption variable, then we can add v̄ to a set of

clauses. Assigning this variable false is equivalent to removing this set.

Let ϕ0 denote the initial formula, and ∆i denote the set of clauses added

at step i. Step i for i > 0 begins with a formula denoted ϕi, initially assigned

the conjunction of ϕi−1 at the end of the solving process (i.e., after being

preprocessed and with additional learned clauses), and ∆i. This formula

changes during the solving process.

Preprocessing in an incremental SAT setting requires various changes. In

step i, the easy case is when we wish to eliminate a variable v that is not

eliminated in step i − 1. EliminateVar-inc, shown in Alg. 5 is a slight

variation of EliminateVar that we saw in Alg. 3. The only difference

is that if v is eliminated, then it saves additional data that will be used

later on, as we will soon see. Specifically, it saves ϕi
v and ϕi

v̄ in clause-sets

denoted respectively by Sv and Sv̄, and in the next line also the number of

resolvents in a queue called ElimV arQ. This queue holds tuples of the form

〈variable v, int resolvents〉.

41

Algorithm 5 Variable elimination for ϕi, where the eliminated variable v
was not eliminated in ϕi−1.

1: function EliminateVar-inc(var v, int i)
2: clauseset Res = Resolve (ϕi

v, ϕ
i
v̄);

3: if |Res| > |ϕi
v|+ |ϕ

i
v̄| then return ∅; ⊲ no variable elimination

4: Sv = ϕi
v; Sv̄ = ϕi

v̄; ⊲ Save for possible reintroduction
5: ElimV arQ.push(〈v, |Res|〉); ⊲ Save #resolvents in queue
6: ϕi = (ϕi ∪Res) \ (ϕi

v ∪ ϕ
i
v̄);

7: ClearDataStructures (v);
8: TouchedV ars = TouchedV ars ∪ vars(Res); ⊲ used in Alg. 7
9: return Res;

The more difficult case is when v is already eliminated at step i − 1. In

that case we invoke ReEliminate-Or-ReIntroduce, as shown in Alg. 6.

This function decides between reintroduction and reelimination.

• Reelimination. In Line 6 the algorithm computes the set of resolvents

Res that need to be added in case v is reeliminated. Note that ϕi may

contain v because of two separate reasons. First, vars(∆i) may contain

v; Second, variables that were reintroduced in step i prior to v may

have led to reintroduction of clauses that contain v. The total number

of resolvents resulting from eliminating v is |Res| + the number of

resolvents incurred by eliminating v up to step i, which, recall, is saved

in ElimV arQ.

• Reintroduction. In case we decide to cancel elimination, the previously

removed clauses Sv and Sv̄ have to be reintroduced. The total number

of clauses resulting from reintroducing v is thus |Sv∪Sv̄∪ϕ
i
v∪ϕ

i
v̄|. Note

that the algorithm reintroduces variables that appear in the assumption

list.

The decision between the two options is made in line 7. If reintroduction

results in a smaller number of clauses, we simply return the saved clauses

Sv and Sv̄ by calling ReIntroduceVar, which also removes its entry from

ElimV arQ because v is no longer eliminated. The rest of the code is self-

explanatory.

42

Algorithm 6 Variable elimination for ϕi, where the eliminated variable
(located in ElimV arQ[loc].v) was already eliminated in ϕi−1.

1: function ReIntroduceVar(var v, int loc, int i)
2: ϕi += Sv ∪ Sv̄;
3: erase ElimV arQ[loc]; ⊲ v is not eliminated, hence 0 resolvents

1: function ReEliminateVar(clauseset Res, var v, int loc, int i)
2: Sv = Sv ∪ ϕ

i
v;Sv̄ = Sv̄ ∪ ϕ

i
v̄;

3: ElimV arQ[loc].resolvents += |Res|;
4: ϕi = (ϕi ∪Res) \ (ϕi

v ∪ ϕ
i
v̄);

5: ClearDataStructures (v);
6: TouchedV ars = TouchedV ars ∪ vars(Res);

1: function ReEliminate-Or-ReIntroduce(int loc, int i)
2: var v = ElimV arQ[loc].v; ⊲ The variable to eliminate
3: if v is an assumption then
4: ReIntroduceVar(v, loc, i);
5: return ∅;

6:
clausesetRes = Resolve(ϕi

v, ϕ
i
v̄) ∪

Resolve(ϕi
v, Sv̄) ∪ Resolve(Sv, ϕ

i
v̄);

7: if (|Res|+ ElimV arQ[loc].resolvents) > |Sv ∪ Sv̄ ∪ ϕ
i
v ∪ ϕ

i
v̄| then

8: ReIntroduceVar(v, loc, i);
9: return ∅;

10: ReEliminateVar (Res, v, loc, i);
11: return Res

43

Given EliminateVar-Inc and ReEliminate-Or-ReIntroduce we

can now focus on Preprocess-inc in Alg. 7, which is parameterized by

the instance number i. The difference from Alg. 4 is twofold: First, vari-

ables that are already eliminated in the end of step i − 1 are processed by

ReEliminate-Or-ReIntroduce; Second, other variables are processed in

EliminateVar-inc. The crucial point here is the order in which variables

are eliminated. Note that 1) elimination is consistent between instances, and

2) variables that are not currently eliminated are checked for elimination

only at the end. These two conditions are necessary for correctness, because,

recall, ReIntroduceVar may return clauses that were previously erased.

These clauses may contain any variable that was not eliminated at the time

they were erased.

Example 4.3.1 Suppose that in step i−1, v1 was eliminated, and as a result

a clause c = (v1∨ v2) was removed. Then v2 was eliminated as well. Suppose

now that in step i we first reeliminate v2, and then decide to reintroduce v1.

The clause c above is added back to the formula. But c contains v2 which was

already eliminated.

Let ψn = ϕ0 ∧
∧n

i=1 ∆
i, i.e., ψn is the n-th formula without preprocessing

at all. We claim that:

Proposition 4.3.1 Algorithm Preprocess-inc is correct, i.e., for all n

ψn is equisatisfiable with ϕn .

Proof. The full proof is given in a technical report [63]. Here we only sketch

its main steps. The proof is by induction on n. The base case corresponds

to standard (i.e., non-incremental) preprocessing. Proving the step of the

induction relies on another induction, which proves that the following two

implications hold right after line 7 at the j-th iteration of the first loop in

Preprocess-inc, for j ∈ [0 . . . |ElimV arQ| − 1]:

ψn =⇒ (ϕn ∧

|ElimV arQ|−1
∧

k=j+1

∧

c∈Svk
∪Sv̄k

c) =⇒ ∃v1 . . . vj. ψ
n ,

44

Algorithm 7 Preprocessing in an incremental SAT setting

1: function Preprocess-inc(int i) ⊲ preprocessing of ϕi

2: SubsumptionQ = {c | ∃v. v ∈ c ∧ v ∈ vars(∆i)};
3: RemoveSubsumptions ();
4: for (j = 0 . . . |ElimV arQ| − 1) do ⊲ scanning eliminated vars in order
5: v = ElimV arQ[j].v;
6: if |ϕi

v| = |ϕ
i
v̄| = 0 then continue;

7: ReEliminate-Or-ReIntroduce (j, i);

8: while SubsumptionQ 6= ∅ do
9: for each non-assumption variable v 6∈ ElimV arQ do ⊲ scanning the

rest
10: SubsumptionQ = EliminateVar-inc (v, i);
11: RemoveSubsumptions ();

12: SubsumptionQ = {c | vars(c) ∩ TouchedV ars 6= ∅};
13: TouchedV ars = ∅;

The implication on the right requires some attention: existential quantifica-

tion is necessary because of variable elimination via resolution (in the same

way that Res(x∨A)(x̄∨B) = (A∨B) and (A∨B) =⇒ ∃x. (x∨A)(x̄∨B)).

The crucial point in the proof of this implication is to show that if a variable

is eliminated at step j, it cannot reaapear in the formula in later iterations.

This is indeed guaranteed by the order in which the first loop processes the

variables.

Note that at the last iteration j = |ElimV arQ| − 1 and the big conjunc-

tions disappear. This leaves us with

ψn =⇒ ϕn =⇒ ∃v1 . . . vj. ψ
n ,

which implies that ψn is equisatisfiable with the formula after the last itera-

tion. The second loop of Preprocess-inc is non-incremental preprocessing,

and hence clearly maintains satisfiability.

45

Removal of resolvents

Recall that ReIntroduceVar returns the clause sets Sv and Sv̄ to the for-

mula. So far we ignored the question of what to do with the resolvents:

should we remove them given that we canceled the elimination of v? These

clauses are implied by the original formula, so keeping them does not hinder

correctness. Removing them, however, is not so simple, because they may

have participated in subsumption / self-subsumption of other clauses. Re-

moving them hinders soundness, as demonstrated by the following example.

Example 4.3.2 Consider the following four clauses:

c1 = (l1 ∨ l2 ∨ l3) c2 = (l4 ∨ l5 ∨ l̄3)

c3 = (l1 ∨ l2 ∨ l̄4) c4 = (l1 ∨ l2 ∨ l̄5) ,

and the following sequence:

• elimination of var(l3):

– c5 = res(c1, c2) = (l1 ∨ l2 ∨ l4 ∨ l5) is added;

– c1 and c2 are removed and saved.

• self-subsumption between c3 and c5: c5 = (l1 ∨ l2 ∨ l5).

• self-subsumption between c4 and c5: c5 = (l1 ∨ l2).

• subsumption of c3 and c4 by c5.

• removal of the resolvent c5 and returning of c1 and c2.

We are left with only a subset of the original clauses (c1 and c2), which do

not imply the rest. In this case the original formula is satisfiable, but it is

not hard to see that the subsumed clauses (c3, c4) could have been part of an

unsatisfiable set of clauses, and hence that their removal could have changed

the result from unsat to sat. Soundness is therefore not secured if resolvents

that participated in subsumption are removed.

46

In our implementation we solve this problem as follows. When eliminating

v, we associate all the resolvent clauses with v. In addition, we mark all

clauses that subsumed other clauses. We then change ReIntroduceVar

as can be seen in Alg. 8. Note that in line 3 we guarantee that unit resolvents

remain: it does not affect correctness and is likely to improve performance.

Algorithm 8 ReIntroduceVar with removal of resolvents that did not
participate in subsumption.

1: function ReIntroduceVar(var v, int loc, int i)
2: ϕi += Sv ∪ Sv̄;
3: for each non-unit clause c associated with v do
4: if c is not marked then Remove c from ϕi;

5: erase ElimV arQ[loc];

4.4 Experimental results

We implemented incremental preprocessing on top of Fiver1, and experi-

mented with hundreds of large processor Bounded Model-checking instances

from Intel, categorized to four different families. In each case the problem is

defined as performing BMC up to a given bound2 in increments of size 1, or

finding a satisfying assignment on the way to that bound. The time out was

set to 4000 sec. After removing those benchmarks that cannot be solved by

any of the tested methods within the time limit we were left with 206 BMC

problems.3 We turned off the ‘saturation’ optimization at the circuit level

that was described in the introduction, in order to be able to compare our

results to look-ahead. Overall in about half of the cases there is no satisfying

assignment up to the given bound.

The first graph, in Figure 4.1, summarizes the overall results of the

four compared methods: full-preprocessing, no-preprocessing, incremental-

1Fiver is a new SAT solver that was developed in Intel. It is a CDCL solver, combining
techniques from Eureka, Minisat, and other modern solvers.

2Internal customers in Intel are typically interested in checking properties up to a given
bound.

3The benchmarks are available upon request from the authors.

47

Method Time-outs Avg. total run-time
full-preprocessing 68 2465.5
no-preprocessing 42 1784.7
incremental-preprocessing 2 1221.3
look-ahead 0 1064.9

Table 4.1: The number of time-outs and the average total run time (incl.
preprocessing) achieved by the four compared methods.

preprocessing, and look-ahead. The number of time-outs and the average

total run-time with these four methods is summarized in Table 4.1.

Look-ahead wins overall, but recall that in this article we focus on scenar-

ios in which lookahead is impossible. Also note that it only has an advantage

in a setting in which there is a short time-out. Incremental-preprocessing is

able to close the gap and become almost equivalent once the time-out is set

to a high value. It seems that the reason for the advantage of incremental

preprocessing over look-ahead in hard instances is that unlike the latter, it

does not force each variable to stay in the formula until it is known that it

will not be added from thereon.

We now examine the results in more detail. Figure 4.2 shows the consis-

tent benefit of incremental preprocessing over full preprocessing. The gen-

erated formula is not necessarily the same because of the order in which

the variables are examined. Recall that it is consistent between instances

in Preprocess-Inc and gives priority to those variables that are currently

eliminated. In full preprocessing, on the other hand, it checks each time the

variable that is contained in the minimal number of clauses. The impact

of the preprocessing order on the search time is inconsistent, but there is a

slight advantage to that of Preprocess-Inc, as can be seen in the middle

figure. The overall run time favors Preprocess-Inc, as can be seen at the

bottom figure.

Figure 4.3 compares incremental preprocessing and no preprocessing at

all. Again, the advantage of the former is very clear.

Finally, Figure 4.4 compares incremental preprocessing and look-ahead,

which shows the benefit of knowing the future. The fact that the preprocess-

48

Figure 4.1: Overall run-time of the four compared methods.

49

Figure 4.2: Incremental preprocessing vs. full preprocessing: (top) prepro-
cessing time, (middle) SAT time, and (bottom) total time.

50

Figure 4.3: Incremental preprocessing vs. no-preprocessing.

51

ing time of the latter is smaller is very much expected, because it does not

have the overhead incurred by the checks in Alg. 5 and the multiple times

that each variable can be reeliminated and reintroduced. The last graph

shows that a few more instances were solved overall faster with look-ahead,

but recall that according to Figure 4.1 with a long-enough timeout the two

methods have very similar results in terms of the number of solved instances.

4.5 Conclusion

In various domains there is a need for incremental SAT, but the sequence of

instances cannot be computed apriori, because of dependance on the result

of previous instances. In such scenarios applying preprocessing with look-

ahead, namely preventing elimination of variables that are expected to be

reintroduced, is impossible. Incremental preprocessing, the method we sug-

gest here, is an effective algorithm for solving this problem. Our experiments

with hundreds of industrial benchmarks show that it is much faster than

the two known alternatives, namely full-preprocessing and no-preprocessing.

Specifically, with a time-out of 4000 sec. it is able to reduce the number of

time-outs by a factor of four and three, respectively.

52

Figure 4.4: Incremental preprocessing vs. look-ahead: (top) preprocessing
time, (middle) SAT time, and (bottom) total time.

53

Chapter 5

Efficient SAT Solving under

Assumptions

Alexander Nadel1, Vadim Ryvchin1,2

1 Intel Corporation, P.O. Box 1659, Haifa 31015 Israel
2 Information Systems Engineering, IE, Technion, Haifa,

Israel

54

Abstract

In incremental SAT solving, assumptions are propositions that hold solely for

one specific invocation of the solver. Effective propagation of assumptions

is vital for ensuring SAT solving efficiency in a variety of applications. We

propose algorithms to handle assumptions. In our approach, assumptions are

modeled as unit clauses, in contrast to the current state-of-the-art approach

that models assumptions as first decision variables. We show that a notable

advantage of our approach is that it can make preprocessing algorithms much

more effective. However, our initial scheme renders assumption-dependent

(or temporary) conflict clauses unusable in subsequent invocations. To re-

solve the resulting problem of reduced learning power, we introduce an algo-

rithm that transforms such temporary clauses into assumption-independent

pervasive clauses. In addition, we show that our approach can be enhanced

further when a limited form of look-ahead information is available. We

demonstrate that our approach results in a considerable performance boost of

the SAT solver on instances generated by a prominent industrial application

in hardware validation.

55

5.1 Introduction

A variety of SAT applications require the ability to solve incrementally gener-

ated SAT instances online [22,31,33,35,84,88,93]. In such settings the solver

is expected to be invoked multiple times. Each time it is asked to check

the satisfiability status of all the available clauses under assumptions that

hold solely for one specific invocation. The näıve algorithm which solves the

instances independently is inefficient, since all learning is lost [33,84,88,93].

