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Abstract

Model-Counting (MC) is the problem of determining the number of solu-

tions (models) for a given propositional formula. Weighted Model Counting

(WMC) is the problem of finding the total weight of the models of a propo-

sitional formula, where that weight is based on weights assigned to each of

the literals. MC and WMC are #P problems (#P is the class of problems of

finding the number of solutions for an NP hard problem). There are efficient

methods for exact counting, but since the problem is hard both theoretically

and in practice, it makes sense to find approximations. Indeed several ap-

proaches exist for MC and WMC approximations, and for approximating

lower/upper bounds on the count/weighted count. Those methods are usu-

ally based on various sampling methodologies. Another approach tries to

provide lower and upper bounds by adding constraints to the target formula

that reduce the number of solutions in a predictable manner.

In this thesis we describe a new approach to approximating MC and

WMC. Our solution is based on a controlled reduction of the number of

models or their weight by adding specially constructed constraints. We

present several types of constraints and methods of using them in order to

approximate the model count or the weight of a given propositional for-

mula. We show theoretically and experimentally that a single constraint, on

average, removes the expected ratio of formula weight or solutions. Unfortu-

nately, however, our experiments with real formulas show that the variance

in the number of removed solutions (or formula weight) is too high to create

a practical approximation scheme.
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Abbreviations and Notations

|A| : The size of the set A

R+(ψ, v) : The ratio of solutions of a formula ψ in which the variable v

appears positive

PAR(x) : The set of parent nodes of node x in a Bayesian network

S(ψ) : The set of solutions of the formula ψ

Cxor : A XOR constraint that only allows an odd number of vari-

ables to be true

Ccard(n, k) : A cardinality constraint that allows a maximum of k variables

out of n to be true

Cweight(k, ψ) : A weight constraint over k random chance variables from the

weighted propositional formula ψ
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Chapter 1

Introduction

1.1 The Problem

Model Counting (MC) is the problem of determining the number of solu-

tions (models) for a given propositional formula. Similarly, Weighted Model

Counting (WMC) is the problem of finding the total weight of the models,

when that weight is based on the weights assigned to each literal of the for-

mula. This thesis describes a new approach to approximating the number

of solutions (MC) and weighted model counting (WMC) problems. Our so-

lution is based on a controlled reduction of the number or weight of models

by adding structured constraints.

For example, let us define the weight of a solution as the product of

the weights of its literals. Now let us assign a weight of 0.5 to each literal,

regardless of whether the variable is positive or negative in the solution. For

the formula ψ = (x ∨ y) we will get a total weight of 0.75. This is because

each solution “weighs” 0.25 and only 3 out of all 4 possible assignments

are models for this formula. For MC, the result here is 3. For WMC, it is

0.75. Note that because of our specific weight setting, this is precisely the

probability of any random variable assignment to be a satisfying assignment

(or a solution).

MC is a #P-complete problem [25] (#P is the class of problems of count-

ing solutions to NP-hard problems). In fact, even #2SAT is #P-complete

as shown in [26]. WMC is simply an extension of MC. As such, it can be

modeled by the latter, albeit at the cost of more variables and hence at a

greater calculation effort. There is a practical usage of WMC as one of the
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ways to solve Bayesian inference problem [21]. Thus, while MC, being a

canonical #P-complete problem, has fundamental theoretical importance,

improving methods for WMC can have important practical implications.

1.2 Existing Solutions

There are two main categories of solutions to MC and WMC: exact and

approximated. Exact counting is usually based on the DPLL procedure [14].

Unlike the regular DPLL procedure, here the search does not stop after all

clauses in the target formula are satisfied. Instead, when a satisfiable branch

is found after assigning t out of all n variables, 2n−t is added to the total

count and the search is continued. The inherent computational complexity

of MC and WMC has led to development of approximations. Approximated

solutions are often the only ones possible given a time limit (and an ex-

act count is sometimes not necessary). The following review of existing

approaches to MC and WMC is based on [14].

1.2.1 Exact Counters for MC

The exact counting scheme based on DPLL was first used in CDP [2]. It

basically ran DPLL until all solutions were enumerated. More effective exact

counters like Relsat and Cachet use component analysis[16]. That is, they

divide the formula into connected components and process them separately.

Let us present the CNF formula as a graph where each variable is a vertex.

An edge appears between every two variables that appear in the same clause.

If this graph can be partitioned into disjoint components, we will get sets of

clauses that represent separate subproblems of the original formula. Clearly,

counting models is faster for smaller formulas.

Relsat [16] determines the components lazily while it advances on the

search space. The total number of solutions is calculated by combining the

results of all components. Cachet [20] also incorporates a caching mech-

anism to detect already-seen subproblems and skips the calculation if the

result is already known. The more advanced counter sharpSAT [24] employs

implicit BCP, in addition to component analysis and more sophisticated

caching. Implicit BCP is a known technique in the SAT community. We

regularly test whether setting a variable v to true (false) makes the for-
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mula unsatisfiable. If the test is positive, we assign v =false (true) and

simplify the formula.

The opposite approach is taken in another exact counter - c2d [6]. It

converts the given CNF formula into deterministic, Decomposable Negation

Normal Form (d-DNNF). d-DNNF is a strict superset of ordered BDDs. By

traversing the d-DNNF tree bottom up, one can calculate the model count

in polynomial time. While converting the CNF formula to d-DNNF might

consume exponential time, the advantage of this technique is that many

other queries besides model count can be performed against the final tree,

such as consistency or validity check.

1.2.2 Exact Counters for WMC

There are two exact solvers in the WMC domain. WeightedCachet [21]

is similar to the same MC Cachet, but it maintains the weight of each

component instead of its solutions count. The second one is ACE [3], which

is not a plain WMC solver but rather a probabilistic inference tool that

works by converting a given Bayesian network into a weighted CNF and

solving it. Both tools are used for probabilistic inference, which is the main

practical application of WMC.

ACE uses c2d to convert the CNF to d-DNNF. It then uses this output

to perform models weight calculation the same way as the MC – that is,

by traversing the d-DNNF tree bottom-up. However, instead of simply

summing up leaves, the tool associates with each leaf node the probabilities

from the original Bayesian network as the weight of the variables, and sums

these values during the tree traversal.

1.2.3 Approximations for MC and WMC

Now let us turn to the other type of solutions – approximation. The quality

of approximation is determined by the proximity of the estimation to the

real value. The approximation algorithm can estimate the lower and/or

upper bound of the real value. In this case, one seeks a confidence level –

that is, the probability that the estimated lower (upper) bound is no higher

(lower) than the estimated value.

Ideally we would like to have approximation scheme that gives estima-

tions as close to the real count as possible and have 100% confidence that
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there is no error in the results. Of course, this is very hard to achieve, but at

least we can seek a way to control the quality of the reported estimate and

its associated correctness confidence. It is obvious that the cost of better

runtime is worse precision - clearly there is a trade off between them.

The Authors of ApproxCount [29] introduced a local search-based method

that utilizes Markov Chain Monte Carlo (MCMC) sampling to compute an

approximation of the true model count of a given formula. ApproxCount can

solve several instances quite accurately. As the problem size increases, it

can scale much better than exact model counters. This tool uses SampleSat

[28], an extension of the well-known local search SAT solver Walksat [22],

to sample the satisfying solutions.