The current state-of-the-art approach to this problem was proposed in [33]

and implemented in the MiniSat SAT solver [32]. MiniSat reuses a single SAT

solver instance for all the invocations. Each time after solving is completed,

the user can add new clauses to the solver and reinvoke it. The user is also

allowed to provide the solver a set of assumption literals, that is, literals

that are always picked as the first decision literals by the solver. In this

scheme, all the conflict clauses generated are pervasive, that is, assumption-

independent. We call this approach to the problem of incremental SAT

solving under assumptions the Literal-based Single instance (LS) approach,

since it reuses a single SAT solver instance and models assumptions as deci-

sion literals. The approach of [84] to our problem would use a separate SAT

solver instance for each invocation, where each assumption would be encoded

as a unit clause. To increase the efficiency of learning, it would store and

reuse the set of assumption-independent pervasive conflict clauses through-

out all the SAT invocations. We call this approach the Clause-based Multiple

instances (CM) approach, since it uses multiple SAT solver instances and

models assumptions as unit clauses.

It was shown in [33] that LS outperforms CM in the context of model

checking. As a result, LS is currently widely applied in practice (e.g. [22,31,

35]). The goal of this paper is to demonstrate its limitations and to propose

an efficient alternative.

This study springs from the authors’ experiences, described herein, in

tuning Intel’s formal verification flow. Verification engineers reported to us

that a critical property could not be solved by the SAT solver within two

days. Our default flow used the LS approach, where to check a property

the property’s negation is provided as an assumption. The property holds iff

56

the instance is unsatisfiable. Surprisingly, we discovered that providing the

negation of the property as a unit clause, rather than as an assumption, ren-

dered the property solvable within 30 minutes. The reason for this was that

the unit clause triggered a huge simplification chain for our SatELite [30]-like

preprocessor that drastically reduced the number of clauses in the formula.

Our experience highlights a drawback of LS: preprocessing techniques

cannot propagate assumptions in LS, since they are modeled as decision vari-

ables, while assumptions can be propagated in CM, where they are modeled

as unit clauses. Section 5.3 of this work demonstrates how to incorporate the

SatELite algorithm within CM and shows why the applicability of SatELite

for LS is an open problem.

LS has important advantages over CM related to the efficiency of learning.

First, in LS all the conflict clauses are pervasive and can be reused, while

CM cannot reuse temporary conflict clauses, that is, clauses that depend on

assumptions. Second, LS reuses all the information relevant to guiding the

SAT solver’s heuristics, while CM has to gather relevant information from

scratch for each new incremental invocation of the solver. Section 5.4 of this

paper proposes an algorithm that overcomes the first of the above-mentioned

drawbacks of CM: our algorithm transforms temporary clauses into pervasive

clauses as a post-processing step. Section 5.5 introduces an algorithm that

mitigates the second of the above-mentioned advantages of plain LS over

CM, given that limited look-ahead information is available to the solver. In

fact, we propose an algorithm that combines LS and CM to achieve the most

efficient results.

We study the performance of algorithms for incremental SAT solving un-

der assumptions on instances generated by a prominent industrial application

in hardware validation, detailed in Section 5.2. Section 5.2 also provides some

definitions and background information. Experimental results demonstrat-

ing the efficiency of our algorithms are provided in Section 5.6. We would

like to emphasize that all the SAT instances used in this paper are publicly

available from the authors. Section 5.7 concludes our work.

57

5.2 Background

An incremental SAT solver is provided with the input {Fi, Ai} at each invo-

cation i , where for each i , Fi is a formula in Conjunctive Normal Form (CNF)

and Ai = {l1, l2, . . . , ln} is a set (conjunction) of assumptions, where each as-

sumption lj is a unit clause (it is also a literal). Invocation i of the solver

decides the satisfiability of (
∧i

j=1 Fj)∧Ai. Intuitively, before each invocation

the solver is provided with a new block of clauses and a set of assumptions.

It is asked to solve a problem comprising all the clauses it has been provided

with up to that moment under the set of assumptions relevant only to a

single invocation of the solver. Modern SAT solvers generate conflict clauses

by resolution over input clauses and previously generated conflict clauses. A

clause α is pervasive if (
∧i

j=1 Fj)→ α, otherwise it is temporary.

The Clause-based Multiple instances (CM) approach [84] to incremen-

tal SAT solving under assumptions operates as follows. CM creates a new

instance of a SAT solver for each invocation. Each invocation decides the sat-

isfiability of (
∧i

j=1 Fj)∧(
∧i−1

l=1 Pl)∧Ai, where Pl is the set of pervasive conflict

clauses generated at invocation l of the solver. To keep track of temporary

and pervasive conflict clauses, the algorithm marks all the assumptions as

temporary clauses and marks a newly generated conflict clause as temporary

iff one or more temporary clauses participated in its resolution derivation.

The Literal-based Single instance (LS) approach [33] to incremental SAT

solving under assumptions reuses the same SAT instance for all the invoca-

tions. The instance is always updated with a new block of clauses. The key

idea is in providing the assumptions as assumption literals, that is, literals

that are always picked as the first decision literals by the solver. Conflict-

clause learning algorithms ensure that any conflict clause that depends on a

set of assumptions will contain the negation of these assumptions. Hence, in

LS all the conflict clauses are pervasive.

While all the algorithms for incremental SAT solving under assumptions

discussed in this paper are application-independent, the experimental results

section studies the performance of various algorithms on instances generated

by the following prominent industrial application in hardware validation.

Assume that a verification engineer needs to formally verify a set of prop-

58

erties in some circuit up to a certain bound. Formal verification techniques

cannot scale to large modern circuits, hence the engineer needs to select

a sub-circuit and mimic the environment of the larger circuit by imposing

assumptions (also called constraints) [47]. The engineer then invokes SAT-

based Bounded Model Checking (BMC) [18] to verify a property under the

assumptions. If the result is satisfiable, then either the environment is not

set correctly, that is, assumptions are incorrect or missing, or there is a real

bug. In practice the first reason is much more common than the second. To

discover which of the possibilities is the correct one, the engineer needs to

analyze the counter-example. If the reason for satisfiability lies in incorrect

modeling of the environment, the assumptions must be modified and BMC

invoked again. When one property has been verified, the engineer can move

on to another. Practice shows that most of the validation time is spent in

this process, which is known as the debug loop.

In the standard industrial BMC-based formal validation flow the model

checker instance is built from scratch for each iteration of the debug loop.

The key idea behind our solution is to take advantage of incremental SAT

solving under assumptions across multiple invocations of the model checker.

We keep only one instance of the model checker. For each invocation of BMC,

given a transition system Ψ, a safety property ∆, and a set of assumptions Λ,

we check whether Ψ satisfies ∆ given Λ at each bound up to a given bound k

using incremental SAT solving under assumptions, as follows. At each bound

i , the transition system Ψ unrolled to i is translated to CNF and comprises

the formula, while the set comprising the negation of ∆ unrolled to i and the

assumptions Λ unrolled to i is the set of assumptions provided to the SAT

solver. We call our model checking algorithm incremental Bounded Model

Checking (BMC) under assumptions.

Some recent works dedicated to BMC propose taking advantage of look-

ahead information that is available, since the instance can be unrolled beyond

the current bound [48, 50]. In particular, it is proposed in [50] to apply

preprocessing, including SatELite [30], for LS-based BMC, where complete

look-ahead information is required to ensure soundness, as variables that are

expected to appear in the future must not be eliminated. The technique

of [50] cannot be applied in our application, since it is unknown a priori

59

how the user would update the formula before subsequent invocations of

the incremental model checker. The in-depth BMC algorithm of [48], which

uses a limited form of look-ahead to boost BMC, served as an inspiration

for our algorithm for incremental SAT solving under assumptions with step

look-ahead, presented in Section 5.5.

5.3 Preprocessing under Assumptions

Preprocessing refers to a family of algorithms whose goal is to simplify the

input CNF formula prior to the CDCL-based search in SAT. Preprocessing

has commonly been applied in modern SAT solvers since the introduction of

the SatELite preprocessor [30]. This section first explains why even a rather

straightforward form of preprocessing, known as database simplification, is

expected to be much more effective when used with CM as compared to LS.

We then show that, unmodified, SatELite cannot be used with either CM

or LS, and demonstrate how it can be modified so as to be safely used with

CM.

Consider the following algorithm, which we call database simplification

following MiniSat [32] notation: First, propagate unit clauses with Boolean

Constraint Propagation (BCP). Second, eliminate satisfied clauses and falsi-

fied literals.

Database simplification is applied as an inprocessing step (that is, as an

on-the-fly simplification procedure, applied at the global decision level) in

modern SAT solvers [15, 32, 86]. It can be applied during preprocessing and

inprocessing with either LS or CM without further modification. A key obser-

vation is that the efficiency of the first application of database simplification

after a new portion of the incremental problem becomes available can be dra-

matically higher when assumptions are modeled as unit clauses (as in CM)

rather than as assumption literals (as in LS). Indeed, database simplification

takes full advantage of unit clauses by propagating them and eliminating

resulting redundancies, while it does not take any advantage of assumption

literals. In addition, variables representing assumptions are eliminated by

database simplification with CM, but not with LS. Our experimental data,

presented in Section 5.6, demonstrates that database simplification elimi-

60

nates significantly more clauses for CM than for LS, and that the average

conflict clause length for LS is much greater than it is for CM. These two

factors favor CM as compared to LS as they have a significant impact on the

efficiency of BCP and the overall efficiency of SAT solving.

Consider now the preprocessing algorithm of SatELite [30]. SatELite is

a highly efficient algorithm used in leading SAT solvers [15,32,86]. SatELite

is composed of the following three techniques:

1. Variable elimination: for each variable v , the algorithm performs reso-

lution between clauses containing v (denoted by V +) and ¬v (denoted

by V −). Let U be the set of resulting clauses. If the number of clauses

in U is less than or equal to the number of clauses in V + ∪ V −, then

the algorithm eliminates v by replacing V + ∪ V − by U .

2. Subsumption: if a clause α is subsumed by the clause β, that is, β ⊆ α,

α is removed.

3. Self-subsuming resolution: if α = α1 ∨ l and β = β1 ∨ ¬l, where α1 is

subsumed by β1, then α is replaced by α1.

It is unclear how to apply SatELite with LS, let alone make its perfor-

mance efficient. It is currently unknown how to apply SatELite for incre-

mental SAT solving, since eliminated variables may be reintroduced (unless

full look-ahead information is available [50], which is not always the case).

However, even if the problem of incremental SatELite is solved, it is still un-

clear how to efficiently propagate assumptions when SatELite is applied with

LS. One cannot apply SatELite as is, since eliminating assumption literals

would render the algorithm unsound. A simple solution for ensuring sound-

ness would be freezing the assumption literals [33, 50], that is, not carrying

out variable elimination for them. However, this solution has the same po-

tential severe performance drawback as database simplification applied with

LS as compared to CM: freezing assumptions is expected to have a significant

negative impact on the preprocessor’s ability to simplify the instance.

It is also unknown how SatELite can be applied with CM. The problem is

that one has to keep track of pervasive and temporary clauses. Fortunately,

we can propose a simple solution for this problem, based on the observation

61

that SatELite uses nothing but resolution. SatELite can be updated as

follows to keep track of pervasive and temporary clauses. If a variable is

eliminated, each new clause α = β1 ⊗ β2 is marked as temporary iff one of

the clauses β1 or β2 is temporary (where ⊗ corresponds to an application of

the resolution rule). Whenever self-subsuming resolution is applied, the new

clause α1 is temporary iff either α or β is temporary (this operation is sound

since α1 is a resolvent of α and β). No changes are required for subsumption.

5.4 Transforming Temporary Clauses to Per-

vasive Clauses

We saw in Section 5.3 that CM has an important advantage over LS: pre-

processing is expected to be much more efficient for CM. However, LS has

its own advantages. An important advantage is efficiency of learning: all

the conflict clauses learned by LS are pervasive, hence they can always be

reused. In CM, all the temporary conflict clauses are lost. In this section we

propose an algorithm that converts temporary clauses to pervasive clauses

as a post-processing step after the SAT solver is invoked. Our algorithm

overcomes the above-mentioned disadvantage of CM as compared to LS.

We start by providing some resolution-related definitions. The resolution

rule states that given clauses α1 = β1 ∨ v and α2 = β2 ∨ ¬v, where β1 and

β2 are also clauses, one can derive the clause α3 = β1 ∨ β2. The resolution

rule application is denoted by α3 = α1 ⊗
v α2. A resolution derivation of

a target clause α from a CNF formula G = {α1, α2, . . . , αq} is a sequence

π = (α1, α2, . . . , αq, αq+1, αq+2, . . . , αp ≡ α), where each clause αi for i ≤ q

is initial and αi for i > q is derived by applying the resolution rule to αj

and αk, where j, k < i.1 A resolution refutation is a resolution derivation

of the empty clause �. Modern SAT solvers are able to generate resolution

refutations given an unsatisfiable formula.

A resolution derivation π can naturally be considered as a directed acyclic

graph (dag) whose vertices correspond to all the clauses of π and in which

1We force the resolution derivation to start with all the initial clauses, since such a
convention is more convenient for the subsequent discussion.

62

there is an edge from a clause αj to a clause αi iff αi = αj ⊗ αk (an example

of such a dag appears in Figure 5.1). A clause β ∈ π is backward reachable

from γ ∈ π if there is a path (of 0 or more edges) from β to γ.

Assume now that the SAT solver is invoked over the CNF formula A =

{α1 = l1, . . . , αn = ln} ∧ F = {αn+1, . . . , αr} (where the first n clauses are

temporary unit clauses corresponding to assumptions and the rest of the

clauses are pervasive). Assume that the solver generated a resolution refuta-

tion π of A∧F . Let β ∈ π be a clause. We denote by Γ(π, β) the conjunction

(set) of all the backward reachable assumptions from β, that is, the conjunc-

tion (set) of all the assumptions whose associated unit clauses are backward

reachable from β ∈ π. Let Γ(β) be short for Γ(π, β). To transform any clause

β ∈ π \A to a pervasive clause we propose applying the following operation:

T2P(β) = β ∨ ¬Γ(β)

That is to say, we propose to update each temporary derived clause with

the negations of the assumptions that were required for its derivation, while

pervasive clauses are left untouched. Consider the example in Figure 5.1.

The proposed operation would transform α7 to c∨ d∨¬a; α8 to ¬d∨¬b; α10

to c∨¬a∨¬b; and α11 to ¬a∨¬b. The pervasive clauses α3, α4, α5, α6, and

α9 are left untouched.

Alg. 9 shows how to transform a resolution refutation π of A∧F to a reso-

lution derivation T2P(π) from F , such that every clause β ∈ π\A is mapped

to a clause T2P(β) = β ∨ ¬Γ(β) ∈ T2P(π). The pre- and post-conditions

that must hold for Alg. 9 appear at the beginning of its text. The second

pre-condition is not necessary, but it makes the algorithm’s formulation and

correctness proof easier. The algorithm’s correctness is proved below.

Proposition 5.4.1 Algorithm 9 is sound, that is, its pre-conditions imply

its post-conditions.

Proof.

The proof is by induction on i , starting with i = r + 1. Both post-

conditions hold when the ”for” loop condition is reached when i = r + 1,

since T2P(π) comprises precisely the clauses of F at that stage. Indeed, every

clause αi visited until that point is initial and is mapped to T2P(αi) = αi by

construction. It is left to prove that both post-conditions hold each time after

63

Algorithm 9 Transform π to T2P(π)

Require: π = (A = {α1 = l1, . . . , αn = ln} , F = {αn+1, . . . , αr} , αr+1, . . . , αp) is
a resolution refutation of A ∧ F

Require: All the assumptions in A are distinct and non-contradictory
Ensure: T2P(π) = (T2P(αn+1),T2P(αn+2), . . . ,T2P(αr),T2P(αr+1), . . . ,T2P(αp))

is a resolution derivation from F

Ensure: For each i ∈ {n+ 1, n+ 2, . . . , r, . . . , p}: T2P(αi) = αi ∨ ¬Γ(αi)
1: for i ∈ {n+ 1, n+ 2, . . . , p} do
2: if αi ∈ F then

3: T2P(αi) := αi

4: else

5: Assume αi = αj ⊗
v αk

6: if αj or αk is an assumption then

7: Assume without limiting the generality that αj is the assumption
8: T2P(αi) := T2P(αk)
9: else

10: T2P(αi) := T2P(αj)⊗
v T2P(αk)

11: Append T2P(αi) to T2P(π)

a derived clause αi ∈ π is translated to T2P(αi) and T2P(αi) is appended

to T2P(π). We divide the proof into three cases depending on the status of

αi.

When αi is a pervasive derived clause, its sources αj and αk must also be

pervasive by definition. By induction, we have T2P(αj) = αj and T2P(αk) =

αk, since Γ(αj) and Γ(αk) are empty. Hence, T2P(αi) = T2P(αj) ⊗
v

T2P(αk) = αj ⊗
v αk. Thus, it holds that T2P(αi) is derived from F by

resolution, so the first post-condition holds. We also have the second post-

condition, since we have seen that T2P(αi) = αj ⊗
v αk = αi, while Γ(αi) is

empty.

Consider the case where αi is temporary and αj is an assumption. The

second pre-condition of the algorithm ensures that αk will not be an assump-

tion. The algorithm’s flow ensures that T2P(αi) = T2P(αk). By induction,

T2P(αk) is derived from F by resolution, hence T2P(αi) is also derived from

F by resolution and the first post-condition holds. The induction hypoth-

esis yields that T2P(αi) = T2P(αk) = αk ∨ ¬Γ(αk). It must hold that

64

αk = αi ∨ ¬lj, otherwise the resolution rule application αi = (αj = lj)⊗
v αk

would not be correct. Substituting the equation αk = αi∨¬lj into T2P(αi) =

αk ∨ ¬Γ(αk) gives us T2P(αi) = αi ∨ ¬lj ∨ ¬Γ(αk) = αi ∨ ¬(lj ∧ Γ(αk)). It

must hold that Γ(αi) = lj ∧ Γ(αk) by resolution derivation construction.

Substituting the latter equation into T2P(αi) = αi ∨ ¬(lj ∧ Γ(αk)) gives us

precisely the second post-condition.

Finally consider the case where αi is temporary and neither αj nor αk is an

assumption. The first post-condition still holds after T2P(π) is updated with

T2P(αi), since T2P(αi) = T2P(αj) ⊗
v T2P(αk) by construction and both

T2P(αj) and T2P(αk) are derived from F by resolution by the induction

hypothesis. The induction hypothesis yields that T2P(αi) = T2P(αj) ⊗
v

T2P(αk) = (αj ∨¬Γ(αj))⊗
v (αk ∨¬Γ(αk)). We have αi = αj ⊗

v αk. Hence,

it holds that T2P(αi) = (αj ⊗
v αk) ∨ ¬Γ(αj) ∨ ¬Γ(αk) = αi ∨ ¬Γ(αj) ∨

¬Γ(αk). By resolution derivation construction, it holds that Γ(αi) = Γ(αj)∧

Γ(αk). Hence, T2P(αi) = αi ∨ ¬Γ(αi) and we have proved the second post-

condition.

We implemented our method as follows. After SAT solving is completed,

we go over the derived clauses in the generated resolution refutation π and

associate each derived clause α with the set Γ(α). This operation can be

applied independently of the SAT solving result, even if the problem is sat-

isfiable. After that, we update each remaining temporary conflict clause α

with ¬Γ(α) and mark the resulting clause as pervasive. In practice, there is

no need to create a new resolution derivation T2P(π).

Note that one needs to store and maintain the resolution derivation in

order to apply our transformation. This may have a negative impact on per-

formance. To mitigate this problem, we store only a subset of the resolution

derivation, where each clause’s associated set of backward reachable assump-

tions is non-empty. The idea of holding and maintaining only the relevant

parts of the resolution derivation was proposed and proved useful in [78].

Finally, when the number of assumptions is large, our transformation

might create pervasive clauses which are too large. To cope with this problem

we use a user-given threshold n. Whenever the number of backward reachable

assumptions for a clause is higher than n, that clause is not transformed into

a pervasive clause, and thus is not reused in subsequent SAT invocations.

65

α11 = �

α10 = c

α7 = c ∨ d α8 = ¬d α9 = ¬c

α1 = a α2 = b α3 = ¬a ∨ c ∨ d α4 = ¬b ∨ ¬d α5 = ¬c ∨ e α6 = ¬c ∨ ¬e

Figure 5.1: An example of a resolution refutation for illustrating the T2P trans-
formation. The pervasive input clauses are F = α3∧α4∧α5∧α6; the assumptions
are α1 = a and α2 = b. The only pervasive derived clause is α9; the rest of the
derived clauses are temporary.

5.5 Incremental SAT Solving under Assump-

tions with Step Look-Ahead

In some applications of incremental SAT solving under assumptions, look-

ahead information is available. Specifically, before invocation number i , the

solver may already know the clauses Fj and assumptions Aj for some or

all future invocations j > i. In this section, we propose an algorithm for

incremental SAT solving under assumptions given a limited form of look-

ahead, which we call step look-ahead. The reason for choosing this form of

look-ahead is inspired by step-based approaches to BMC [48].

Given an integer step s > 1, an invocation i is step-relevant iff i modulo

s = 0 (invocations are numbered starting with 0). Given an invocation q , its

step interval is a set of successive invocations SI (q) = [n ∗ s, . . . , q, . . . , ((n+ 1) ∗ s)− 1],

where n ∗ s is the largest step-relevant invocation smaller than or equal to

q . For example, for s = 3, invocations 0, 3, 6, 9, 12, . . . are step-relevant; and

SI (3) = SI (4) = SI (5) = [3, 4, 5]. In step look-ahead, at each step-relevant

invocation i , the solver can access all the clauses and assumptions associ-

ated with invocations within SI (i). In addition, in step look-ahead, given a

step-relevant invocation i , it holds that Fj ∧Aj is satisfiable iff Fj ∧Aj ∧ Fk

is satisfiable for every j, k ∈ SI (i). That is to say, we assume that all the

clauses available within the step interval hold for every invocation within

that step interval.

One can adjust LS to take advantage of the fact that the solver has a

66

wider view of the problem as follows. At a step-relevant invocation i , LS

can be provided the problem
∧i+s−1

j=i Fj and solve it s times, each time under

a new set of assumptions Aj for each j ∈ SI (i) (in this scheme non-step-

relevant invocations are ignored). We call this approach the Single instance

Literal-based with Step look-ahead (LSS) approach. LSS was proved to have

advantages over the plain LS algorithm (which has a narrower view of the

problem) in the context of standard BMC [48]. However, it suffers from the

same major drawback as plain LS: preprocessing does not take advantage of

assumptions.

We need to refine the semantics of the problem before proposing our solu-

tion. Given a step-relevant invocation i , an assumption l ∈ Ai is invocation-

generic iff l ∈ Aj for every j ∈ SI (i). Any assumption that is not invocation-

generic is invocation-specific. That is, an assumption is invocation-generic iff

it can be assumed for every invocation within the given step interval. In our

application of incremental BMC under assumptions, described in Section 5.2,

the negation of the property for each bound is invocation-specific, while the

unrolled temporal assumptions are invocation-generic.

We propose an algorithm, called Multiple instances Clause/Literal-based

with Step look-ahead (CLMS) (shown in Alg. 10), that combines LS and CM.

The algorithm is applied at each step-relevant invocation. It creates the

instance
∧i+s−1

j=i Fj once as in LS. The key idea is that invocation-generic

assumptions can be provided as unit clauses, since assuming them does not

change the satisfiability status of the problem for any invocation within the

current step interval. To ensure the soundness of solving subsequent step

intervals, the unit clauses corresponding to invocation-generic assumptions

must be temporary as in CM. After creating the instance the solver is in-

voked s times for each invocation in the step interval, each time under the

corresponding invocation-specific assumptions. To combine SatELite with

Alg. 10 in a sound manner, all the invocation-specific assumptions must be

frozen. Finally, note that our T2P transformation is applicable for CLMS.

67

Algorithm 10 CLMS Algorithm

1: if i is step-relevant then
2: Let G =

⋂i+s−1
j=i Aj be the set of all invocation-generic assumptions

3: Create a SAT solver instance with pervasive clauses
∧i+s−1

j=i Fj and tem-
porary clauses G

4: Optionally, apply SatELite, where all the invocation-specific assumptions
in

⋃i+s−1
j=i Aj must be frozen

5: for j ∈ {i, i+ 1, . . . , i+ s− 1} do
6: Invoke the SAT solver under the assumptions Aj \G

7: Optionally, transform temporary clauses to pervasive clauses using T2P
8: Store the pervasive clauses and delete the SAT instance

5.6 Experimental Results

This section analyzes the performance of various algorithms for incremental

SAT solving under assumptions on instances generated by incremental BMC

under assumptions. In our analysis, we consider an instance satisfiable iff a

certain invocation over that instance by one of the algorithms under consid-

eration was satisfiable within a time-out of one hour. We picked instances

from three satisfiable families comprising satitisfiable instances only (128

instances) and four unsatisfiable families comprising unsatisfiable instances

only (81 instances). We measured the number of completed incremental in-

vocations for unsatisfiable families and the solving time until the first time

an invocation was proved to be satisfiable for satisfiable families (the time-

out was used as the solving time when an algorithm could not prove the

satisfiability of a satisfiable instance). Each pair of invocations corresponds

to a BMC bound (a clock transition and a real bound), where the complex-

ity of SAT invocations in BMC grows exponentially with the bound. We

implemented the algorithms in Intel’s internal state-of-the-art Eureka SAT

solver and used machines with Intelr Xeonr processors with 3Ghz CPU

frequency and 32Gb of memory for the experiments.

We checked the performance of LS and CM as well as of LSS and CLMS

with steps 10 and 50. We tested CM and CLMS with and without SatELite

and with different thresholds for applying T2P transformation (0, 100, 100000).

68

Algorithms Completed Invocations
LS? SatELite? Step T2P Thr. Overall Fam. 1 Fam. 2 Fam. 3 Fam. 4
- + 50 0 2967 1443 470 562 492
- + 10 100 2934 1413 472 563 486
- + 10 0 2932 1408 474 568 482
- + 50 100 2927 1427 462 552 486
- + 50 100000 2927 1427 462 552 486
- + 1 0 2828 1365 468 539 456
- + 1 100 2813 1363 462 535 453
- - 10 100000 2806 1378 442 528 458
- - 50 0 2801 1375 444 526 456
- - 50 100 2795 1373 442 522 458
- - 50 100000 2795 1373 442 522 458
- - 10 100 2779 1357 440 528 454
- - 10 0 2775 1353 438 530 454
- - 1 100000 2736 1335 432 537 432
- - 1 100 2734 1339 436 526 433
- - 1 0 2732 1339 436 524 433
+ - 10 N/A 2579 1295 380 494 410
+ - 1 N/A 2575 1295 378 494 408
+ - 50 N/A 2563 1291 376 488 408
- + 10 100000 2525 1245 390 507 383
- + 1 100000 2250 1133 296 493 328

Table 5.1: The number of invocations completed within an hour for the
unsatisfiable instances from four families. The algorithms are sorted by the
sum of completed invocations in decreasing order.

Our solver uses database minimization during inprocessing by default.

The graph on the left-hand side of Figure 5.2 provides information about

the number of variables and assumptions (satisfiable and unsatisfiable in-

stances appear separately). For each instance we measured these numbers

at the last invocation completed by both CM and LS (the basic algorithms).

Note that the distribution of variables and assumptions for the satisfiable

instances is more diverse. This is explained by the fact that for satisfiable

instances, the last invocation is sometimes very low or very high, while for

unsatisfiable instances it is moderate. Overall, our satisfiable instances are

easier to solve.

Consider Table 5.1, which compares the number of completed invoca-

tions for unsatisfiable instances. Compare basic CM and LS (configurations

[-,-,1,0] and [+,-,1], respectively). CM significantly outperforms LS. As we

discussed in Section 5.3, the reasons for this are related to the relative ef-

ficiency of database simplification and the average clause length for both

algorithms. Figure 5.3 demonstrates the huge difference between the two

69

algorithms in these parameters in favor of CM. Note that when SatELite

is not applied, the best performance is achieved by CLMS 10 (CLMS with

step 10) with T2P 100000 (T2P with threshold 100000). Hence, without

SatELite, both CLMS and T2P are helpful. SatELite increases the num-

ber of completed invocations considerably, while the absolutely best result is

achieved by combining SatELite with CLMS 50 when T2P is turned off. Fig-

ure 5.4 demonstrates that the reason for the inefficiency of the combination

of T2P and SatELite is related to the fact that the time spent in preprocess-

ing increases drastically when T2P is applied with threshold 100000. The

degradation still exists, but is not that critical when the threshold is 100.

Consider now Table 5.2, which compares the run-time for satisfiable in-

stances. Note that, unlike in the case of unsatisfiable instances, the default

LS is one of the best algorithms. The advantage of LS over CM-based al-

gorithms is that it maintains all the information relevant to the decision

heuristic. This advantage proves to be very important in the context of rel-

atively easy falsifiable instances. Still, the absolutely best configuration is

the combination of CLMS 10 with SatELite and T2P 100, which uses all the

algorithms proposed in this paper. The graph on the right-hand side of Fig-

ure 5.2 shows that the advantage of our approach over LS becomes apparent

as the run-time increases, while LS is still preferable for easier instances.

One can also see that the combination of CLMS 10 with SatELite and

T2P 100 ([-,+,10,100]) is the most robust approach overall: it is the second

best for unsatisfiable instances and the absolute best for satisfiable instances.

5.7 Conclusion

This paper introduced efficient algorithms for incremental SAT solving un-

der assumptions. While the currently widely-used approach (which we called

LS) models assumptions as first decision variables, we proposed modeling as-

sumptions as unit clauses. The advantage of our approach is that we allow

the preprocessor to use assumptions while simplifying the formula. In par-

ticular, we demonstrated that the efficient SatELite preprocessor can easily

be modified for use in our scheme, while it cannot be used with LS. Fur-

thermore, we proposed an enhancement to our algorithm that transforms

70

Algorithms Time
LS? SatELite? Step T2P Thr. Overall Fam. 1 Fam. 2 Fam. 3
- + 10 100 104845 10843 35083 58919
+ - 1 N/A 118954 18005 41624 59325
- + 10 0 134917 16886 40965 77067
+ - 10 N/A 139787 21726 53304 64757
- + 10 100000 154437 22280 53436 78721
- + 50 0 172104 10496 56087 105521
- + 50 100 189965 11649 69373 108943
- + 50 100000 192790 15220 68475 109096
- - 10 100000 196784 12521 126153 58110
+ - 50 N/A 200261 22832 93635 83794
- - 10 100 205124 16133 125529 63462
- - 10 0 206390 14991 125400 65999
- + 1 100 213278 31628 83009 98641
- - 1 100 216714 20889 118703 77122
- - 1 100000 220054 20639 128871 70545
- + 1 0 219346 34447 89040 95859
- - 1 0 228404 23642 121608 83154
- - 50 0 244202 18996 138971 86235
- + 1 100000 244826 34735 111862 98229
- - 50 100000 247347 18514 138552 90281
- - 50 100 250937 18897 141524 90516

Table 5.2: Solving time in seconds for instances from three falsifiable families.
The algorithms are sorted by overall solving time in increasing order.

temporary clauses into pervasive clauses as a post-processing step, thus im-

proving learning efficiency. In addition, we developed an algorithm which

improves the performance further by taking advantage of a limited form of

look-ahead information, which we called step look-ahead, when available.

We showed that the combination of our algorithms outperforms LS on in-

stances generated by a prominent industrial application. The empirical gap

is especially significant for difficult unsatisfiable instances.