Let us define the ratio of solutions of a formula ψ, in which variable v

appears positive, as R+(ψ, v). SampleSat selects some variable v and cal-

culates R̂+(ψ, v), the estimate for R+(ψ, v). If we sample formula solutions

uniformly at random, this ratio will converge, with increasing sample size,

to the true ratio R+(ψ, v). If we set the variable to true and simplify

the formula, we will receive a reduced problem. If the result formula has

model count M, then the expected model count of the original formula is

M · R̂+(ψ, v)−1, where R̂+(ψ, v)−1 is the multiplier attached to the variable

v.

ApproxCount performs 100-300 iterations of sampling, calculating a mul-

tiplier and simplifying. In the end, it feeds the reduced formula to an exact

counter. The result of the counter is multiplied by the product of all calcu-

lated multipliers of all the assigned variables. The result is the approxima-

tion of the real model count.

The authors of ApproxCount have shown that it is extremely fast and can

provide very good estimates for MC. Unfortunately, there is no guarantee

to the uniformity of samples drawn by SampleSat, and so the calculated

multiplier might introduce substantial errors. Moreover, SampleSat is in

essence a DPLL-based SAT solver. As such, it is very good in finding easy

solutions and thus inherently produces solutions in a non-uniform manner.

Indeed the authors observed cases of significant over-estimations or under-

estimations.

Another, more solid approach is SampleMinisat by Gogate and Dechter

[10]. This approach is based on importance sampling [19] of the backtrack-

free search space of a formula. If we take the complete DPLL search tree of a
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formula and delete from it all paths that do not lead to a valid assignment, we

get backtrack-free search space. By walking this tree top-down and selecting

the next child of a node uniformly at random, we can produce a scheme of

sampling from the solutions space. Still, this is clearly not uniform sampling

because some subtrees might contain fewer solutions than the others. This

is where importance sampling becomes relevant.

The probability of a solution to be found by the described scheme is

2−d, where d is the number of random decisions that must be made to reach

the solution. Therefore, in order to sample uniformly from valid solutions,

one must do the following: (a) sample k solutions from the backtrack-free

distribution; (b) assign a new probability to each sampled solution that

is proportional to the inverse of its original probability in the backtrack-

free distribution (that is, proportional to 2d); and finally (c) sample one

solution from this new distribution. However, note that for this process to

be practical, k must be sufficiently large.

SampleMinisat does not need to create the backtrack-free search space,

and in many cases this is impractical. Instead it explores the original search

space only to some extent. Naturally, the more search space is explored,

the more precise the estimation becomes. In [11] the authors use sam-

pling augmentations1 and prove that their method of sampling converges

to the true count in the limit. A major difference from ApproxCount is

that SampleMinisat provides probabilistic correctness guarantees on the

lower bound of the model count. This is similar to what is described in

SampleCount by Gomes et al. [12] and in work by Davies and Bacchus [7].

The works described below, besides improving approximation quality,

enable control over the desired confidence guarantees. Gomes et al. [12]

in SampleCount suggest an alternative approach of using samples from

SampleSat. The samples are used to determine the next-most balanced

variable in terms of appearing positively or negatively in a solution. After

sampling a set of solutions, SampleCount selects a variable with R̂+(ψ, v)

closest to 0.5. It then assigns a value to the variable, true or false at

random, and simplifies the formula. On average, because of the randomly

chosen value, the reduced formula receives half of the solutions of the origi-

nal.

1The authors use a Sampling/Importance Resampling and Metropolis-Hastings
method, a description of which is out of the scope of this thesis.
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Another technique introduced by SampleCount is using ”half-equivalence”

of variables. If a variable v1 appears in half of the samples under the same

polarity as the variable v2, and they receive different polarities in the rest

of the samples, we can replace v1 with v2 or ¬v2 (chosen at random) and

simplify. The effect is the same as with assigning and simplifying with a

balanced variable.

Similar to ApproxCount, after several iterations of sampling and sim-

plification, the result is fed to an exact counter and the approximation is

multiplied by 2i, where i is number of assigned variables. The authors pro-

vide probabilistic guarantees for the estimation to be a lower bound on the

real model count. These are based only on a number of iterations done by

SampleCount and some ”slack” positive real number.

Another work by Gomes, Sabharwal and Selman [15] focuses on giving

lower and/or upper bounds for MC instances. In short, the authors describe

a procedure MBound that adds structured constraints to the target formula

in order to reduce the solutions count. The constraints are so generated

that each constraint halves the solutions number. Therefore, after adding

n constraints and checking whether the formula is still satisfiable, one can

assume that the original formula has at least 2n solutions. In fact, this

lower bound depends on several parameters other than the number of added

constraint. The authors also describe how to adjust these parameters to

achieve the desired confidence levels and control the approximation quality.

One of the efforts described in this thesis is to extend this approach. MBound

is therefore explained in greater details in Section 2.2.

Kroc et al. [17] proposed two ways for MC approximation. The first one

is BPCount, which uses Belief Propagation (BP). BP is used for problems

that can be represented as a set of variables V and a set of functions F , where

each function f ∈ F takes as parameters subset v = {v1, v2, ...}, v ⊂ V . A

variable can appear as a parameter in more than in one function.

In BPCount, BP is used to calculate the marginal probability of a variable

to appear positively in a solution, or R+(ψ, v) as defined earlier in this

section. In this case, the role of functions is played by the clauses set.

After R+(ψ, v) is calculated, BPCount proceeds like SampleCount and thus

provides the same lower bound guarantees. The improvement of BPCount

over SampleCount is that BP works much faster on formulas with a tree-like

structure than sampling with SampleSat.
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The second approach, proposed in [17], is based on a modified MiniSat

[8]. This SAT solver was changed to randomly select the value of an assigned

variable and not to perform restarts. Let us denote the number of branching

decisions by d (not counting unit propagations and failed branches) made by

MiniSat before reaching a solution. d can be viewed as a random variable

and in expectation is not any lower than a log2 of the solutions count[17].

Estimating this expectation, however, is problematic. As already mentioned

in this section, being an efficient SAT solver, Minisat seeks easy solutions,

and thus estimation for E(d) can be very biased.

However, the authors observed that the distribution of d is well-approximated

by a log-normal distribution. Thus, MiniCount performs a number of MiniSat

runs and obtains a set of samples of d. This set can be tested to determine

whether it comes from log-normal distribution. Then, if the result if pos-

itive, we can calculate both the value c s.t. c > E(d) and the confidence

interval for c. This value is the upper bound emitted by MiniCount. The

authors demonstrate that on many domains, the distribution of d is very

close to log-normal. MiniCount provides a good upper bound in seconds.

Moreover, these upper bounds are often very close to the true counts.

Davies and Bacchus [7] created an entire framework of sampling and

approximation that provides probabilistic confidence guarantees based on a

choice of statistical checks. This is the only approximation scheme for WMC

that is known to us. They use distributed sampling, similar to importance

sampling used in SampleMinisat [10]. While regular sampling schemes re-

quire one to assign random values to all variables, distributed sampling

enables one to select a subset of variables and random values assigned only

to those variables. We then attempt to expand the partial assignment to

a solution. For this method to work, the variables in a sampled set must

be balanced, or the quality of the result estimation would suffer. In case

of WMC, the authors select a random subset of variables with the weight

1 (that correspond to state variables in Bayesian networks). For MC, the

authors use the c2d compiler [6] to create a decomposition tree, and then

choose from variables that appear in the largest separator sets. The authors

propose three ways of calculating the confidence level of the estimation: (a)

Markov inequality as in [15]; (b) the Central Limit theorem; and (c) Cox’s

confidence interval for the log-normal mean if the sampling results pass the

test for log-normal distribution.
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1.3 Our Approach

We propose an approximation scheme based on adding constraints to the

target formula. Adding such constraints reduces the model count for MC,

or formula weight for WMC, in a controlled manner.