71

0

2000K

4000K

6000K

8000K

10000K

12000K

14000K

16000K

18000K

0 50K 100K 150K 200K 250K

Variables in thousands

Assumptions in thousands

Unsatisfiable
++

+

++

+
++

++ ++

++

+++
+++ +++++++++

++
++

+
+

+

+++ +++++++++++

++++++++++++++

+
++++++
+

+++
+++++

++

+
Satisfiable

◦◦

◦

◦

◦

◦

◦

◦◦

◦

◦

◦

◦

◦

◦
◦◦◦

◦

◦
◦

◦
◦

◦◦

◦

◦

◦

◦
◦

◦

◦

◦

◦

◦

◦

◦
◦

◦

◦
◦

◦

◦◦

◦

◦
◦◦

◦

◦

◦

◦

◦

◦◦

◦

◦

◦ ◦

◦

◦
◦

◦

◦

◦

◦
◦
◦

◦

◦◦

◦

◦

◦

◦

◦
◦

◦

◦

◦

◦◦

◦

◦
◦

◦◦◦

◦

◦

◦◦◦◦

◦

◦

◦

◦◦

◦◦

◦

◦◦

◦

◦

◦

◦◦◦◦

◦

◦
◦

◦

◦

◦

◦

◦◦

◦

◦

◦◦

◦

◦

◦

◦
◦◦

◦

◦

◦

◦

◦

◦◦

◦

◦

◦

◦

◦

◦
◦◦◦

◦

◦
◦

◦
◦

◦◦

◦

◦

◦

◦
◦

◦

◦

◦

◦

◦

◦

◦
◦

◦

◦
◦

◦

◦◦

◦

◦
◦◦

◦

◦

◦

◦

◦

◦◦

◦

◦

◦ ◦

◦

◦
◦

◦

◦

◦

◦
◦
◦

◦

◦◦

◦

◦

◦

◦

◦
◦

◦

◦

◦

◦◦

◦

◦
◦

◦◦◦

◦

◦

◦◦◦◦

◦

◦

◦

◦◦

◦◦

◦

◦◦

◦

◦

◦

◦◦◦◦

◦

◦
◦

◦

◦

◦

◦

◦◦

◦

◦

◦◦

◦

◦

◦

◦
◦◦

◦

◦

◦

◦

◦

◦◦

◦

◦

◦

◦

◦

◦
◦◦◦

◦

◦
◦

◦
◦

◦◦

◦

◦

◦

◦
◦

◦

◦

◦

◦

◦

◦

◦
◦

◦

◦
◦

◦

◦◦

◦

◦
◦◦

◦

◦

◦

◦

◦

◦◦

◦

◦

◦ ◦

◦

◦
◦

◦

◦

◦

◦
◦
◦

◦

◦◦

◦

◦

◦

◦

◦
◦

◦

◦

◦

◦◦

◦

◦
◦

◦◦◦

◦

◦

◦◦◦◦

◦

◦

◦

◦◦

◦◦

◦

◦◦

◦

◦

◦

◦◦◦◦

◦

◦
◦

◦

◦

◦

◦

◦◦

◦

◦

◦◦

◦

◦

◦

◦
◦◦

◦

◦

◦

◦

◦

◦◦

◦

◦

◦

◦

◦

◦
◦◦◦

◦

◦
◦

◦
◦

◦◦

◦

◦

◦

◦
◦

◦

◦

◦

◦

◦

◦

◦
◦

◦

◦
◦

◦

◦◦

◦

◦
◦◦

◦

◦

◦

◦

◦

◦◦

◦

◦

◦ ◦

◦

◦
◦

◦

◦

◦

◦
◦
◦

◦

◦◦

◦

◦

◦

◦

◦
◦

◦

◦

◦

◦◦

◦

◦
◦

◦◦◦

◦

◦

◦◦◦◦

◦

◦

◦

◦◦

◦◦

◦

◦◦

◦

◦

◦

◦◦◦◦

◦

◦
◦

◦

◦

◦

◦

◦◦

◦

◦

◦◦

◦

◦

◦

◦

◦

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100 120 140

Cumulative time in sec.

Instances

LS

∗∗
∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗
∗∗∗∗
∗∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗∗

CLMS 10+T2P 100+SatELite

+++
++++++++++++++++

+++++++
+++++++

++++++
+++++
++++
++++
+++
+++
+++
+++
+++
+++
+++
++
++
++
++
++
++
++

Figure 5.2: Left-hand side: variables to assumptions ratio; Right-hand side:
a comparison between plain LS and CLMS 10+T2P 100+SatELite with re-
spect to the number of satisfiable instances solved within a given time.

72

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200 1400 1600

CM

LS

∗
∗∗

∗
∗

∗

∗

∗
∗
∗

∗
∗

∗∗

∗

∗
∗

∗ ∗∗
∗
∗∗

∗

∗∗
∗

∗∗

∗
∗

∗

∗∗

∗

∗

∗
∗
∗

∗ ∗

∗
∗

∗

∗∗

∗

∗

∗

∗

∗ ∗

∗

∗

∗

∗
∗

∗
∗

∗

∗

∗∗

∗

∗∗
∗

∗

∗

∗∗∗
∗
∗∗

∗

∗∗

∗

∗

∗
∗

0

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1 1.2

CM

LS

∗ ∗

∗

∗∗

∗
∗∗
∗∗∗ ∗

∗

∗

∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗

∗∗

∗

∗

∗
∗∗∗

∗
∗∗∗∗∗
∗∗∗∗
∗

∗∗∗∗
∗∗∗∗∗∗
∗

∗∗
∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗

Figure 5.3: Comparison of CM and LS with respect to average conflict cause
length (left-hand side) and the percent of clauses removed by database sim-
plification (right-hand side). Note the difference in the scales of the axes.

73

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

CM+SatELite+T2P 100000

CM+SatELite without T2P

∗
∗

∗∗∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗
∗
∗

∗

∗

∗∗
∗

∗

∗

∗

∗∗

∗

∗

∗

∗

∗∗∗

∗

∗∗

∗

∗

∗

∗

∗

∗

∗∗∗

∗

∗

∗
∗∗

∗
∗∗

∗

∗

∗

∗∗∗

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

CM+SatELite+T2P 100

CM+SatELite without T2P

∗∗
∗

∗∗
∗

∗
∗

∗

∗ ∗
∗

∗∗

∗

∗∗
∗∗

∗ ∗∗∗
∗∗∗∗∗∗

∗∗

∗
∗

∗
∗

∗

∗∗∗∗
∗∗∗∗∗∗∗∗∗∗

∗∗ ∗
∗
∗∗∗
∗∗∗∗

∗
∗

∗

∗

∗∗∗∗ ∗∗
∗

∗∗
∗
∗

∗ ∗∗∗

∗∗

Figure 5.4: Comparison between CM and CM+T2P 100000 (left-hand side)
and between CM and CM+T2P 100 (right-hand side) in terms of time in
seconds spent in SatELite.

74

Chapter 6

Faster Extraction of High-Level

Minimal Unsatisfiable Cores

Vadim Ryvchin1,2 and Ofer Strichman1

1 Information Systems Engineering, IE, Technion, Haifa, Israel
2 Design Technology Solutions Group, Intel Corporation, Haifa,

Israel

75

Abstract

Various verification techniques are based on SAT’s capability to identify a

small, or even minimal, unsatisfiable core in case the formula is unsatisfiable,

i.e., a small subset of the clauses that are unsatisfiable regardless of the rest

of the formula. In most cases it is not the core itself that is being used,

rather it is processed further in order to check which clauses from a pre-

known set of Interesting Constraints (where each constraint is modeled with

a conjunction of clauses) participate in the proof. The problem of minimiz-

ing the participation of interesting constraints was recently coined high-level

minimal unsatisfiable core by Nadel [66]. Two prominent examples of veri-

fication techniques that need such small cores are 1) abstraction-refinement

model-checking techniques, which use the core in order to identify the state

variables that will be used for refinement (smaller number of such variables

in the core implies that more state variables can be replaced with free inputs

in the abstract model), and 2) assumption minimization, where the goal is to

minimize the usage of environment assumptions in the proof, because these

assumptions have to be proved separately. We propose seven improvements

to the recent solution given in [66], which together result in an overall re-

duction of 55% in run time and 73% in the size of the resulting core, based

on our experiments with hundreds of industrial test cases. The optimized

procedure is also better empirically than the assumptions-based minimiza-

tion technique, and faster by more than an order of magnitude than the best

known general MUS solver.

76

6.1 Introduction

Given an unsatisfiable CNF formula ϕ, an unsatisfiable core (UC) is any

subset of ϕ that is unsatisfiable. The decision problem corresponding to

finding the minimum UC is a Σ2-complete problem [40]. Finding a minimal

UC (a UC such that the removal of any one of its clauses makes the formula

satisfiable) is DP -complete [70]1. There are many works in the literature on

extracting minimum [40,52], minimal [28,39,53,69], or just small cores [36,98]

— see [66] for an extensive survey.

There are many uses to the core in SAT-based verification, typically re-

lated to abstraction or decomposition. In most cases, however, it is not the

core C itself that is being used, rather C is processed further in order to

check which Interesting Constraints participate in the proof, where which

constraints are interesting is given as input to the problem. Hence we can

assume that in addition to the formula we are given as input a set of sets

of clauses IC = {R1 . . . Rm}, where each Ri is a set of clauses that together

encode an interesting constraint. The goal is thus to minimize the number of

constraints in IC that have a non-empty intersection with C. This problem

was first mentioned in [53] and recently coined the high-level minimal unsat-

isfiable core problem by Nadel [66], who observed that in his experiments

with industrial problems the number of clauses that belong to interesting

constraints is on average about 5% of the clause database. In fact in the

verification group in Intel high-level cores are the only type of cores that are

being computed, and we are not aware of any use of the general core in the

EDA industry.

Two prominent examples of such techniques that are used in Intel and

are described in more detail in the above reference are:

• A popular abstraction-refinement model-checking is based on iterating

between a complete model checker and a SAT-based bounded model

checker [41, 61]. The model checker takes an abstract model, in which

some of the state variables are replaced with inputs, and either proves

1DP is the class containing all languages that can be considered as the difference
between two languages in NP, or equivalently, the intersection of a language in NP with a
language in co-NP.

77

the property or returns the depth in which it found a counterexample.

In the latter case, this depth is used in a bounded-model checking run

over the concrete model, which may either terminate with a concrete

counterexample, or with an unsat answer. In the latter case SAT’s

capability to identify an unsatisfiable core is used for identifying those

state variables that are sufficient for proving that there is no coun-

terexample at that depth. All the clauses that contain a given state

variable (in any time-frame) constitute a constraint in IC. Those state

variables that participate in the proof define the next abstract model

(these are the state variables that are not replaced by inputs), which

is a refinement of the previous one. The process then reiterates until

either the model checker is able to prove the property or the SAT solver

finds a concrete counterexample.

• In formal equivalence verification (see, e.g., [47]), two similar circuits

are verified to be functionally equivalent. This is done by decomposing

the two circuits to ‘slices’ which are pair-wise verified for equivalence.

The equivalence of each such pair is verified against various assumptions

on the environment. In other words, rather than integrating a model

of the environment with the equivalence verification condition, various

properties of the environment are assumed, and added as constraints on

the inputs of that condition. Then, if the equivalence is proven, it is still

necessary to verify that the assumptions are indeed maintained by the

environment. Each assumption is modeled with a set of clauses. The

unsatisfiable core obtained when checking the equivalence is analyzed in

order to find those assumptions that were used in the proof. Hence, here

each constraint in IC is a set of clauses that encode an environment

assumption. Here too the verification process attempts to minimize

the high-level core in order to minimize the number of environment

assumptions that should be verified.

We will address the question of how to minimize the core in the next sec-

tion. A problem which is mostly orthogonal to minimization is how to make

the SAT solver emit a core once it determines that a formula is unsatisfiable.

There are two well-known approaches to solve this problem:

78

• Resolution-based. The first approach is based on the ability of many

modern SAT solvers to produce a resolution proof in case the formula is

unsatisfiable. The solver traverses the proof backwards from the empty

clause, and reports the clauses at the leaves as the core [37, 98]. This

core is then intersected with the sets of clauses in IC in order to find

a high-level core.

• Assumptions-based. A second approach is based on the assump-

tions technique, which was first implemented in an early version of

Minisat [32]. Assumptions are literals that are assigned true (as de-

cisions) before any other decision. If constraint propagation leads to

flipping the assignment of one of the assumptions to false, it means

that with these assumptions the formula is unsatisfiable. Minisat is

capable of identifying which assumptions led to this conflict, which is

exactly what is needed for extracting a high-level core. This can be

done with clause selectors as follows: Let Ri be constraint in IC and

let {c1, . . . , cn} be the clauses that encode it. To each clause in this set

we add the literal ¬li, where li is a new variable. Then we add li to the

set of assumptions. Hence setting li to true activates this constraint,

and setting it to false deactivates it.

The process of extracting the set of assumptions that led to a conflict

is computationally easy. Let C be the clause that forces an assumption

to its opposite value. Minisat resolves C with all its predecessors in the

implication graph until a clause is generated which contains only nega-

tion of assumption literals. The negation of this clause is a conjunction

of the assumptions that led to the conflict, also known as the relevant

assumptions. The relevant assumptions constitute a high-level core.

The assumptions technique generates larger conflict clauses owing to the

new selector variables, which may become significant if there are many as-

sumptions [2, 66]. The alternative of activating and deactivating constraints

with unit clauses is more economic, as it simplifies and removes clauses. On

the other hand, the assumptions technique does not consume memory for

saving the proof, nor does it consume time to extract the core. Another dif-

ference between these two approaches, which turns out to be very important

79

in our context, is related to clause minimization [7,87], which is a technique

for shrinking conflict clauses. Whereas in resolution-based core extraction

minimization of a clause may pull into the proof additional constraints, this

does not happen in the assumptions-based approach. We will describe this

issue in more detail in Section 6.4. The experiments in [66] showed that

the assumptions-based method is on average faster than the resolution-based

method, and produces slightly smaller cores. In the experiments we con-

ducted (on a larger set of benchmarks) we witnessed similar results.

In this article we study seven improvements to the resolution-based high-

level MUC problem. With these techniques, which we implemented on top of

MiniSat-2.2 and ran over hundreds of industrial examples from Intel, we are

able to show a 55% reduction in run time comparing to the techniques in [66],

and a 28% improvement comparing to the assumptions-based technique. The

configuration that achieves these improvements also reduces the core by 73%

and 57%, respectively. More details on our experiments can be found in

Section 6.4.

Since we take [66] as the starting point of our optimizations, we begin in

the next section by describing it in some detail.

6.2 Resolution-based high-level core minimiza-

tion

The improvements we consider are relevant to resolution-based core extrac-

tion. We implemented inside Minisat 2.2 a rather standard mechanism for

maintaining the resolution DAG. The resolution information is kept in a

separate database, which we will call here the resolution table. This table

maintains the indices of the parents and children of each derived clause. On

top of this we implemented the reference counter technique of Shacham et

al. [80]. In this technique every conflict clause has a counter, which is in-

creased every time it resolves a new clause, and decreased when a child clause

is erased. Once the counter of a clause is 0, it does not need to be maintained

any longer for the purpose of later retrieving the resolution DAG. In the ex-

periments that were reported in [80], this optimization led to a reduction by

80

a factor of 3 to 6 in the size of the resolution table.

The unsatisfiable core is retrieved as usual by backward traversal from

the empty clause to the roots. But since we are interested in minimizing

the core, the story does not end here. We implemented the high-level core

minimization algorithm of [66], which appears in Pseudo-code in Alg. 11. The

input to this algorithm is a set of interesting constraints IC = {R1 . . . Rm},

each of which is a set (or a conjunction, depending on the context) of clauses,

and a formula Ω, which is called the remainder. The formula Ψ =
∧m

j=1Rj∧Ω

is assumed to be unsatisfiable, and the proof is available at the beginning of

the algorithm. We denote the initial core by initial core. The output of the

algorithm is a high-level minimal unsatisfiable core with respect to IC and

Ω, i.e., a subset IC ′ ⊆ IC such that Ψ′ =
∧

Rj∈IC′ Rj ∧ Ω is unsatisfiable,

and no constraint can be removed of IC ′ without making Ψ′ satisfiable.

The algorithm is rather self-explanatory, so we will be brief in describing

it. In line 1 any constraint Ri that none of its clauses participated in the

proof is removed together with its cone, i.e., all the clauses that were derived

(transitively) from Ri clauses. The next line defines the set of candidate

indices for the core, which is initiated to the indices of the constraints in

IC that were not removed in the previous step. From here on the algorithm

attempts to remove elements of this set. In each iteration of the loop, it

removes a constraint Rk together with its cone and checks for satisfiability.

If the formula is satisfiable, then Rk with its cone is returned to the formula,

and Rk is added to the solution setmuc. Otherwise, the unsatisfiability proof

is checked in order to remove any constraint Ri, together with its cone, that

did not participate in the proof.

It is interesting to note that this algorithm is tailored for high-level core

minimization, and not for general core minimization. The difference is evi-

dent by observing that the whole set of clauses associated with a constraint

Ri is removed, together with their joint core. Had the object of minimiza-

tion been the whole core, we would rather remove all clauses that did not

participate in the proof, even if other clauses that share the same constraint

do participate in the proof. For example, if Ri = {c1, c2}, and only c1 partic-

ipate in the proof, Alg. 11 retains both c1 and c2, because removing c2 does

not reduce the size of the high-level core, whereas it may assist in consec-

81

Algorithm 11 Resolution-based high-level MUC extraction (Based on Alg.
2 in [66])

Input: Unsatisfiable formula of the form Ψ =
∧

Rj∈IC
Rj ∧ Ω.

Output: A high-level MUC with respect to IC and Ω.

1: Remove any Ri together with its cone if it is not reachable from the empty
clause;

2: muc cands := {Ri | Ri ∩ initial core 6= ∅}; ⊲ MUC Candidates
3: muc := {};
4: while muc cands is non-empty do
5: Rk := a member of muc cands;
6: Check satisfiability of the formula without Rk and its cone;
7: if satisfiable then
8: return Rk and its cone to the formula;
9: muc := muc ∪ {Rk};

10: else
11: for Ri ∈ muc cands do
12: if Ri ∩ core = ∅ then ⊲ core is the unsat core of the proof
13: Remove Ri and its cone;
14: muc cands := muc cands \ {Ri};

15: return muc;

82

utive iterations. Furthermore, retaining c2 is needed in order to guarantee

minimality. Without it we may miss the fact that some other constraint can

be removed.

6.3 Optimizations

In this section we describe seven low-level optimizations to the basic algo-

rithm that was presented in the previous section. We will use the following

terminology: a clause is an IC-clause if it either belongs to one of the ini-

tial constraints in IC or is a descendant of such a clause in the resolution

DAG. Other clauses are called remainder clauses. We say that a literal is

IC-implied if it is implied by an IC-clause or just implied otherwise.

A: Maintaining partial resolution proofs.

In this optimization we maintain only clauses in the cone of IC-clauses in

the resolution table, and the links between them. That is, we save an IC-

clause, and the parents and children that are also IC-clauses. Comparing to

full resolution, this reduces the amount of memory required by more than an

order of magnitude in most cases, reduces the amount of time that it takes

to find clauses that are in the cone of an IC (recall that in line 13 of Alg. 11

IC-clauses are removed together with their cones), and, more importantly,

allows to activate a certain simplification (see below) for remainder clauses,

which is normally turned off when running Alg. 11.

The simplification in point is applied in decision level 0, owing to con-

stants. If the clause database includes a unit clause, e.g., (x), then many

solvers would remove those clauses that contain x, and remove ¬x from all

other clauses, at decision level 0 (MiniSat is a little different in this respect:

it does not remove ¬x from existing clauses once x is learned, but rather

it does not add ¬x to new learned clauses). This simple, yet powerful sim-

plification has to be turned off when running Alg. 11. For example, if (x)

is an IC-clause associated with constraint R1, then we cannot just remove

clauses with x from the formula, since we might decide at line 13 to remove

R1, which will force us to retrieve these clauses. Empirically it is better to

83

retain such clauses rather than keeping them in a file and then retrieving

them. The same issue occurs when removing the negation of x from clauses:

here too, we will need to retrieve the original clauses once R1 is removed.

One of the advantages of this optimization, therefore, is that we can turn

back on this simplification for the remainder clauses.

B: Selective clause minimization.

Clause minimization [7,87] is a technique for shrinking conflict clauses. Once

a clause is learnt, each of its literals is tested: if it implies other literals in

the clause, it can be removed.

Example 6.3.1 Consider the following clauses:

C1 = (¬v1 ∨ v2) C2 = (¬v2 ∨ v3)

C3 = (¬v4 ∨ v5) C4 = (¬v5 ∨ v6)

C5 = (¬v1 ∨ ¬v3 ∨ ¬v4 ∨ ¬v6)

Suppose that the first decision is v1. This decision implies v2 (from C1)

and v3 (from C2). Suppose now that the next decision is v4. This decision

implies v5 (from C3) and v6 (from C4) and a conflict in clause C5. Conflict

analysis based on 1-UIP returns in this case a new clause C = (¬v1 ∨ ¬v3 ∨

¬v4). From C1 and C2 we can see that v1 → v3, or equivalently ¬v3 → ¬v1,

which is an implication between literals in C. Clause minimization will find

this implication by following the resolution DAG and remove ¬v3.

We will not present the full algorithm for clause minimization here, but

rather only mention that it is based on traversing the resolution DAG back-

ward from each literal l in the learned clause. The hope is to hit a ‘frontier’

of other literals from the same clause that by themselves imply l. If in this

process we hit a decision variable, it means that l cannot be removed.

Example 6.3.2 Continuing the previous example, the algorithm scans each

non-decision literal in C. Consider v3: this literal was implied in C2, and

hence we progress to look at the other literal in that clause, namely v2. This

literal was implied by C1 and hence we look at v1. But since v1 ∈ C, it

84

means that we found an implication within C, and hence ¬v3 can be removed.

Note that the minimized clause can be resolved from the original one and the

clauses that are traversed in the process. In this case Res(C,Res(C1, C2)) =

(¬v1 ∨ ¬v4).

The problem with clause minimization in our context is that it may turn

a non-IC-clause C into a shorter IC-clause C ′. This can happen if the

minimization process uses an IC-clause: in that case C ′ has to be marked

as an IC-clause as well. Furthermore, it can turn an IC-clause C that

depends on a certain set of interesting constraints, into a shorter IC-clause

that depends on more such constraints. This means that if that clause will

participate in the proof, it will ‘pull-in’ more constraints into the core.

Our suggested optimization is to cancel clause minimization in any case

that an IC-clause is involved. In other words, we prefer a large clause that

depends on a few constraints, over a smaller one with more such dependen-

cies. The latter may pull more constraints into the proof, and lead to other

such clauses. We aspire, instead, to keep the resolution table as small as pos-

sible and with the fewest connections to IC-constraints. Ideally we should

check whether using a certain IC-clause in the minimization process indeed

adds dependencies, but this is simply too expensive: for this we would need

to traverse the DAG backwards all the way to the roots in order to check

which constraints are involved.

It is interesting to analyze the behavior of the assumptions-based method

with respect to clause minimization. It turns out that it solves this problem

for free, and hence in this respect it is a superior method. In fact from ana-

lyzing various cases in which it performs much better than the clause-based

method (before the optimizations suggested here were added), we realized

that this is the main cause for the difference in run-time, rather than the

facts mentioned in the introduction (the fact that it does not need to save

the resolution table, nor to extract the core in the end of each iteration).

How does it solve this problem for free? Observe that with this technique

all IC-clauses have as literals all the selector variables that correspond to

constraints that were used in deriving that clause. For example, let R1, R2

be two constraints with associated selector variables l1, l2 respectively. If R1

and R2 participate in inferring C, then C must contain ¬l1 and ¬l2. This is

85

implied by the fact that selector variables appear only in one phase in the

formula, and hence cannot be resolved away. Hence the presence of these

literals in IC-clauses is an invariant. If we falsely assume that a minimized

clause C can increase its dependency on constraints, we immediately reach

a contradiction: the supposedly added constraint implies that a new selector

variable was added to C, which contradicts the fact that literals are only

removed from C in the minimization process.

C: Postponed propagation over IC-clauses.

In this optimization we control the BCP order. We first run BCP over non-

IC-clauses until completion. If there is no conflict, we propagate a single

implication due to an IC-clause, and run regular BCP again. We repeat

this process until no more propagations are possible or reaching a conflict.

The idea behind this optimization is to increase the chances of learning a

remainder clause rather than an IC-clause.

D: Reclassifying IC-clauses.

When we discover that some IC-constraint R must be in the MUC (line 8 in

Alg. 11), we add its clauses back as remainder clauses, together with all the

clauses in its cone that do not depend on other constraints. To identify this

set of constraints, we employ an algorithm in the style of a least-fix-point

computation. We insert all the R clauses into a set S. Then we add all

the children of those clauses that all their parents are in S. We repeat this

process until reaching a fix-point.

Without this optimization R’s clauses are added back as is, with their

marking as IC-clauses. By adding them back as remainder clauses, we enable

more simplifications, as described in the case of optimization A.

E: Selective learning of IC-clauses.

When detecting a conflict, the learned clause may be an IC-clause. If all else

is equal, such a clause is less preferable than a remainder clause, as it may

increase the high-level core, in addition to the fact that it leads to a larger

86

resolution table and hence longer run times. We found that learning a non-

asserting remainder clause instead, combined with partial restart, improves

the overall performance. The learning of the remainder clause is essential

for termination, and also turns out to decrease run time. The alternative

remainder clause that we learn is even closer to the conflict than the first UIP.

We can learn it only if the conflicting clause is not an IC-clause; in other

cases we simply revert to learning the IC-clause. Learning the remainder

clause is done by reanalyzing the conflict graph as if the IC-implications were

decisions. This optimization is only ran in conjunction with optimizations

B and C above, for reasons that we will soon clarify. Alg. 12 describes the

procedure for learning this clause.

Algorithm 12 An algorithm that attempts to find a remainder conflict
clause by reanalyzing the conflict graph as if the IC-implications were deci-
sions. Returns a remainder clause if one can be found, and NULL otherwise.

function Get Remainder Clause

1. If the conflicting clause is an IC-clause then return NULL.

2. Search an IC-implied literal l in the trail, starting from the latest
implied literal and ending just before the 1-UIP literal.

3. Convert the implication of l into a decision, and update accordingly
the decision level of all implied literals in the trail that come after it.

4. Call Analyze Conflict() with the same conflicting clause, but while
referring to the new decision levels. Let C be the resulting conflict
clause.

5. Return C.

Note that the fact that we use this algorithm only when optimization C is

active, guarantees that the literals searched and updated in steps 2 and 3 are

implied by l, i.e., the fact that BCP was ran to completion on non-IC-clauses

before asserting l, guarantees that the rest of the implications at that decision

level depend on asserting l. Also note that the clause learnt in step 4 is

necessarily a remainder clause because Analyze Conflict() cannot cross

87

an IC-implied literal (such implications were made into decisions), and that

it corresponds to a cut in the implication graph to the right of the first UIP.

The reason we activate this optimization in conjunction with optimization B,

is that we want to refrain from a case in which we learn a remainder clause,

but it then turns into an IC-clause owing to clause minimization. This is

not essential for correctness, however: we could also have just compared this

smaller IC-clause to the original one and choose between the two, but our

experience is that it is better to give priority to minimizing the number of

IC-clauses. Finally, note that there is no reason to revert the changes made

to the trail, because backtracking removes this part of the trail anyway.

Example 6.3.3 Figure 6.1 presents an implication graph, where IC-implications

are marked with dashed edges. The marked 1-UIP cut in the top drawing is

calculated while considering such implications as any other implication. The

suggested heuristic is to learn instead a normal clause, by considering such

implications as new decisions, as depicted in the bottom drawing.

As mentioned earlier, learning the alternative clause is combined with

a partial restart. Let dl be the level to which we would have jumped had

we learned the IC-clause. We backtrack to dl, but at this point nothing

is asserted because we did not learn an asserting clause. We then move to

the next decision level, dl + 1, and decide the negation of the original 1-

UIP literal. Hence instead of learning an asserting clause and implying the

negation of the 1-UIP literal, we refrain from learning that clause and decide

on the same value. This assignment in neither necessary or sufficient for

preventing the same conflict to occur. What prevents us from entering an

infinite loop in the absence of standard learning is the fact that we learn at

least one clause between such partial restarts. Since the solver cannot enter

a conflict state that leads to learning an existing clause, we are guaranteed

not to enter an infinite loop.

Example 6.3.4 Referring again to the conflict graphs in Example 6.3.3, our

solver backtracks to the end of level 3 — the same level we would have jumped

with the original IC-clause — progress to level 4 and decides ¬l1.

88

In our experiments we also tried other decisions (such as ¬l2 in the example

above), but ¬l1 seems to work better in practice. We also tried different

strategies of updating the scores. The best strategy we found in our experi-

ments is to update the score according to both the original and the alternative

clause.

F: Selective Chronological backtracking.

Recall that optimization E involves a partial restart when learning an IC-

clause. Different heuristics can be applied in order to choose the backtracking

level. Our experiments show that if we only backtrack one level, rather

than to the original backtrack level as explained above, the results improve

significantly. The complete set of data, available from [75], shows that this

heuristic improves the run time in most instances, and that it improves the

search itself and not only reduces constants, as is evident by the fact that it

reduces the number of conflicts. It seems that the reason for the success of

this heuristic is related to the fact that with normal backtracking and score

scheme we may lose the connection to the clause that we actually learn, i.e.,

the scores might divert the search from a space which is more relevant to the

alternative clause that we learn.

G: A removal strategy.

Recall that in line 5 of Alg. 11 constraints are removed in an arbitrary order.

We suggest a simple greedy heuristic instead: remove the constraint that

contributed the largest number of clauses to the proof. This heuristic, as

will be evident in the next section, reduces the size of the resulting core but

slightly increases run time.

We also experimented with a heuristic by which we remove the constraint

with the least number of clauses in the proof, speculating that this leaves

more clauses in the formula and hence increases the chance that there will

be a proof without this constraint. This option also improves performance

comparing to the arbitrary order with which we started, but is not as good

as the one suggested above. There is an indirect cause behind this difference:

the large constraints (i.e., those that have many clauses) are typically neces-

89

@8

@8

@8

@8

@8

@8

@8

@8

@8

@8

@3@3

@2

@2

×
c

c

l2l1

@9

@9

@8

@9

@8

@8

@8

@8

@8

@8

@3@3

@2

@2

×
c

c

l1 l2

Figure 6.1: In these conflict graphs, dashed arrows denote IC-implications,
and the dotted lines denote 1-UIP cuts. In the top drawing, where such
implications are referred to as any other implications, the learned 1-UIP
clause must be marked as an IC-clause, since it is resolved from the IC-
clause c. We can learn instead a normal clause by taking, for example, the
1-UIP clause in the bottom conflict graph. In that graph, c’s implication are
considered as decisions, which changes the decision levels labeling the nodes.

90

sary for the proof regardless of the other constraints, and hence the faster we

make them remainder constraints – with optimization D – the faster the rest

of the solution process is. This, in turn, affects the size of the core because

it leads to less time-outs. As we will explain in the next section, the result

of the algorithm when interrupted by a time-out is the last computed core,

or, in case that even the first iteration does not terminate, the entire set of

IC-clauses.

6.4 Experimental results

As was mentioned earlier, as a starting point we implemented the algorithm

from Section 6.2 in Minisat 2.2, and reduced the amount of required data in

the resolution table by using the reference-counter technique of [80]. On top

of this we implemented the optimizations that were described in the previous

section, and ran all possible combinations (excluding the restrictions men-

tioned in optimization E), on the set used in [66] (family ‘lat-fmcad10’ in the

tables below), and additional nine families of harder abstraction-refinement

benchmarks from Intel. We removed from the benchmark set instances that

could not be solved by any of the configurations in the given time-out of one

hour. This left us with 144 benchmarks, all of which are from the two appli-

cation domains that were described in the introduction. This set constitute

Intel’s contribution to the benchmarks repository that will be used in the

upcoming SAT competition dedicated to this problem. The average number

of clauses per instance is 2,572,270; the average number of constraints per

instance is 3804; and, finally, the average number of interesting clauses per

instance is 96568 (25.3 clauses per constraint), which is approximately 6%

of the clauses. All experiments were ran on Intel R© Xeon R© machines with

4Ghz CPU frequency and 32Gb of memory.

Table 6.1 shows run time results for selected configurations.2 The sec-

ond column (“Full”) refers to our starting point as explained above. One

may observe that the best result is achieved when combining the first six

optimizations, whereas the seventh slightly increases the overall run-time.

2The full set of results can be downloaded from [75].

91

We also compared our results to assumptions-based minimization. We

tried both a simple scheme, and the improvement suggested in [66]. In the

simple scheme, a constraint is added to the MUC (line 8 in Alg.11) by set-

ting its associated selector variable to true; In the improved method the

same effect is achieved by adding a unit clause asserting this literal to true.

Similarly, in the simple scheme an environment assumption is removed from

the formula (line 13 in Alg.11) by setting its associated selector to false;

In the improved method the same effect is achieved by adding a unit clause

asserting this literal to false. The improved method is better empirically

apparently because the unit clause invokes a simplification step in decision

level 0, which removes the selector variable and erases some clauses. The

results we witnessed with the two methods appear in the last two columns

of the table. Overall the combination of optimizations achieve a reduction

of 55% in run time comparing to our starting point, and a reduction of 28%

comparing to the assumptions-based method.

All the presented methods can be affected by the order in which con-

straints are removed in line 5. We therefore tried three different arbitrary

removal orders in each case. Empirically this hardly had an effect on the aver-

age run-time when using the resolution-based methods, whereas it had some

effect when using the assumption-based methods. The table below represents

the best overall run times among the different orders we tried (i.e., we present

the results that together have the minimum run-time). Regarding the size

of the resulting core, the different arbitrary orders had inconsistent effect, as

expected, but the order referred to in optimization G had a non-negligible

positive effect on the size of the core, as will be shown momentarily.