Let us demonstrate on a simple case without any correctness guarantees:

we use several types of constraints, one of which is the cardinality constraint.

A cardinality constraint over n propositional variables receives the form of∑
i vi ≤ k and allows no more than k of the vi variables to be true. Adding

cardinality constraints to the propositional formula halves the model count

on average. If we add constraints until the formula is unsatisfiable, and

number of added constraints is n, we can estimate the lower bound on the

real model count by 2n. A similar technique was described in [15], except

that the authors used XOR constraints instead of cardinality constraints.

For WMC, we modified the cardinality constraint to remove a propor-

tion of the formula weight instead of reducing the number of formula so-

lutions. Unfortunately, this technique in general does not produce better

results than existing methods for both domains, MC and WMC. It did not

produce either high-quality estimates or worked faster than other methods.

Only on some formulas does our approach perform significantly better than

previously described methods.

The following sections describe in detail our approach and the results

of our experiments. Chapter 2 formalizes the MC and WMC problems. It

then describes some background concepts (such as Bayesian networks) and

includes a detailed explanation of encoding Bayesian networks into CNF.

Chapter 3 describes in detail various constraint types and lists proposed

methods of using them for approximation of MC and WMC. Chapter 4

describes the experiments we conducted and our analysis of the results.

Finally, Chapter 5 concludes the thesis.
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Chapter 2

Preliminaries

The following sections provide background material which is necessary for

understanding the algorithms described later in Section 3.

2.1 Problem Definition

Definition 2.1.1 (Model Counting) Given a CNF formula ψ, denote

the set of all satisfying assignments (solutions) of ψ by S(ψ). Model Count-

ing is the problem of determining the size of S(ψ).

To define WMC, the weight of a single solution must first be defined:

Definition 2.1.2 (Weight of an Assignment) Given a CNF formula ψ,

denote the weight of a literal l as w(l) ∈ [0, 1]. Regard an assignment as a

set of literals, so the notion l ∈ α means that the literal l is included in the

assignment α. The weight of an assignment α is defined as

w(α) =
∏
l∈α

w(l).

w(α) is defined as a product of the literals’ weight because, in the context

of this thesis, the weight of an assignment represents the probability of the

evidence represented by the assignment. This is also why the weight is in

the range of [0, 1], as it represents the probability associated with the literal.
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Definition 2.1.3 (Weighted Model Counting) The weight of a propo-

sitional formula ψ is defined as

w(ψ) =
∑

α∈S(ψ)

w(α).

Weighted Model Counting is the problem of determining w(ψ) given propo-

sitional formula ψ.

2.2 MBound

A part of our work here relies on the MBound algorithm presented by

Gomes at al. [15]. We attempt to improve the algorithm by replacing the

original XOR constraints with a different type of constraints. In this section,

the original algorithm is described in full detail. Our own work is presented

later, in Chapter 3.

Definition 2.2.1 (XOR Constraint) A XOR or parity constraint Cxor over

a set of variables {v1, v2, . . . , vn} is the logical “xor” of that set. The general

form of the constraint is

v1 ⊕ v2 ⊕ . . .⊕ vn ⊕ true.

An assignment satisfies Cxor if it assigns the value true to an even number

of variables in the set.

Valiant & Vazirani observed that a XOR constraint, that contains all the

variables of the formula, reduces the number of models by 50% on average

when it is added to the formula [27] . On some formula families this also

works with much shorter XOR constraints [13].

The MBound algorithm computes lower or upper bounds, based on the

model count of a given propositional formula in CNF. The algorithm uses

XOR constraints to check whether the target formula has more or fewer

solutions than the specified power of 2. By adding n XOR constraints, the

number of solutions of a formula is reduced by 2n on average. Thus, after

the algorithm adds the constraints and the formula remains satisfiable, one

can say that the true model count is above 2n.

The MBound algorithm has five parameters:

12



• k : The number of variables in the constraint

• s : The number of constraints to add

• t : The number of repetitions

• δ : The deviation from 50% ratio. δ ∈ (0, 0.5]

• α : The precision slack. α ≥ 1

Algorithm 2.2.1 MBound

MBound(s, ψ, t, k, α, δ)

1 numSat← 0
2 for i← 1 to t
3 ψ′ ← {s random XOR constraints of size k}
4 ψ′ ← ψ ∧ ψ′
5 if (ψ′ is satisfiable)
6 numSat← numSat+ 1

7 if (numSat ≥ t · (1/2 + δ))
8 return Lower bound: MC(ψ) > 2s−α

9 else if(numSat ≤ t · (1/2− δ))
10 return Upper bound: MC(ψ) < 2s+α

11 else
12 return Failure

MBound performs the following t times: Adds s random constraints of

size k to the original formula ψ and checks whether ψ is still satisfiable. If

after t attempts the ratio of satisfiable instances is greater than 50% + δ,

the algorithm produces an output of 2s−α as a lower bound. If the ratio is

less than 50% − δ, the algorithm produces an output of 2s+α as an upper

bound.

Following are the main properties of MBound that are described in [13]:
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For any positive integer t, 0 < δ ≤ 1/2, and α ≥ 1, let β = 2α(1/2+δ)−1

and define

p(t, δ, α) =

 2−αt if δ = 1/2(
eβ

(1+β)1+β

)t/2α
if δ < 1/2 .

Threorem 2.2.1 (MBound Lower Bound Guarantees) For 1 ≤ k ≤ n/2,

the lower bound of 2s−α reported by MBound with parameters (k, s, t, δ, α)

is correct with probability of at least 1− p(t, δ, α).

Threorem 2.2.2 (MBound Upper Bound Guarantees) An upper bound of

2s+α reported by MBound with parameters (n/2, s, t, δ, α), where n is the

number of variables in the formula, is correct with probability of at least

1− p(t, δ, α).

2.3 Bayesian Networks

The application of WMC must be described before proceeding to the de-

scription of the basis of our WMC approximation.

In probabilistic reasoning, it is useful to describe some knowledge base

by a set of random variables which have joint probability distribution de-

fined on them. Then, one can also define conditional probabilities for every

single variable that can be used to calculate queries on the knowledge base.

The Belief network or Bayesian network represents the knowledge base by

describing dependencies between the variables in terms of conditional prob-

abilities.

A Bayesian network is a probabilistic model that represents a set of

random variables and their conditional dependencies via a directed acyclic

graph (DAG). Each node in such a graph represents a variable from some

bounded domain. A directed edge between two vertices encodes the de-

pendency between them. The source node of the edge is a parent of the

target node. The probability of a value to be assigned to a node depends

on the values of its parent nodes. For a variable x and the set of its parents

PAR(x) = {y1, y2, . . . , yn}, let us denote the conditional probability of x

as Pr(x |PAR(x)) = Pr(x | y1, y2, . . . , yn). This is stored in a conditional
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probability table (CPT) associated with each node in the graph. Given

an assignment for all nodes in a Bayesian network, one can calculate the

probability for this assignment.

Pr(x1, x2, . . . , xn) =
∏
i

Pr(xi |PAR(xi)).

Given a partial assignment of variables, or evidence, one can calculate

its probability. One of the ways to do so is to convert the Bayesian network

into a weighted CNF formula and then solve its relevant WMC.

Figure 2.1 describes a simple Bayesian network with three variables: A,

B and C. Variables A and B can be thought of as Boolean variables and

variable C has a domain of size 3. Given the evidence C = Green, one can

calculate its as 0.4375. It is calculated in the following manner:

A B

C

Value Probability
TRUE 0.25
FALSE 0.75

Value Probability
Up 0.5

Down 0.5

Parents’ values Probability
A value B value Green Yellow Red
UP TRUE 0.8 0.1 0.1
UP FALSE 0.7 0.3 0.0

DOWN TRUE 0.3 0.3 0.4
DOWN FALSE 0.1 0.1 0.8

Figure 2.1: A Simple Bayesian Network

15



Pr(C = Green) = Pr(A = UP) · Pr(B = TRUE) · Pr(C = Green|A = UP, B = TRUE)+

Pr(A = UP) · Pr(B = FALSE) · Pr(C = Green|A = UP, B = FALSE)+

Pr(A = DOWN) · Pr(B = TRUE) · Pr(C = Green|A = DOWN, B = TRUE)+

Pr(A = DOWN) · Pr(B = FALSE) · Pr(C = Green|A = DOWN, B = FALSE)

2.4 CNF Encoding of a Bayesian Network

In [4] the authors list several CNF encodings for Bayesian networks. The

encodings differ in the final size of the CNF formula. The authors demon-

strate that an encoding that produces a more compact CNF improves the

runtime of their counter ACE. However, for our purposes, the less compact

encoding is more suitable because the tool WeightedCachet only accepts

the input CNF in this encoding.

This encoding was introduced by Sang et al. in [21]. For node x with a

domain of size k, let us define k propositional variables vx1, vx2, . . . , vxk that

correspond to its domain values x1, x2, . . . , xk. These variables are called

state variables and the weight of their literals is set to 1. In addition, let

us define clauses that verify that only one of these variables is assigned the

value true by the model:

vx1 ∨ vx2 ∨ . . . ∨ vxk (2.1)

¬vxi ∨ ¬vxj for every i < j, j < k . (2.2)

Chance variables are used to encode the dependencies between variables

and their probabilities. Following the CPT associated with a node, the

clauses that encode the conditional probabilities for the node can be recon-

structed. Each row in the table consists of two types of columns: values of

parents and probabilities for possible values. Let us denote the state vari-

ables for the m parent nodes as {y1, y2, . . . , ym}. For a node with a domain

size k, let us define k − 1 additional chance variables px1, px2, . . . pxk−1 per

row in CPT. In addition, k clauses are created to encode the conditional

probabilities of the CPT row:
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y1 ∧ y2 . . . ∧ ym
∧¬px1 ∧ ¬px2 ∧ . . . ∧ ¬pxi−1

∧ pxi ⇒ vxi 1 ≤ i < k

(2.3)

y1 ∧ y2 . . . ∧ ym ∧ ¬px1 ∧ ¬px2 ∧ . . . ∧ ¬pxk−1 ⇒ vxk (2.4)

The clauses defined in (2.3) verify that the state variable that corre-

sponds to the specific setting of parent nodes and chance variables is en-

tailed. The clause in (2.4) is used for the last value in the node’s domain.

It is clear why there is no need for a k-th chance variable : The fact that

all k− 1 variables are false implies that the node is assigned the last value

in the domain. For example, the first row of the CPT of the node C from

Figure 2.1 produces the following clauses:

xA∧xB∧ pGreen ⇒ xGreen

xA∧xB∧¬pGreen∧ pY ellow ⇒ xY ellow

xA∧xB∧¬pGreen∧¬pY ellow ⇒ xRed.

It can now be described how the weights are assigned to the chance

variables. The first chance variable px1 in the row (like pGreen in Figure

2.1), receives the weight equal to the probability in the CPT,

w(px1) = Pr(x1|PAR(x)).

The second chance variable (like pY ellow in the example), receives the value

proportional to its conditional probability from the remaining probability

(remaining from the total 1),

w(px2) =
Pr(x2|PAR(x))

1− Pr(x1|PAR(x))
.

In the same manner, the third chance variable receives the weight

w(px3) =
Pr(x3|PAR(x))

1− Pr(x1|PAR(x))− Pr(x2|PAR(x))
.

And so on.

In other words, a chance variable pxi, i > 1 receives the probability that
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the node is assigned the value xi, provided that it is not assigned any of the

prior values in the CPT order, x1, . . . , xi−1.

Until now we have described the weights for positive literals, that is, the

weight a variable receives when it is assigned the value true. As for the

negative literals of chance variables, they receive the weight complementary

to 1, that is,

w(¬pxi) = |1− w(pxi)|. (2.5)
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Chapter 3

Approximations for the MC

and WMC problemes

This chapter describes the basis for our approach and the various heuristics

we attempted. Section 3.1 discusses the normalization of a formula. Sections

3.2 and 3.3 describe the types of constraints used. Section 3.4 describes the

algorithms and the heuristics used.

3.1 The Normalization of a Propositional Formula

Definition 3.1.1 (Flip of a Variable) The flip of a variable v in a given

formula is the rewriting of the formula so that every occurrence of the literal

v is replaced by the literal ¬v, and every occurrence of the literal ¬v is

replaced by v.

Flipping one or more variables clearly does not affect the formula’s satisfi-

ability. The only thing changed is the value assigned to the variable in the

satisfying assignments. Denote by R+(ψ, v) the proportion of models of ψ

that set the value true to the variable v. Assume, for example, that for a

variable v in ψ, R+(ψ, v) = 0.3. By flipping v, the result is R+(ψ, v) = 0.7.

If one solution σ is a sampled from S(ψ) (recall that S(ψ) denotes the set of

solutions of ψ), then the probability that σ will assign true to v is 0.3. In

other words, Prψ (σ(v) = true) = 0.3. Denote the rewriting of ψ where v

is flipped as ψ′, then Prψ′ (σ(v) = true) = 0.7. Thus, if we flip the variable

randomly with a probability of 0.5 and sample a large number of solutions,
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we can expect half the solutions with v = true and half with v = false.

This is because the probability of getting v = true is

0.5 · Pr ψ (σ(v) = true) + 0.5 · Pr ψ′ (σ(v) = true) =

0.5 · 0.3 + 0.5 · 0.7 = 0.5 .

We call a variable v, s.t. R+(ψ, v) = 0.5, a balanced variable in ψ. This

property is of interest to us because, as it will be described later, balanced

variables are the essential part of constructing the constraints that remove

a controlled proportion of the solutions. Since variables are mostly non-

balanced, we invoke a procedure that flips their polarity randomly. Flipping

each variable with probability 0.5 gives us the following property of balanced

variables:

∀v E (R+(ψ, v)) = 0.5 .

The process of flipping each variable of the formula with the probability of

0.5 is referred to as the normalization of the formula.

3.2 Normalized Cardinality Constraints

As stated before, our approach to MC and WMC approximation is based

on adding constraints. We experiment with various types of cardinality

constraints, described in full here.