Next, we consider the size of the resulting high-level MUC. The config-

uration that achieves the best run-time (A–F) achieves the second smallest

high-level core, whereas the second best configuration in terms of run time

(A–G) achieves the smallest core. If a solver timed-out in our experiments,

we considered its latest computed core, i.e., the set muc ∪muc cands. If a

solver did not finish even the first iteration, then we considered the entire

set of clauses in IC as its achieved core. This policy, which reflects the way

such cores are used, explains the different results of strategies that are sup-

posed to be equivalent with respect to the size of the core. For example, the

92

Benchmark Resolution-based Assumption-based
family Full A AB ABC ABCE A–E A–F A–G units
latch1 2001 1604 660 465 570 575 425 423 819 798
gate1 3747 1403 705 636 620 579 490 477 856 855
latch2 9113 5915 6636 6116 5685 5656 2424 2370 8153 8043
latch3 348 293 274 274 283 275 262 200 236 236
latch4 769 529 506 457 467 455 443 379 504 521
latch5 1103 820 735 657 678 630 632 625 747 689
lat-fmcad10 785 457 445 451 435 435 400 394 417 425
latch6 8868 5456 5329 5188 5007 5006 4948 4943 5322 5279
latch7 9956 7050 5719 5244 5094 5096 5302 5286 5688 5652
latch8 8223 7946 5673 6133 5459 5420 5127 5587 8004 5534
Total 44913 31473 26682 25621 24298 24127 20453 20684 30746 28032

Table 6.1: Summary of run-time results by family (144 instances all together).

Benchmark Resolution-based Assumption-based
family Full A AB ABC ABCE A–E A-F A-G units
latch1 41 41 41 41 42 42 41 42 52 45
gate1 1143 1210 1089 568 1029 1029 870 901 618 1192
latch2 5887 2851 127 3040 2851 2851 131 129 3782 4165
latch3 168 202 202 199 211 211 208 123 140 132
latch4 236 237 248 236 238 238 237 162 177 217
latch5 224 266 266 206 206 206 220 222 222 223
lat-fmcad10 577 456 456 489 540 540 453 454 457 450
latch6 2550 2502 2502 2490 2490 2490 2480 2480 2463 2502
latch7 2578 322 585 253 154 154 211 204 304 287
latch8 5591 615 2867 393 344 344 371 373 2887 2877
TO 8 5 3 3 2 2 2 2 6 5
Total 18995 8702 8383 7915 8105 8105 5222 5090 11102 12090

Table 6.2: Summary of the size of the high-level core by family. The ‘TO’
row indicates the number of time-outs.

partial-resolution proof optimization (A) does not remove more clauses than

‘Full’, but since the latter is generally slower, it times-out more times and

hence its core count is larger. The ‘TO’ row contains the number of such

time-outs with each configuration.

A comparison to MUC solvers We also experimented with Minimal

Unsatisfiable Core (MUC) solvers, by counting those interesting constraints

that are used in the core that they find. Our experiments with five recent

solvers (AOMUS, sat4j, zchaff, mucsat, and PicoMUS-936) show that Pico-

MUS is the best among them. Yet it times-out 70 times and has a total

run-time of 296151 seconds with our benchmarks – more than an order of

magnitude slower than our solver. However, note that this is a comparison

of tools, not of techniques.

93

6.5 Summary and future work

The recently introduced problem of finding a high-level minimal unsatisfiable

core has various applications in the industry. Until [66] the standard practice

was to minimize the core itself, and only then to find the interesting part of it.

Our experiments show that this approach cannot compete with a solver that

focuses on the high-level core. In this article we introduced seven techniques

that reduce both the run time and the resulting high-level core.

A straight-forward direction for future research is to migrate some of the

suggested optimizations to the assumptions-based approach. Related SAT

problems may also benefit from these methods. First - it is possible that gen-

eral SAT solving can be improved with some combination of optimizations E

and F. Second, the same techniques can potentially expedite other methods

in which the SAT component needs to extract only partial information from

the resolution proof, like interpolation-based model checking [60]. In inter-

polation only a small part of the proof is necessary in order to generate the

interpolant, and we want to explore possibilities to minimize that part and

decrease the overall run time with variants of the methods suggested here.

94

Chapter 7

Efficient MUS Extraction with

Resolution

Alexander Nadel1, Vadim Ryvchin1,2 and Ofer Strichman2

1 Intel Corporation, P.O. Box 1659, Haifa 31015 Israel
2 Information Systems Engineering, IE, Technion, Haifa,

Israel

95

Abstract

We report advances in state-of-the-art algorithms for the problem of Minimal

Unsatisfiable Subformula (MUS) extraction. First, we demonstrate how to

apply techniques used in the past to speed up resolution-based Group MUS

extraction to plain MUS extraction. Second, we show that model rotation,

presented in the context of assumption-based MUS extraction, can also be

used with resolution-based MUS extraction. Third, we introduce an improve-

ment to rotation, called eager rotation. Finally, we propose a new technique

for speeding-up resolution-based MUS extraction, called path strengthening.

We integrated the above techniques into the publicly available resolution-

based MUS extractor Haifa-MUC, which, as a result, now outperforms

leading MUS extractors.

96

7.1 Introduction

Given an unsatisfiable formula in Conjunctive Normal Form (CNF), an Un-

satisfiable Subformula (or Unsatisfiable Core; hereafter, US) is an unsatisfi-

able subset of its clauses. A Minimal Unsatisfiable Subformula (MUS) is a

US such that removal of any of its clauses renders it satisfiable. The problem

of finding a MUS is an active area of research [53,66,78,82,83, 94].

The basic algorithm used in modern MUS extractors such asMUSer2 [11]

and Haifa-MUC [78] is as follows. In the initial approximation stage the

algorithm finds a not-necessarily-minimal US S with one or more invocations

of a SAT solver [37,98]. It then applies the following deletion-based iterative

process over S’s clauses until S becomes a MUS. Each iteration removes a

candidate clause c from S and invokes a SAT solver. If the resulting formula

is satisfiable, c must belong to the MUS, so c is returned to S and marked

as necessary. Otherwise c is removed from S. In addition, the following two

optimizations are commonly applied. First, incremental SAT solving [33,88]

is used across all SAT invocations. Second, when a clause c is found to be

not necessary, one can remove from S not only c, but all the clauses (if any)

omitted from the new core found by the SAT solver. This latter technique

is called clause set refinement in [53]. The algorithm we have described up

to here was introduced in [28] and improved in [66], while the idea of re-

moving constraints one by one in order to get a minimally infeasible set can

be traced back to [6, 23]. See [66] for a more detailed presentation of the

algorithm and [82] for an overview of various approaches to MUS extraction.

It was demonstrated in [66] that the approach we have described can be

implemented using either a resolution-based or an assumption-based algo-

rithm. The former relies on the resolution proof maintained by the SAT

solver for detecting the core at each step, while the latter adds a new as-

sumption literal to each clause and detects the core using these assumptions.

It was shown in [66] that the resolution-based approach to MUS extraction is

faster than the assumption-based approach mainly because of the overhead

of maintaining assumption literals.

Various applications require finding a MUS with respect to user-given

groups of clauses [53,66], called interesting constraints, while clauses that do

97

not belong to any interesting constraint are called the remainder. The re-

sulting problem is called Group MUS (GMUS) extraction (or high-level MUS

extraction). It was shown in [66] that the approach we described for plain

MUS extraction can be applied to GMUS extraction as well. Furthermore,

it was shown in [78] that the resolution-based approach to GMUS extraction

can be improved considerably by directing the search to ignore the interest-

ing constraints and to use the remainder and the necessary clauses instead

whenever possible. We call the techniques of [78] MUS-biased search.

The first contribution of this paper is in showing that MUS-biased search

can be applied to plain MUS extraction. The key observation is that while

there are no remainder clauses in plain MUS extraction, necessary clauses

can still be used for MUS-biased search after the approximation stage.

A recent essential enhancement to the plain MUS extraction algorithm

we have described is model rotation (or, simply, rotation) [10, 53, 83]. Ro-

tation was proposed in the context of assumption-based MUS extraction.

After implementing rotation, the resulting assumption-based MUS extractor

MUSer2 outperformed the state-of-the-art resolution-based MUS extractor

Haifa-MUC. It is sometimes postulated that rotation gives the assumption-

based approach an edge over the resolution-based approach (cf. [94]).

The second contribution of this paper is thus in showing that model

rotation can be integrated into the resolution-based approach. The paper’s

third contribution is an improvement to model rotation, called eager rotation,

detailed in Section 7.2.2.

The fourth contribution of our paper is called path strengthening. It is

a generalization of a technique proposed in [89] and later called redundancy

removal in [53] and implemented in MUSer2 [11]. Redundancy removal

adds the literals of ¬c (where c is the candidate clause) as assumptions when

checking the satisfiability of S\c, because since S is known to be unsatisfiable,

then S\c and (S\c)∧¬c are equisatisfiable. Path strengthening, on the other

hand, adds as assumptions the literals of ¬c,¬c1, . . . ,¬cm for some m ≥ 0,

where the sequence of clauses c, c1, . . . , cm constitutes the longest common

prefix of all paths in the resolution proof from c to the empty clause. Further

details about path strengthening are provided in Section 7.2.3.

We integrated our algorithms into the resolution-based MUS extractor

98

Haifa-MUC. We show in Section 7.3 that, as a result, Haifa-MUC now

outperforms the leading MUS extractors MUSer2 and Minisatabb [51].

Minisatabb improves MUSer2 considerably based on the idea of replacing

blocks of assumptions with new variables [51].

7.2 The Algorithms

7.2.1 MUS-Biased Search

We will now describe how we adapted optimizations A-D of the GMUS-

oriented techniques proposed in [78] to plain MUS extraction (we also tried

adapting optimizations E-G [78], but their impact on plain MUS extraction

was negligible). We denote the set of necessary input clauses by M . We call

an input clause c interesting if it belongs to S \M (i.e., c can still serve as

a candidate). A learned clause is marked as interesting if it is derived using

at least one interesting clause; otherwise it is marked as necessary. If an

interesting learned clause participates in the proof, then the core includes its

interesting roots; this is undesirable since we are trying to minimize the core.

Most of our techniques are therefore targeted at biasing the solver towards

learning necessary rather than interesting clauses. This is the reason that we

call them, jointly, MUS-biased search. An exception is the first optimization

below, which is focused on reducing the amount of memory used to store the

proof.

A. Maintain partial resolution proofs. There is no need to store in the

proof any clauses identified as necessary, since the algorithm does not

need to work with these clauses explicitly anymore. Hence, we discard

from the proof all the clauses that emanate exclusively from M .

B. Perform selective clause minimization. Clause minimization [87] is a

technique for shrinking conflict clauses. Specifically, if a conflict clause

c contains two literals l1, l2 such that l1 =⇒ l2 because of the rest of

the formula, then l2 can be removed from c. The disadvantage of this

technique in our context is that it may reclassify c from ‘necessary’

99

to ‘interesting’, if the implication l1 =⇒ l2 depends on an interest-

ing clause. This in turn may increase the size of the core later on as

explained above. Hence our optimization does not apply clause mini-

mization if it leads to such a reclassification. In other words we prefer

a longer conflict clause if this enables us to maintain its classification

as a necessary clause.

C. Postpone propagation over interesting clauses. Perform Boolean Con-

straint Propagation (BCP) on necessary clauses first, with the aim of

learning a necessary clause when possible.

D. Reclassify interesting clauses. When an interesting clause c becomes

necessary, look for any clauses in the resolution derivation that were

derived from c that also become necessary (that is, were derived solely

from necessary clauses) and reclassify them.

Note that while these optimizations improve GMUS extraction even dur-

ing the approximation stage owing to the availability of remainder clauses,

their impact on plain MUS extraction begins only during the minimiza-

tion stage, when there are enough necessary clauses (which, like remainder

clauses, must be in the proof). Indeed we demonstrate in Section 7.3 that

optimization B is not cost-effective before there is a significant number of

necessary clauses, which is the reason that we invoke it starting from the 2nd

satisfiable iteration.

7.2.2 Eager Model Rotation

Model rotation can improve deletion-based MUS extraction by searching for

additional clauses that should be marked as necessary without an additional

SAT call. Suppose, for example, that for an unsatisfiable set S, S \ c is

satisfiable. Consequently c is marked as necessary. Let h be the satisfying

assignment. Note that h(c) =false, because otherwise h(S) would be true,

which contradicts S’s unsatisfiability. Now, suppose that an assignment h′

that is different than h in only one literal l ∈ c satisfies all the clauses in S

other than exactly one clause c′ ∈ S. Hence h′(S \ c′) = true, which means

that like c, c′ must also be in any unsatisfiable subset of S, and can therefore

100

be marked as necessary as well. Rotation flips the values of each of c’s literals

one at a time in search of such clauses. When one is found, rotation is called

recursively with c′. This algorithm is summarized in Alg. 13. We observe

that rotation, proposed in the context of assumption-based MUS extraction,

can be integrated into our resolution-based algorithm without any changes.

Alg. 14 shows ermr (Eager Recursive Model Rotation) – an improve-

ment to rotation that weakens rotation’s terminating condition. The reader

may benefit from first reading the main algorithm in Alg. 15, which calls

ermr. The only difference between ermr and rmr is that ermr may call

rotation with a clause that is already in M , the reason being that it can lead

to additional marked clauses owing to the fact that the call is with a different

assignment. Clearly there is a tradeoff between the time saved by detecting

more clauses for M and the time dedicated to the search. For example, one

may run rmr with more than one satisfying assignment as a starting point,

but this will require additional SAT calls to find extra satisfying assignments.

ermr refrains from additional SAT calls. Rather it changes the stopping cri-

terion: instead of stopping when c ∈ M (line 4 in Alg. 13), it stops when

c ∈ K, where K holds the clauses that were discovered in the current call

from MUS. There are other variations on weakening the terminating condi-

tion of rotation in the literature [53,94]. We leave to future study a detailed

comparison of our algorithm to these works.

7.2.3 Path Strengthening

Path strengthening relies on the following property, which we call cut fal-

sifiability (observed already in [28, 65]). Let S be an unsatisfiable formula,

π its resolution proof, and c a candidate clause. Let ρc be the subgraph of

π containing all the clauses that appear on at least one path from c to the

empty clause � (including c and �). Then, any model h to S \ {c} must

falsify at least one clause in any vertex cut of ρc (since otherwise a satisfiable

vertex cut in π would exist). An immediate corollary is that all the clauses

in some path from c to � must be falsified by any model h to S \ {c}.

We use this property as follows. Let P = [c0 = c, c1, . . . , cm] be a path

in the resolution proof starting from a candidate clause c. P is the longest

101

unique prefix if it is the longest path starting at c, such that each ci ∈ P has

only one child (that is, c participates in the derivation of one clause only).

Path strengthening is based on the following property, induced by cut fal-

sifiability: all the clauses of P must be falsified in any model h to S \ {c}.

Alg. 16 shows a variant of the main algorithm in which path strengthening

has been applied: each invocation of the SAT solver is carried out under

the assumptions ¬P = {¬c0, . . . ,¬cm}. Before each iteration our algorithm

attempts to increase P length by removing from the resolution proof clauses

that are not backward reachable from the empty clause. Note that whenever

P contains clauses which do not subsume c, path strengthening will pro-

vide more assumptions to the solver than redundancy removal; hence path

strengthening is expected to be more efficient than redundancy removal.

Cut falsifiability-based techniques are not immediately compliant with

clause set refinement, since clause set refinement requires solving without

assumptions. MUSer2 solves this problem for redundancy removal by ap-

plying clause set refinement only when the assumptions are not used in the

proof; otherwise it skips clause set refinement. Our path strengthening algo-

rithm applies clause set refinement when either the assumptions are not used

in the proof or whenever the N latest iterations applied path strengthening

and the result was unsatisfiable, N being a user-given threshold.

7.3 Experimental Results

We checked the impact of our algorithms when applied to the 295 instances

used for the MUS track of the SAT 2011 competition. For the experiments

we used machines with 32Gb of memory running Intelr Xeonr proces-

sors with 3Ghz CPU frequency. The time-out was set to 1800 sec. The

implementation was done in Haifa-MUC. We refer to a configuration of

Haifa-MUC that implements the deletion-based algorithm with incremen-

tal SAT and clause set refinement as Base. We compare our tool to the latest

version of MUSer2 [11] and Minisatabb [51]. Extended experimental data

is available from the second author’s home page.