Definition 3.2.1 (Cardinality Constraint) A Boolean cardinality con-

straint Ccard(n, k) is a formula over a set of n propositional variables {v1, v2, . . . , vn}
which is satisfied if and only if at most k of them are true. In general form

Ccard(n, k) can be presented as

n∑
i=1

vi ≤ k.

Efficient encoding of a cardinality constraint to CNF is a well-studied

problem. We use an encoding based on sequential counter circuit, described

in [23]. This encoding meets the efficiency condition specified in [1]. This

condition specifies that if more than k variables are set to true (thus vi-

olating the cardinality constraint Ccard(n, k)), it can be detected by unit

propagation – that is, by a linear time decision procedure.
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Moreover, for a partial assignment that sets k of the vi variables to true,

the value of all other vi’s can be derived by unit propagation.

Now let us discuss the effect of an added cardinality constraint.

Threorem 3.2.1 Given a formula ψ with n variables, let us denote the

conjunction of the cardinality constraint Ccard(n, n/2) and ψ as ψ′

ψ′ = ψ ∧ Ccard(n, n/2) .

If R+(ψ, vi) = 0.5, 1 ≤ i ≤ n, then the following holds:

|S(ψ′)| = 0.5 · |S(ψ)|

Proof Let us define a random variable Ivi to indicate that a variable vi
is assigned the value true. The probability Pr(Ivi = 1) is exactly the

proportion of the solutions that grant the value true to vi, R+(ψ, v), which

is 0.5. We can define the sum of all Ivi , 1 ≤ i ≤ n as a binomial random

variable Y ∼ Bin(n, 0.5), as it is the sum of independent Bernoulli random

variables with the same probability.

Y =

n∑
i=1

Ivi .

We can now think of a solution’s probability to satisfy a maximum of

n/2 variables as the probability of a Binomial random variable to receive a

value ≤ n/2. We can calculate the probability Pr(Y ≤ n/2) as follows:

Pr(Y ≤ n/2) =

bn/2c∑
i=0

(
n

i

)
0.5i(1− 0.5)n−i.

The following expression, for a probability of Y ≤ n, has a similar form:

Pr(Y ≤ n) =

bn/2c∑
i=0

(
n

i

)
0.5i0.5n−i +

n∑
i=bn/2c

(
n

i

)
0.5i0.5n−i

=

bn/2c∑
i=0

(
n

i

)
0.5n +

n∑
i=bn/2c

(
n

i

)
0.5n .

(3.1)
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Let us assume that n is an odd number 2k + 1. We always can make the

formula contain odd number of variables by adding a don’t-care variable

which just doubles the number of solutions. Equation (3.1) can then be

rewritten as

Pr(Y ≤ n) =
k∑
i=0

(
2k + 1

i

)
0.52k+1 +

2k+1∑
i=k+1

(
2k + 1

i

)
0.52k+1 . (3.2)

In the right hand side of the above equation, both sums have the same

number of summands. Noting that
(
n
i

)
=
(
n
n−i
)
, it can be further simplified:

Pr(Y ≤ 2k + 1) =

k∑
i=0

(
2k + 1

i

)
0.52k+1 +

2k+1∑
i=k+1

(
2k + 1

2k + 1− i

)
0.52k+1

=2 ·
k∑
i=0

(
2k + 1

i

)
0.52k+1 .

(3.3)

Since Pr(Y ≤ n) = 1, we conclude that

bn/2c∑
i=0

(
n

i

)
0.5n = 0.5 . (3.4)

2

A consequence of the Thm. 3.2.1 is that if each variable v of the n vari-

ables that participate in the constraint hasR+(ψ, v) = 0.5, then Ccard(n, n/2)

removes half of the solutions. If a subset of all n variables is selected at ran-

dom (instead of taking them all), the ratio of solutions removed by a con-

straint Ccard(k, k/2), k < n will be on average 0.5 as well. This is because

the constraints are selected uniformly at random and thus the probability

for a constraint to remove more than half of the solutions is equal to the

probability of removing less than half of the solutions.

Of course almost no formula satisfies the property of R+(ψ, v) = 0.5

per variable. We use randomized variable flipping to achieve this property.

But instead of adding the constraint to formulas with randomly flipped

variables, the variables are flipped in the constraints. This has the same

effect as flipping the variable in the formula.
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Denote CNF encoding of a cardinality constraint over n variables of a

formula ψ as φ = CNF (Ccard(n, k)). Denote the probability of a solution σ

of ψ∧φ to assign a value X ∈ {true, false} to a variable v as Pr(σ(v) = X).

The probability of a variable in φ to be flipped is 0.5. So the probability of

a variable to appear positive, if we flip the variables in φ randomly, is:

Pr(σ(v) = true) · (1− 0.5) + Pr(σ(v) = false) · 0.5 =

(Pr(σ(v) = true) + Pr(σ(v) = false)) · 0.5 =

1 · 0.5 =0.5 .

Thus we get

∀v ∈ φ E (R+(ψ ∧ φ, v)) = 0.5 .

Which is exactly what we need to apply Thm. 3.2.1. A constraint with

flipped variables is called a normalized cardinality constraint.

The normalized cardinality constraint can be made more restrictive. If

the value of k in Ccard(n, k) is reduced, the probability of a solution to satisfy

the constraint decreases. The ratio of dropped solutions ρ becomes greater

than 1/2. Thus, instead of having an estimation in the form of 2n, the

result would be (1/ρ)n, where 1/ρ > 2. The idea is that in each constraint

we remove a larger portion of the solutions, a fact that will be used later in

Section 3.4.1 to converge faster.

The normalized cardinality constraint Ccard(n, k), with k < n/2 is called

a general cardinality constraint. The normalized cardinality constraint in

the form of Ccard(n, n/2) is hereby referred to as the cardinality constraint.

The general form of the normalized cardinality constraint, Ccard(n, k), k <

n/2, is refereed to as the general cardinality constraint.

Appendix A describes how to calculate the expected ratio ρ of dropped

solutions as the result of an added general cardinality constraint.

3.3 Weight Constraints

The normalized cardinality constraints introduced in Section 3.2 can be used

to gradually reduce the number of solutions of the target formula. But in the

case of WMC, the goal is to find the solutions weight of the formula, not the

number of its solutions. Therefore, in order to apply the same technique of

controlled reduction, the sought goal is a constraint that imposes restrictions
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on the total formula weight.

As mentioned earlier, the weight of the formula equals to the probability

of the evidence in the knowledge base. Because we use the CNF encoding

described in Section 2.4, and because weight information is encoded only in

chance variables, only chance variables can be used for the constraints that

reduce the formula weight.

Similarly to the normalized cardinality constraints, weight constraints

can be constructed. The main idea of these constraints is to reduce in half

the sum of the products of the weights of the variables in the constraint.

Each variable can contribute the weight of its positive literal or the weight

of its negative literal, depending on the literal that appears in the specific

solution. Because the total weight of a solution is the product of the weights

of its literals, the total weight can be halved by reducing the weight of a

single variable by a factor of 2, that is, both literals of the variable.

Note that neither the formula nor the constraint is normalized here,

because such normalization would affect the conditional probabilities. We

cannot reduce the weights of the variable’s literals for the same reason.

Instead, a subset of the variables is selected and their total contribution

is reduced. The possible weight contribution of a set of chance variables

{p1, p2, . . . , pn} for a given assignment α is the weight of the projection of

the assignment on these variables. This is called a possible contribution

because the assignment might not be a solution.

Definition 3.3.1 (Weight Assignment Order) Given a set of variables

{p1, p2, . . . , pn}, let � denote a relation between assignments, such that αi �
αj if and only if w(αi) ≤ w(αj) and if w(αi) = w(αj), then αi and αj are

ordered lexicographically.

With this definition of the ordering, all 2n assignments can be divided

into two parts, the sums of which are almost equal.

Definition 3.3.2 (α∗ and π∗) Given a set of n variables {v1, v2, . . . , vn}
and an ordered sequence of the assignments according to �, find an index k,

s.t.,
k∑
i=1

w(αi) ≤ 0.5
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and
k+1∑
i=1

w(αi) > 0.5 .

Denote αk by α∗ and w(αk) by π∗. In addition, the weight of the i-th as-

signment in the order, w(αi), is referred to as πi.

We now present two type of constraints for the WMC problem which are

based on α∗ and π∗. The algorithms that we will present in Sections 3.4.3

and 3.4.4 uses either one of them.

3.3.1 Cardinality Weight Constraint

With π∗ defined above, we can construct a constraint over all variables in

the formula. ∏
v∈ψ

(w(v) · v + w(¬v) · ¬v) ≤ π∗. (3.5)

This constraint imposes a restriction on a solution so that the total weight

of the solutions of the formula can be 0.5 at most.

Two issues must be addressed here:

• A product is hard to convert to CNF. Although the products can be

expanded by sums, this would add an exponential number of auxiliary

variables. To convert (3.5) into a more convenient form for CNF,

we take logarithm on both sides of the inequality. Thus, while the

inequality still holds, the result in the left part of the inequality is a

sum instead of a product.

• The weights are non-integer values, especially after we take a loga-

rithm on them. Yet because only approximated values are of interest

here, the inequality can be multiplied by some large value M and the

fractional parts can be removed.

Definition 3.3.3 (Cardinality Weight Constraint) Given a set of chance

variables CV = {v1, v2, . . . , vn}, a weight function w, an integer value M

and π∗, the cardinality weight constraint is defined as∑
v∈CV

(bM · log(w(v)) · vc+ bM · log(w(¬v)) · ¬vc) ≤ bM · log(π∗)c.
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The number M converts the coefficients of the inequality from numbers

less than zero into real numbers with positive integer parts. M can be

calculated, so that for the smallest possible weight, π1, the following holds:

|π1 ·M | ≥ 10. (3.6)

Increasing 10 to 100 or more would give a more precise constraint, but

our experiments demonstrate that 10 is sufficient. The technique described

in [9] is used to convert the weight cardinality constraint into CNF.

As with a regular cardinality constraint that can be defined on a small

subset of formula variables, the weight cardinality constraint can also be

defined on a subset of chance variables of the formula.

Until now we did not refer to the fact that there is no guarantee that the

constraint will reduce the formula weight by 50%. This is because not all

possible assignments for the variable subset can be extended to a solution

for the formula. In this case the constraint will cut much more or much less

than half of the formula weight. To cope with this issue, we randomly select

the inequality sign from {≤, >}. This enables us to even the probability of

each constraint to deviate from the ratio of 50% of the dropped weight in

either direction.

3.3.2 Plain Weight Constraint

An additional constraint based on the usage of π∗ is the Plain Weight Con-

straint. The plain constraint explicitly enumerates all assignments that come

before α∗ in the order defined in Definition 3.3.2. Of course, in case of a

large variable set, this constraint is not practical because even generating

it requires exponential time in the size of the set. However, for small con-

straints, the exponent is small and the constraint can be generated in a

short amount of time. With a subset of assignments {α1, α2, . . . , α
∗} that

contributes near half of the total weight of the set {α1, α2, . . . , α2n}, the

plain weight constraint can be constructed:

α1 ∨ α2 ∨ . . . ∨ α∗. (3.7)

In most cases, only a small number of assignments consume most of the

possible weight contribution of the variables set. For example, if a set of

26



variables {v1, v2, . . . , vn} has the weight function w(vi) = 0.9, w(¬vi) = 0.1,

0 ≤ i ≤ n, we can calculate the assignment that assigns true to all variables

in the set and constitutes most of the weight: 0.9n.

Also, because the assignments that consume most of the weight are usu-

ally very similar, the constraint can be simplified and encoded in a few

clauses.

Table 3.1: Example of the weight distribution between formula assignments

v1 v2 v3 w(v1) w(v2) w(v3) w(αi)

α1 true true true 0.7 0.7 0.5 0.245

α2 true true false 0.7 0.7 0.5 0.245

α3 true false true 0.7 0.3 0.5 0.105

α4 true false false 0.7 0.3 0.5 0.105

α5 false true true 0.3 0.7 0.5 0.105

α6 false true false 0.3 0.7 0.5 0.105

α7 false false true 0.3 0.3 0.5 0.045

α8 false false false 0.3 0.3 0.5 0.045

For example, as we can see from Table 3.1, for three variables v1, v2, v3
with weights 0.7, 0.7, 0.5 the assignments {v1 = true, v2 = true, v3 =

true} and {v1 = true, v2 = true, v3 = false} contribute the weight of

0.49. In this case, the CNF encoding of the plain weight constraint is v1∧v2.

3.4 Heuristics Overview

In the previous sections the fundamentals of our approach were explained:

normalization and the types of constraints. The following subsections de-

scribe the constraints are used for our purpose.

The following heuristics were attempted for the MC approximation:

1. Approximation based on number of added constraints.

2. Hybrid scheme, based on a number of added constraints in conjunc-

tion with an exact counter.

3. Variations of the MBound scheme.

27



For the WMC approximation, our approaches were the following:

1. Approximation based on the number of added constraints in conjunc-

tion with an exact weight counter.

2. Comparison of the weights of two pieces of evidence for the same

knowledge base by the number of added constraints until the formula

becomes unsatisfiable.

In the following algorithms we use three functions based on external

tools:

• IsSatisfiable: A function that checks whether the given formula is

satisfiable. We implemented this function by running the Minisat

SAT solver.

• ExactCount: A function that returns the exact model count of the

given formula. We implemented this function by running the Cachet

exact counter.

• ExactWeightCount: A function that returns the exact weight of

the given formula. We implemented this function by running the

WeightedCachet exact weight counter.

3.4.1 Iterations-based MC Approximation

The first approach to approximate MC is based on counting the number

of cardinality constraints added to the formula until the formula becomes

unsatisfiable. The scheme is depicted in Algorithm 3.4.1. The algorithm

receives two parameters:

• n: The number of iterations

• k: The number of variables to include in each constraint

The algorithm performs n iterations, each corresponds to an experiment.

In each iteration, it adds a cardinality constraint as long as the formula is

satisfiable. Each constraint reduces the model count by 50% on average,

and so the average of the added constraints can be viewed as an estimation

of the logarithm of the model count. Denote this average by a. The value

that the algorithm produces is 2a. Note that in line 6 we can generate a
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Algorithm 3.4.1 Iteration-based Approximation

Iteration-Based(n, k, ψ)

� ψ: a propositional formula in CNF with N variables
� n: a positive integer, representing the number of experiments.