Figure 7.1 summarizes the main results. Several observations are in or-

der: 1) rotation is very useful; 2) eager rotation is effective; 3) optimizations

102

A and D are useful, while optimization B is beneficial only if delayed un-

til the second satisfiable iteration (2 being the optimal value, based on ex-

periments); 4) path strengthening (with N=20, 20 being the optimal value

experimentally) is more beneficial than redundancy removal, and finally 5)

Haifa-MUC, enhanced by all our algorithms, is 2.18x faster than MUSer2

and solves 13 more instances, and is 48% faster than Minisatabb and solves

4 more instances. Haifa-MUC is faster than Minisatabb on 196 instances,

while Minisatabb is faster than Haifa-MUC on 15 instances. Figure 7.3

shows a cactus plot comparing Base, MUSer2, Minisatabb and the new

best configuration of Haifa-MUC, while Figure 7.2 compares Haifa-MUC

to Minisatabb.

7.4 Conclusion

We proposed a number of algorithms for speeding up MUS extraction. First,

we adapted GMUS-oriented MUS-biased search algorithms to plain MUS ex-

traction. Second, we integrated model rotation into resolution-based MUS

extraction. Third, we introduced an enhancement to rotation, called eager

rotation. Finally, we introduced a new enhancement, path strengthening,

to resolution-based MUS extraction. We implemented the algorithms in the

resolution-based MUS extractor Haifa-MUC, which, as a result, outper-

formed the leading MUS extractors MUSer2 and Minisatabb.

Algorithm 13 The recursive model rotation of [10], where UnsatSet(S, h′)
is the subset of S’s clauses that are unsatisfied by the assignment h′

1: function RMR(S,M, c, h) ⊲ recursive model rotation
2: for all x ∈ V ar(S) do
3: h′ = h[x← ¬x]; ⊲ swap assignment of x
4: if UnsatSet(S, h′) = {c′} and c′ 6∈M then
5: M =M ∪ {c′};
6: RMR (S,M, c′, h′);

103

Algorithm 14 ERMR our modified version of RMP. K is a set of clauses
that is initialized to c before calling ERMR. K ⊆ M is an invariant, and
hence ERMR is called at least as many times as RMR.

1: function ERMR(S,M,K, c, h) ⊲ Initially K = {c}
2: for all x ∈ V ar(S) do
3: h′ = h[x← ¬x];
4: if UnsatSet(S, h′) = {c′} and c′ 6∈ K then
5: K = K ∪ {c′};
6: if c′ 6∈M then M =M ∪ {c′};

7: ERMR (S,M,K, c′, h′);

Algorithm 15 Deletion-based MUS extraction enhanced by eager rotation
and clause set refinement, where h is the satisfying assignment, and core is
the unsatisfiable core

1: function MUS(unsatisfiable formula S)
2: M = ∅;
3: while true do
4: choose c ∈ S \M . If there is none, break;
5: if SAT(S \ {c}) then
6: K = {c};
7: M = ERMR (S, c,M,K, h)
8: else
9: S = core;

104

Algorithm 16 An improvement based on path strengthening. In line 7 the
literals defined by {¬ci | ci ∈ P} are assumptions.

1: function MUS(unsatisfiable formula S)
2: M = ∅;
3: while true do
4: choose c ∈ S \M . If there is none, break;
5: let P be the longest unique prefix
6: discard clauses not backward reachable from �

7: if SAT(S \ {c}, {¬ci | ci ∈ P}) then
8: K = {c}; M = ERMR (S, c,M,K, h)
9: else
10: if ¬P not used in proof then S = core;
11: else
12: S = S \ {c}
13: if condition then ⊲ Heuristic. See text
14: SAT (S); ⊲ guaranteed unsat
15: S = core;

Base rot erot erot AD erot ABDerot AB2D erot AB2CD
Time 93931 48018 44335 36295 37798 32968 32918
Unsolved 30 12 10 8 13 8 8

erot AB2CD rr erot AB2CD ps20MUSer2Minisatabb
Time 30800 27263 59502 40485
Unsolved 6 4 17 8

Figure 7.1: Total run-time in sec. and number of unsolved instances for
various solvers, when applied to the 295 instances from the 2011 MUS com-
petition, excluding 12 instances which were not solved by any of the solvers
(the time-out value of 1800 sec. was added to the run-time when a memory-
out occured). Base is defined in Section 7.3, rot = Base+rotation, erot
= Base+eager rotation. A, B, C, and D correspond to the optimizations
defined in Section 7.2.1. ‘2’ in AB2CD means that the optimization was
invoked after the 2nd satisfiable result. ‘rr’ refers to redundancy removal
combined with clause set refinement using MUSer2’s scheme, described in
Section 7.2.3. ‘ps20’ means that path strengthening with N = 20 was applied
as described in Section 7.2.3.

105

Figure 7.2: Direct comparison of the new best configuration of Haifa-MUC
erot AB2CD ps20 (X-Axis) and Minisatabb (Y-Axis).

106

Figure 7.3: Comparison of Base, MUSer2, Minisatabb, and the new best
configuration of Haifa-MUC erot AB2CD ps20. The graph shows the num-
ber of solved instances (X-Axis) per time-out in seconds (Y-Axis) for each
solver.

107

Chapter 8

Summary and Future Research

Most or even all competitive CDCL-based SAT solvers have a restart policy,

by which the solver is forced to backtrack to decision level 0 according to

some criterion. Although not a sophisticated technique, there is mounting

evidence that this technique has crucial impact on performance. The common

explanation is that restarts help the solver avoid spending too much time in

branches in which there is neither an easy-to-find satisfying assignment nor

opportunities for fast learning of strong clauses. All existing techniques rely

on a global criterion such as the number of conflicts learned as of the previous

restart, and differ in the method of calculating the threshold after which the

solver is forced to restart. This approach disregards, in some sense, the

original motivation of focusing on bad branches. It is possible that a restart

is activated right after going into a good branch, or that it spends all of its

time in a single bad branch. Our contribution in Chapter 2 is a novel restart

strategy which localize restarts, i.e., apply restarts according to measures

local to each branch. This adds a dimension to the restart policy, namely

the decision level in which the solver is currently in. Our experiments with

both Minisat and Eureka show that with certain parameters this improves the

run time by 15% - 30% on average (when applied to the 100 test benchmarks

of SAT-race06), and reduces the number of time-outs as can be seen on

Figure 2.1 and Figure 2.2. We also proposed a dynamic restart strategy that

is in general less successful than the local ones, but performed successfully on

unsatisfiable instances. It is interesting to check an additional SAT solver’s

108

parameters like conflicts per decisions or implications per decisions and their

effect on a solver’s performance. A combined restart strategy between [14]

and our local restart strategy can be a great direction for future research.

In Chapter 3 we presented an assignment stack shrinking technique that

is intended to speed up the performance of modern complete SAT solvers,

by making them more dynamic and local, and by enhancing the interrelation

of the assigned variables. Shrinking was shown to be efficient in the SAT04

competition. However, existing studies lack the details of the shrinking al-

gorithm. In addition, shrinkings performance was not tested in conjunction

with the most modern techniques. In Section 3.2 we have described in detail

different variations of the shrinking algorithm, including two new heuristics:

one based on variable activity order, and the second on decision levels in

clauses. We show that using shrinking is critical for solving well-known in-

dustrial benchmark families with the latest versions of Minisat as shown in

Table 3.2 and Eureka as shown in Table 3.1. We also demonstrated that

shrinking effects cannot be achieved by other modern algorithms. Shrink-

ing is proving to be a useful concept that can be enhanced independently of

the other components of SAT solvers, such as restart strategies or decision

heuristics. The use of shrinking technique in parallel SAT solving showed

great results in [95].

In the classical SAT interface, the solver receives one formula in CNF

and is required to decide whether it is satisfiable or unsatisfiable. However,

many practical applications [22, 33, 84, 88, 93] require solving a sequence of

related SAT formulas. To answer the needs of such applications, the interface

of modern SAT solvers since Minisat [32] enables incremental SAT solving

under assumptions. Such interface allows the user to invoke the solving pro-

cedure multiple times, where each invocation checks the satisfiability status

of the currently available set of clauses under an invocation-specific set of

assumptions (that is, literals that hold solely for that specific invocations).

The set of clauses can be extended, but not reduced, before each new invoca-

tion. Such interface allows one to handle a situation where a set of arbitrary

clauses must hold for only one specific invocation by updating each clause in

that set with a new selector variable and using the negation of that selector

variable as an assumption [33,69].

109

A näıve implementation of the incremental interface would invoke the

following simple algorithm for each invocation. It would create from scratch

and solve a formula containing all the available clauses and assumptions

modeled as unit clauses. The modern incremental SAT solving algorithm,

introduced in Minisat [32], uses a single SAT solver instance (invocation) to

solve the entire sequence of formulas, and models assumptions as first decision

variables. The main advantage of the described approach over the näıve one

is that it reuses all the relevant learnt information, including conflict clauses

and measures that guide decision, restart, and clause deletion heuristics. In

addition all the learned clauses are implied by the formula regardless of the

assumptions.

Independently of advances in incremental SAT solving, a breakthrough in

the non-incremental SAT solving’s efficiency was achieved with the SatELite [30]

preprocessor. Preprocessing of CNF formulas is an invaluable technique when

attempting to solve large formulas, such as those that model industrial ver-

ification problems. Unfortunately, the best combination of preprocessing

techniques, which involve variable elimination combined with subsumption,

is incompatible with incremental satisfiability. The reason is that sound-

ness is lost if a variable is eliminated and later reintroduced. Look-ahead is

a known technique to solve this problem, which simply blocks elimination

of variables that are expected to be part of future instances. The problem

with this technique is that it relies on knowing the future instances, which is

impossible in several prominent domains.

In Chapter 5 we introduced efficient algorithms for incremental SAT solv-

ing under assumptions assuming the number of assumptions is significant.

We found that effective propagation of assumptions is vital for ensuring SAT

solving efficiency in a variety of applications. While the currently widely-

used approach models assumptions as first decision variables, we proposed

modeling assumptions as unit clauses. The advantage of our approach is that

we allow the preprocessor to use assumptions while simplifying the formula.

In particular, we demonstrated that the efficient SatELite preprocessor can

easily be modified for use in our scheme, while it cannot be used with in-

cremental single SAT solver instance. A notable advantage of our approach

is that it can make preprocessing algorithms much more effective. However,

110

our initial scheme renders assumption-dependent conflict clauses unusable in

subsequent invocations. To resolve the resulting problem of reduced learn-

ing power, in Section 5.4 we introduce an algorithm that transforms such

temporary clauses into assumption-independent pervasive clauses as a post-

processing step, thus improving learning efficiency. In addition, we developed

an algorithm which improves the performance further by taking advantage of

a limited form of look-ahead information, which we called step look-ahead,

when available as presented in Section 5.5. In Tables 5.1 and 5.2 we showed

that the combination of our algorithms outperforms LS on instances gener-

ated by a prominent industrial application. The empirical gap is especially

significant for difficult unsatisfiable instances generated by a prominent in-

dustrial application in hardware validation.

The method as purposed in Chapter 5 is less effective when the number

of assumptions is small or zero. In this case using one incremental instance

of SAT solver without SatELite preprocessor can bring better performance

than recreating an instance each call. The problem of using the SatELite

preprocessor with one incremental instances of the SAT solver is in reintro-

duced variables which were eliminated in previous SAT solver calls as was

previously described. In Chapter 4 we present a method called incremen-

tal preprocessing which is an effective algorithm for solving this problem by

keeping track of eliminated variables and removed clauses. Our experiments

with hundreds of industrial benchmarks show that it is much faster than

the two known alternatives, namely full-preprocessing and no-preprocessing.

Specifically, with a time-out of 4000 sec. it is able to reduce the number

of time-outs by a factor of four and three, respectively as can be seen in

Table 4.1 and in Figure 4.1. As follow up research combining between two

approaches of Chapter 5 and Chapter 5 could clearly boost incremental SAT

solving under assumptions and offer the first solution to the general problem:

fully incremental SAT solving with SatELite preprocessing and assumption

propagations. The idea to create a solver that uses a single SAT solver in-

stance integrated with incremental preprocessing as in Chapter 5, and allows

SatELite to fully propagate assumptions as in Chapter 5. To that end, we

need to solve the problem of how to correctly recreate clauses, which were

previously subsumed by other clauses that were only correct under certain

111

assumptions that are now released.

Various verification techniques are based on SATs capability to identify a

small, or even minimal, unsatisfiable core in case the formula is unsatisfiable,

i.e., a small subset of the clauses that are unsatisfiable regardless of the rest

of the formula. In most cases it is not the core itself that is being used, rather

it is processed further in order to check which clauses from a preknown set

of Interesting Constraints (where each constraint is modeled with a conjunc-

tion of clauses) participate in the proof. Until [66] the standard practice was

to minimize the core itself, and only then to find the interesting part of it.

Our experiments show that this approach cannot compete with a solver that

focuses on the high-level core. In Chapter 6 we introduced seven techniques

which together result in an overall reduction of 55% in run time and 73% in

the size of the resulting core, based on our experiments with hundreds of in-

dustrial test cases as can be found in Table 6.1 and Table 6.2. The optimized

procedure is also better empirically than the assumptions-based minimiza-

tion technique, and faster by more than an order of magnitude than the best

known general MUS solver. A straight-forward direction for future research

is to migrate some of the suggested optimizations to the assumptions-based

approach. Related SAT problems may also benefit from these methods. First

- it is possible that general SAT solving can be improved with some combina-

tion of optimizations E and F. Second, the same techniques can potentially

expedite other methods in which the SAT component needs to extract only

partial information from the resolution proof, like interpolation-based model

checking [60]. In interpolation only a small part of the proof is necessary

in order to generate the interpolant, and we want to explore possibilities to

minimize that part and decrease the overall run time with variants of the

methods suggested here.

In Chapter 7 we proposed a number of algorithms for speeding up MUS

extraction. First in Section 7.2.1, we demonstrated how to apply techniques

used in the past in a Group MUS extraction algorithm described in Chapter 6

to speed up a resolution-based MUS extraction. Second in Section 7.2.2, we

show that model rotation, presented in the context of assumption-based MUS

extraction, can also be used with resolution-based MUS extraction. Third,

we introduce an improvement to rotation, called eager rotation. Finally

112

in Section 7.2.3, we proposed a new technique for speeding-up resolution-

based MUS extraction, called path strengthening. We integrated the above

techniques into the publicly available resolution-based MUS extractorHaifa-

MUC, which, as a result, now outperforms leading MUS extractors that

were presented in Figure 7.1. As future research it is interesting to perform

a deeper analysis of a resolution graph and finding additional literals that

could be used in a SAT solver call preceded by clause removal as part of the

MUS algorithm. For example, literals that can be found on every path from

the removed clause to the empty clause.

113

Bibliography

[1] Proceedings of the 38th Design Automation Conference, DAC 2001, Las

Vegas, NV, USA, June 18-22, 2001. ACM, 2001.

[2] Roberto Asn, Robert Nieuwenhuis, Albert Oliveras, and Enric

Rodrguez-Carbonell. Efficient generation of unsatisfiability proofs and

cores in sat. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov,

editors, LPAR, volume 5330 of Lecture Notes in Computer Science,

pages 16–30. Springer, 2008.

[3] Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. Improving

glucose for incremental sat solving with assumptions: Application to

mus extraction. In Jrvisalo and Gelder [46], pages 309–317.

[4] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality

in modern SAT solvers. In Craig Boutilier, editor, IJCAI, pages 399–404,

2009.

[5] F. Bacchus and J. Winter. Effective preprocessing with hyper-resolution

and equality reduction. In SAT 2003, volume 2919 of LNCS, pages 341–

355, 2003.

[6] R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum. Diagnosing

and solving over-determined constraint satisfaction problems. In Ruzena

Bajcsy, editor, IJCAI’93, pages 276–281. Morgan Kaufmann, 1993.

[7] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards under-

standing and harnessing the potential of clause learning. J. Artif. Intell.

Res. (JAIR), 22:319–351, 2004.

114

[8] Ramón Béjar, Felip Manyà, Alba Cabiscol, Cèsar Fernández, and

Carla P. Gomes. Regular-sat: A many-valued approach to solving com-

binatorial problems. Discrete Applied Mathematics, 155(12):1613–1626,

2007.

[9] Anton Belov, Inês Lynce, and João Marques-Silva. Towards efficient

MUS extraction. AI Commun., 25(2):97–116, 2012.

[10] Anton Belov and João Marques-Silva. Accelerating MUS extraction with

recursive model rotation. In FMCAD’11, pages 37–40, 2011.

[11] Anton Belov and João Marques-Silva. MUSer2: An efficient MUS ex-

tractor. JSAT, 8(1/2):123–128, 2012.