� k: a positive odd integer, k ≤ N
2 , representing the size of the constraint.

1 sum← 0
2 for i← 1 to n
3 ψ′ ← ψ
4 p← −1

do
5 p← p+ 1
6 create Ccard(k, k/2) over k random variables from ψ
7 ψ′ ← ψ′ ∧ Ccard(k, k/2)
8 while IsSatisfiable(ψ′)
9 sum← sum+ p

return 2sum/n

general normalized cardinality constraint Ccard(k, k
′), where k′ ≤ k/2. In

this case, the result of the approximation is (1/ρ)sum/n, where ρ is the ratio

of dropped solutions calculated from k and k′ as described in Appendix A.

The added value of such constraints here is that we expect the same results

with less iterations number, and thus with less invocations of SAT solver

with results in shorter overall runtime.

A variation of this approach is to use the exact counter just before the

formula becomes unsatisfiable. It is depicted in Algorithm 3.4.2.

In addition to the parameters of Algorithm 3.4.1, this algorithm also re-

ceives a hybrid value. This value controls how many of the added constraints

are ignored when the formula is passed to the exact counter.
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Algorithm 3.4.2 Hybrid Iteration-based Approximation

Hybrid-Iteration-Based(n, k, ψ, x)

� ψ: a propositional formula in CNF with N variables

� n: a positive integer, representing the number of iterations.

� k: a positive odd integer,k ≤ N/2, representing the size of the constraint.

� x: a positive integer, x > 0, representing the hybrid value.

� S: a stack of formulas.

1 sum← 0

2 for i← 1 to n

3 ψ′ ← ψ

4 S.clear()

5 p← −1

do

6 p← p+ 1

7 create Ccard(k, k/2) over k random variables from ψ

8 ψ′ ← ψ′ ∧ Ccard(k, k/2)

9 S.push(ψ′)
10 while IsSatisfiable(ψ′)
11 if p > x then

12 for j ← 1 To x

13 S.pop() � ignore last x formulas

14 count← ExactCount(S.pop())

15 sum← sum + 2p−x+1 · count
16 else � cancel current iteration

17 i ← i− 1

return sum/n

3.4.2 MBound-based MC Approximation

A different approach is based on the MBound algorithm described in details

in Section 2.2. The MBound algorithm and its correctness guarantees are

based on the fact that a XOR constraint, on average, removes 50% of the so-

lutions. Because a normalized cardinality constraint has the same effect, we

replaced the XOR constraints with the normalized cardinality constraints.
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This can be done by generating a set of cardinality constraints instead of

XOR constraints in line 3 of MBound in Algorithm 2.2.1.

Because each constraint reduces the model count by a known propor-

tion, the lower and upper bounds produced by Mbound provide correctness

guarantees. We can therefore enjoy the same correctness guarantees after

replacing the XOR constraints with the cardinality constraints.

In addition, the efficiency of the cardinality constraints can be improved

by lowering the value of k in Ccard(n, k). As a result, each constraint re-

moves more solutions, and less clauses and auxiliary variables are required

to remove the same number of models.

Moreover, the cardinality constraints can be easier for SAT solver than

the XOR constraints. This is because SAT solvers cannot reject an assign-

ment until all the variables in the XOR constraint receive a value. Only

then can the constraint’s parity can be decided. For cardinality constraints,

the decision to reject an assignment can be made before all variables in the

constraint get their values, as described in Section 3.2.

3.4.3 Weight Approximation

The idea for WMC approximation is similar to the Hybrid-Iteration-

Based algorithm. Here also, constraints are added until the formula be-

comes unsatisfiable. The x last constraints are then removed and the result

is fed to the exact weight counter. Let us denote the number of iterations

as n, the number of constraints added in iteration i as ci and the result of

the counter in iteration i as wi. The algorithm calculates the average as the

estimation of the formula weight:∑n
i=1 2ci−x · wi−x

n
.

This approach is described in Algorithm 3.4.3

Definition 3.4.1 Denote the weight constraint over k random chance vari-

ables from the weighted propositional formula ψ as Cweight(k, ψ)
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Algorithm 3.4.3 WMC Approximation

WMC-Approx(n, k, ψ, x)

� ψ: a propositional weighted formula in CNF with N variables

� n: a positive integer, representing the the number of iterations

� k: a positive integer, k ≤ N/2, representing the the size of the constraints

� x: a positive integer, x > 0, representing the the hybrid value

� S: a stack of formulas

1 sum← 0

2 for i← 1 to n

3 ψ′ ← ψ

4 S.clear()

5 p← −1

do

6 p← p+ 1

7 C ← Cweight(k, ψ)

8 ψ′ ← ψ′ ∧ C
9 S.push(ψ′)

10 while IsSatisfiable(ψ′)
11 if p > x then

12 for j ← 1 To x

13 S.pop() � ignore last x constraints

14 weight← ExactWeightCount(S.pop())

15 sum← sum + 2p−x+1 · weight
16 else � cancel current iteration

17 i ← i− 1

return sum/n

In Algorithm 3.4.3, in line 7, the created constraint can be a cardinality

weight constraint or a plain weight constraint.

3.4.4 Evidence Comparison

As described earlier, the use of WMC for probability inference is targeted at

getting the probability of the evidence at hand. However, another use can
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be comparing the probability of two pieces of evidence to decide which one

is a more probable explanation for the observed facts. If this is the goal,

then an appropriate method can be sufficient provided that it is faster.

For example, given a Bayesian network that encodes some medical knowl-

edge base, and given the observed symptoms, one can test which of the two

possible diseases is the most probable. For this purpose we can encode the

observed symptoms and the first disease as evidence A, and the observed

symptoms and the second disease as evidence B. We can then compare the

probability of the two pieces of evidence by calculating and comparing their

weights.

We present a heuristic to perform this type of comparison without ac-

tually calculating the probability of the evidence. Let us denote by u(ψ)

the average number of weight constraints that must be added to ψ until it

becomes unsatisfiable. Our idea is, given two pieces of evidence encoded

into two formulas ψA and ψB, to compare u(ψA) and u(ψB). Algorithm

3.4.4, similar to Iteration-Based (Algorithm 3.4.1), describes how u(ψ)

is calculated:

Algorithm 3.4.4 Evidence-Comparison-Helper

Evidence-Comparison-Helper(n, k, ψ)

1 sum← 0
2 for i← 1 to n
3 ψ′ ← ψ
4 p← −1

do
5 p← p+ 1
6 C ← Cweight(k, ψ)
7 ψ′ ← ψ′ ∧ C
8 while IsSatisfiable(ψ′)
9 sum← sum+ p

return sum/n

Note that in line 6 we can create a constraint of either type of weight

constraints described in Section 3.3.

33



Chapter 4

Experiments

This part of the thesis describes the experiments performed in order to test

the heuristics described in the previous chapter. The benchmark formulas

used are taken from several sources.

For the MC experiments, two main sources were used: the collection of

formulas that accompanies the work of Gomes et al. in [15] and [12], and the

easy subset of formulas used in the SAT Competition 2009. These formulas

can be solved by modern SAT solvers in a very short amount of time, but

some of them are very hard for the exact MC counter. In addition, we used

our hand-crafted formulas that represent the problem of placing n pigeons

into n places. This is a very easy formula for both SAT solver and the exact

MC counter.