[12] Daniel Le Berre. Exploiting the real power of unit propagation looka-

head. Electronic Notes in Discrete Mathematics, 9:59–80, 2001.

[13] Daniel Le Berre and Laurent Simon. Fifty-five solvers in Vancouver:

The SAT 2004 competition. In Hoos and Mitchell [42], pages 321–344.

[14] Biere. Adaptive restart control for conflict driven sat solvers. In Proc.

11th Intl. Conf. on Theory and Applications of Satisfiability Testing

(SAT’08), Lecture Notes in Computer Science (LNCS), volume 4996.

Springer, 2008.

[15] Armin Biere. Lingeling and Plingeling. http://fmv.jku.at/

lingeling/.

[16] Armin Biere. PicoSAT essentials. JSAT, 4(2-4):75–97, 2008.

[17] Armin Biere. Bounded Model Checking, chapter 14, pages 455–481. Vol-

ume 185 of Biere et al. [20], February 2009.

[18] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Masahiro Fu-

jita, and Yunshan Zhu. Symbolic model checking using SAT procedures

instead of BDDs. In DAC, pages 317–320, 1999.

115

[19] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan

Zhu. Symbolic model checking without bdds. In Rance Cleaveland,

editor, TACAS, volume 1579 of Lecture Notes in Computer Science,

pages 193–207. Springer, 1999.

[20] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh,

editors. Handbook of Satisfiability, volume 185 of Frontiers in Artificial

Intelligence and Applications. IOS Press, February 2009.

[21] Hans Kleine Büning and Xishun Zhao, editors. Theory and Applications

of Satisfiability Testing - SAT 2008, 11th International Conference, SAT

2008, Guangzhou, China, May 12-15, 2008. Proceedings, volume 4996

of Lecture Notes in Computer Science. Springer, 2008.

[22] Gianpiero Cabodi, Luciano Lavagno, Marco Murciano, Alex Kon-

dratyev, and Yosinori Watanabe. Speeding-up heuristic allocation,

scheduling and binding with SAT-based abstraction/refinement tech-

niques. ACM Trans. Design Autom. Electr. Syst., 15(2), 2010.

[23] John W. Chinneck and Erik W. Dravnieks. Locating minimal infeasible

constraint sets in linear programs. INFORMS Journal on Computing,

3(2):157–168, 1991.

[24] SAT 2011 Competition. Group-oriented mus track: rank-

ing of solvers. http://www.cril.univ-artois.fr/SAT11/results/

ranking.php?idev=49.

[25] SAT 2011 Competition. Plain mus track: ranking of solvers. http://

www.cril.univ-artois.fr/SAT11/results/ranking.php?idev=48.

[26] Stephen A. Cook. Soundness and completeness of an axiom system for

program verification. SIAM J. Comput., 7(1):70–90, 1978. Corrigendum:

SIAM J. Comput. 10(3): 612 (1981).

[27] Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. A clause-

based heuristic for SAT solvers. In Fahiem Bacchus and Toby Walsh,

editors, SAT, volume 3569 of Lecture Notes in Computer Science, pages

46–60. Springer, 2005.

116

[28] Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. A scalable

algorithm for minimal unsatisfiable core extraction. In SAT’06, pages

36–41, 2006.

[29] Christian Desrosiers, Philippe Galinier, Alain Hertz, and Sandrine

Paroz. Using heuristics to find minimal unsatisfiable subformulas in

satisfiability problems. J. Comb. Optim., 18(2):124–150, 2009.

[30] Niklas Eén and Armin Biere. Effective preprocessing in SAT through

variable and clause elimination. In SAT, pages 61–75, 2005.

[31] Niklas Eén, Alan Mishchenko, and Nina Amla. A single-instance incre-

mental SAT formulation of proof- and counterexample-based abstrac-

tion. In FMCAD, pages 181–188, 2010.

[32] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In En-

rico Giunchiglia and Armando Tacchella, editors, SAT, volume 2919 of

Lecture Notes in Computer Science, pages 502–518. Springer, 2003.

[33] Niklas Eén and Niklas Sörensson. Temporal induction by incremental

SAT solving. Electr. Notes Theor. Comput. Sci., 89(4), 2003.

[34] Niklas Een and Niklas Sorensson. Minisat v2.0 (beta). In Solvers

description, SAT-race. 2006. http://fmv.jku.at/sat-race-2006/

descriptions/27-minisat2.pdf.

[35] Anders Franzén, Alessandro Cimatti, Alexander Nadel, Roberto Sebas-

tiani, and Jonathan Shalev. Applying smt in symbolic execution of

microcode. In FMCAD, pages 121–128, 2010.

[36] Roman Gershman, Maya Koifman, and Ofer Strichman. An approach

for extracting a small unsatisfiable core. Formal Methods in System

Design, 33(1-3):1–27, 2008.

[37] Evguenii I. Goldberg and Yakov Novikov. Verification of proofs of un-

satisfiability for cnf formulas. In DATE, pages 10886–10891. IEEE Com-

puter Society, 2003.

117

[38] Carla P. Gomes, Bart Selman, and Henry A. Kautz. Boosting combi-

natorial search through randomization. In AAAI/IAAI, pages 431–437,

1998.

[39] ric Grgoire, Bertrand Mazure, and Cdric Piette. Extracting muses. In

Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso,

editors, ECAI, volume 141 of Frontiers in Artificial Intelligence and

Applications, pages 387–391. IOS Press, 2006.

[40] A. Gupta. Learning abstractions for model checking. Master’s thesis,

CMU, 2006.

[41] Aarti Gupta, Malay K. Ganai, Zijiang Yang, and Pranav Ashar. Iter-

ative abstraction using sat-based bmc with proof analysis. In ICCAD,

pages 416–423. IEEE Computer Society / ACM, 2003.

[42] Holger H. Hoos and David G. Mitchell, editors. Theory and Applications

of Satisfiability Testing, 7th International Conference, SAT 2004, Van-

couver, BC, Canada, May 10-13, 2004, Revised Selected Papers, volume

3542 of Lecture Notes in Computer Science. Springer, 2005.

[43] Jinbo Huang. The effect of restarts on the efficiency of clause learning.

In Manuela M. Veloso, editor, IJCAI, pages 2318–2323, 2007.

[44] Mark Iwen and Amol Dattatraya Mali. Dsatz: A directional sat solver

for planning. In ICTAI, pages 199–208. IEEE Computer Society, 2002.

[45] Warren A. Hunt Jr. and Fabio Somenzi, editors. Computer Aided Veri-

fication, 15th International Conference, CAV 2003, Boulder, CO, USA,

July 8-12, 2003, Proceedings, volume 2725 of Lecture Notes in Computer

Science. Springer, 2003.

[46] Matti Jrvisalo and Allen Van Gelder, editors. Theory and Applications

of Satisfiability Testing - SAT 2013 - 16th International Conference,

Helsinki, Finland, July 8-12, 2013. Proceedings, volume 7962 of Lecture

Notes in Computer Science. Springer, 2013.

118

[47] Zurab Khasidashvili, Daher Kaiss, and Doron Bustan. A compositional

theory for post-reboot observational equivalence checking of hardware.

In FMCAD, pages 136–143. IEEE, 2009.

[48] Zurab Khasidashvili and Alexander Nadel. Implicative simultaneous

satisfiability and applications. In HVC’11 (to appear), 2011.

[49] Daniel Kroening. Software Verification, chapter 16, pages 505–532. Vol-

ume 185 of Biere et al. [20], February 2009.

[50] Stefan Kupferschmid, Matthew D. T. Lewis, Tobias Schubert, and Bernd

Becker. Incremental preprocessing methods for use in BMC. Formal

Methods in System Design, 39(2):185–204, 2011.

[51] Jean-Marie Lagniez and Armin Biere. Factoring out assumptions to

speed up MUS extraction. In Jrvisalo and Gelder [46], pages 276–292.

[52] Mark H. Liffiton, Maher N. Mneimneh, Inês Lynce, Zaher S. Andraus,

João Marques-Silva, and Karem A. Sakallah. A branch and bound algo-

rithm for extracting smallest minimal unsatisfiable subformulas. Con-

straints, 14(4):415–442, 2009.

[53] Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing

minimal unsatisfiable subsets of constraints. Journal of Automated Rea-

soning, 40:1–33, January 2008.

[54] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup

of Las Vegas algorithms. In ISTCS, pages 128–133, 1993.

[55] Lynce, Luis Baptista, and Joao P. Marques Silva. Stochastic systematic

search algorithms for satisfiability. In LICS Workshop on Theory and

Applications of Satisfiability Testing, pages 190–204, 2001.

[56] Inês Lynce and João Marques-Silva. Sat in bioinformatics: Making the

case with haplotype inference. In Armin Biere and Carla P. Gomes,

editors, SAT, volume 4121 of Lecture Notes in Computer Science, pages

136–141. Springer, 2006.

119

[57] Yogesh S. Mahajan, Zhaohui Fu, and Sharad Malik. Zchaff2004: An

efficient SAT solver. In Hoos and Mitchell [42], pages 360–375.

[58] Joao P. Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-Driven

Clause Learning SAT Solvers, chapter 4, pages 131–153. Volume 185 of

Biere et al. [20], February 2009.

[59] Kenneth L. McMillan. Interpolation and sat-based model checking. In

Jr. and Somenzi [45], pages 1–13.

[60] Kenneth L. McMillan. Interpolation and sat-based model checking. In

Jr. and Somenzi [45], pages 1–13.

[61] Kenneth L. McMillan and Nina Amla. Automatic abstraction with-

out counterexamples. In Hubert Garavel and John Hatcliff, editors,

TACAS, volume 2619 of Lecture Notes in Computer Science, pages 2–

17. Springer, 2003.

[62] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,

and Sharad Malik. Chaff: Engineering an efficient SAT solver. In DAC

[1], pages 530–535.

[63] Alex Nadel, Vadim Ryvchin, and Ofer Strichman. Prepro-

cessing in incremental SAT. Technical Report IE/IS-2012-02,

Industrial Engineering, Technion, 2012. Available also from

http://ie.technion.ac.il/∼ofers/publications/sat12t.pdf.

[64] Alexander Nadel. Backtrack search algorithms for propositional logic

satisfiability: Review and innovations. Master’s thesis, Hebrew Uni-

veristy of Jerusalem, Jerusalem, Israel, November 2002.

[65] Alexander Nadel. Understanding and improving a modern SAT solver.

PhD thesis, Tel Aviv University, Tel Aviv, Israel, August 2009.

[66] Alexander Nadel. Boosting minimal unsatisfiable core extraction. In

Roderick Bloem and Natasha Sharygina, editors, FMCAD, pages 221–

229. IEEE, 2010.

120

[67] Alexander Nadel, Moran Gordon, Amit Palti, and Ziyad Hanna.

Eureka-2006 SAT solver. http://fmv.jku.at/sat-race-2006/

descriptions/4-Eureka.pdf.

[68] Alexander Nadel and Vadim Ryvchin. Experimental results for the

SAT’10 paper “Assignment stack shrinking”. http://www.cs.tau.ac.

il/research/alexander.nadel/sat10_ass_res.xlsx.

[69] Yoonna Oh, Maher N. Mneimneh, Zaher S. Andraus, Karem A. Sakallah,

and Igor L. Markov. Amuse: a minimally-unsatisfiable subformula ex-

tractor. In Sharad Malik, Limor Fix, and Andrew B. Kahng, editors,

DAC, pages 518–523. ACM, 2004.

[70] Christos H. Papadimitriou and David Wolfe. The complexity of facets

resolved. J. Comput. Syst. Sci., 37(1):2–13, 1988.

[71] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component

caching scheme for satisfiability solvers. In João Marques-Silva and

Karem A. Sakallah, editors, SAT, volume 4501 of Lecture Notes in Com-

puter Science, pages 294–299. Springer, 2007.

[72] Knot Pipatsrisawat and Adnan Darwiche. Rsat 2.0: Sat solver descrip-

tion. SAT competition’07, 2007.

[73] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent

advances in sat-based formal verification. STTT, 7(2):156–173, 2005.

[74] Jussi Rintanen. Planning and SAT, chapter 15, pages 483–504. Volume

185 of Biere et al. [20], February 2009.

[75] Vadim Ryvchin. Benchmarks + results. http://ie.technion.ac.il/

~$ofers/sat11.html.

[76] Vadim Ryvchin. Haifa-muc link. https://www.dropbox.com/s/

uhxeps7atrac82d/Haifa-MUC.7z.

[77] Vadim Ryvchin and Ofer Strichman. Local restarts. In Büning and

Zhao [21], pages 271–276.

121

[78] Vadim Ryvchin and Ofer Strichman. Faster extraction of high-level

minimal unsatisfiable cores. In Sakallah and Simon [79], pages 174–187.

[79] Karem A. Sakallah and Laurent Simon, editors. Theory and Applications

of Satisfiability Testing - SAT 2011 - 14th International Conference,

SAT 2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceedings, volume

6695 of Lecture Notes in Computer Science. Springer, 2011.

[80] Ohad Shacham and Karen Yorav. On-the-fly resolve trace minimization.

In DAC, pages 594–599. IEEE, 2007.

[81] Ofer Shtrichman. Prunning techniques for the SAT-based bounded

model checking problem. In proc. of the 11th Conference on Correct

Hardware Design and Verification Methods (CHARME’01), Edinburgh,

September 2001.

[82] João P. Marques Silva. Minimal unsatisfiability: Models, algorithms and

applications (invited paper). In ISMVL’10, pages 9–14. IEEE Computer

Society, 2010.

[83] João P. Marques Silva and Inês Lynce. On improving MUS extraction

algorithms. In Sakallah and Simon [79], pages 159–173.

[84] João P. Marques Silva and Karem A. Sakallah. Robust search algorithms

for test pattern generation. In FTCS, pages 152–161, 1997.

[85] Carsten Sinz. SAT-Race 2006. http://fmv.jku.at/sat-race-2006/.

[86] Mate Soos. Cryptominisat2. http://www.msoos.org/cryptominisat2.

[87] Niklas Sörensson and Armin Biere. Minimizing learned clauses. In Oliver

Kullmann, editor, SAT, volume 5584 of Lecture Notes in Computer Sci-

ence, pages 237–243. Springer, 2009.

[88] Ofer Strichman. Pruning techniques for the SAT-based bounded model

checking problem. In Tiziana Margaria and Thomas F. Melham, editors,

CHARME, volume 2144 of Lecture Notes in Computer Science, pages

58–70. Springer, 2001.

122

[89] Hans van Maaren and Siert Wieringa. Finding guaranteed MUSes fast.

In Büning and Zhao [21], pages 291–304.

[90] Miroslav N. Velev. Using rewriting rules and positive equality to formally

verify wide-issue out-of-order microprocessors with a reorder buffer. In

Proc. Design, Automation and Test in Europe Conference and Exhibi-

tion, pages 28–35, 2002.

[91] M.N. Velev and R.E. Bryant. Effective use of Boolean satisfiability

procedures in the formal verification of superscalar and VLIW micro-

processors. In Proceedings of the 38th Design Automation Conference

(DAC’01), pages 226–231, 2001.

[92] Jesse Whittemore, Joonyoung Kim, and Karem Sakallah. SATIRE: a

new incremental satisfiability engine. In IEEE/ACM Design Automation

Conference (DAC), 2001.

[93] Jesse Whittemore, Joonyoung Kim, and Karem A. Sakallah. SATIRE:

A new incremental satisfiability engine. In DAC [1], pages 542–545.

[94] Siert Wieringa. Understanding, improving and parallelizing MUS finding

using model rotation. In Michela Milano, editor, CP’12, volume 7514 of

Lecture Notes in Computer Science, pages 672–687. Springer, 2012.

[95] Siert Wieringa and Keijo Heljanko. Concurrent clause strengthening. In

Jrvisalo and Gelder [46], pages 116–132.

[96] Poul FrederickWilliams, Armin Biere, Edmund M. Clarke, and Anubhav

Gupta. Combining decision diagrams and sat procedures for efficient

symbolic model checking. In E. Allen Emerson and A. Prasad Sistla,

editors, CAV, volume 1855 of Lecture Notes in Computer Science, pages

124–138. Springer, 2000.

[97] Hantao Zhang. Combinatorial Designs by SAT Solvers, chapter 17, pages

533–568. Volume 185 of Biere et al. [20], February 2009.

[98] Lintao Zhang and Sharad Malik. Extracting Small Unsatisfiable Cores

from Unsatisfiable Boolean Formula. In 6th International Conference on

Theory and Applications of Satisfiability Testing: SAT 2003, May 2003.

123