For the WMC problem we used the Bayesian networks and the evidence

available from the authors of the ACE tool [5], which was compiled into CNF

by ACE.

4.1 Experiments Related to MC

4.1.1 The Effect of Constraint Size and Type

First we conducted experiments to see the actual average number of dropped

solutions as a result of an added cardinality constraint. This experiment in-

cluded 100 iterations of adding cardinality constraints in the form Ccard(k, k/2),

where k = 11. The solutions of the formula were counted after each added

constraint. We then calculated the average number of the remaining solu-
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tions per number of added constraints. Table 4.1 demonstrates the results

of this experiment. It shows that the average number of the remained solu-

tion is indeed as expected. It exponentially decreases as a function of the

number of added constraints.

Table 4.1: The Average Ratio of Remaining Solutions per Number of
Cardinality Constraints

Formula Name Number of Constraints

1 2 3 4 5 6
expected % 50.0% 25.0% 12.5% 6.3% 3.1% 1.6%

logistics.a 48.1% 22.5% 10.4% 5.4% 2.5% 1.2%
logistics.b 48.4% 26.2% 11.1% 5.1% 2.7% 1.2%
cnf8 49.5% 24.7% 12.3% 7.4% 4.3% 1.9%
cnf9 47.0% 23.8% 10.4% 5.6% 2.2% 1.3%
instance n4 i4 pp 50.7% 28.1% 10.9% 6.4% 2.5% 0.9%

Average 48.7% 25.1% 11.0% 6.0% 2.8% 1.3%

These experiments were done with relatively easy formulas, so the exact

model count is feasible and can be done in a short amount of time. In

addition, similar experiments were run with general constraints. Table 4.2

shows the results of the experiment with the general cardinality constraint

Ccard(n, k), where n = 11 and k ∈ {4, 3, 2}. The expected drop ratio is 72%,

88% and 94%, respectively. The expected ratio of remaining solutions after

the first constraint is therefore 28%, 12% and 6%. The table demonstrates

that the accuracy is not as good as with Ccard(k, k/2), but nonetheless close

to the expected.

Our experiments show that it is not practical to use large constraints.

Each constraint increases the formula size and it becomes harder for the SAT

solver. After a certain number of large constraints, the SAT solver needs

hours to solve a single instance. Therefore, constraints with fewer variables

must be used.

We checked the effect of the constraint size on the accuracy of the

dropped solution ratio. Figure 4.1 shows the different logarithms accord-

ing to the number of expected solutions and the average number of solutions
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Table 4.2: The Average Ratio of Remaining Solutions per Number of the
General Constraints

Number of Constraints

Formula Name 1 2 3 4 5
Expected 28.19% 7.95% 2.24% 0.63% 0.18%

k=4

logistics.a 29.44% 6.68% 0.96% 0.25% 0.13%
logistics.b 23.48% 3.77% 0.93% 0.18% 0.06%
cnf8 34.22% 9.63% 2.44% 1.03% 0.21%
cnf9 28.45% 6.26% 1.64% 0.19% 0.05%
instance n4 i4 pp 34.95% 9.00% 2.81% 0.78% 0.17%

Average 30.11% 7.07% 1.76% 0.49% 0.12%

Expected 11.97% 1.43% 0.17% 0.02% 0.00%

k=3

logistics.a 11.48% 1.70% 0.15% 0.00% 0.00%
logistics.b 11.90% 2.77% 0.69% 0.09% 0.00%
cnf8 9.66% 1.16% 0.05% 0.01% 0.00%
cnf9 14.90% 2.19% 0.29% 0.00% 0.00%
instance n4 i4 pp 8.07% 0.20% 0.01% 0.00% 0.00%

Average 11.20% 1.60% 0.24% 0.02% 0.00%

Expected 5.83% 0.34% 0.02% 0.00% 0.00%

k=2

logistics.a 1.18% 0.07% 0.00% 0.00% 0.00%
logistics.b 7.96% 0.40% 0.04% 0.00% 0.00%
cnf8 4.43% 0.07% 0.00% 0.00% 0.00%
cnf9 5.64% 0.49% 0.01% 0.00% 0.00%
instance n4 i4 pp 4.89% 0.15% 0.00% 0.00% 0.00%

Average 4.82% 0.24% 0.01% 0.00% 0.00%
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per constraint size. The logarithm is described here because the exponential

decrease is easier to demonstrate using logarithms.

Let us denote the model count of the original formula as m0, and the

expected number of solutions of the formula after adding t constraints as

mt. The constraint is thus expected to reduce the model count by 50%,

mt = 0.5t · m0. Let us also denote the average number of solutions after

adding t constraints as at. We expect that log2(at) = log2(mt).

Figure 4.1 depicts data for four constraint sizes, constraints that consist

of 10%, 25%, 50% and 75% of all variables in the formula. The horizontal

axis shows the number of constraints. The vertical axis shows the absolute

error of the estimation defined as | log2(at) − log2(mt)|. For example, this

value is close to zero for the first constraint, regardless of its size. Only after

nine constraints does the difference become noticeable. ”Noticeable” in this

sense means that the value of absolute error, as we defined it, is greater

than 1.
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Figure 4.1: Difference Between the Expected and Average Number of

Remaining Solutions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

10% 0.087 0.049 0.029 0.134 0.176 0.093 0.011 0.186 0.088 0.056 0.359 0.055 0.629 0.81 0.364 7E-04 0.727 1.614

25% 0.034 0.008 0.065 0.037 0.133 0.151 0.199 0.122 0.258 0.028 0.162 0.206 0.224 0.118 0.032 0.141 0.574 0.74

50% 0.014 0.047 0.052 0.183 0.386 0.292 0.282 0.101 0.335 0.648 0.702 0.789 0.836 0.847 0.981 0.983 1.355 1.308

75% 0.011 0.011 0.008 0.009 0.013 0.024 0.052 0.119 0.047 0.262 0.222 0.201 0.559 0.396 0.637 0.377 0.898 0.934
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Error value after number of constraints per constraint size. 

4.1.2 Iteration-based Approximation

In Section 3.4.1 we described an iteration based approximation. We al-

ready showed in Section 4.1.1 the effect of constraint size and constraint

type. Here we will concentrate on cardinality constraints in the form of

Ccard(11, 5). Our experiments showed that constraints of size 11 are opti-

mal for the formulas with which we experimented.

Table 4.3 presents the results of the experiments with the Iteration-

Based scheme presented in Algorithm 3.4.1. The number of iterations is 100

in all experiments. The right-most column represents the error, calculated

in the following manner: Let us denote the expected model count after t

constraints as mt and the estimation as at. The absolute error is defined as

|log2(mt)−log2(at)|. The results are always under-approximations. More so,

in some cases the number of added constraints does not pass 3-4 while more
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than 20 were expected. The results of the iteration-based approach suffers

from the non-uniform probability of the algorithm to reach the t-th power

of 2. In each iteration, the probability of finishing with the lower powers

of 2 is higher than the probability of finishing with the higher powers of 2.

This is because each added constraint has the potential to make the formula

unsatisfiable.

Table 4.3: Results of Iteration-based Approximations

Formula Name Real MC Estimation Error

logistics.b 4.53E+23 1024 20.65

php-010-020.cnf 1.85E+05 8192 1.35

instance n4 i4 pp 5.46E+10 64 8.93

AProVE09-13 3.86E+22 128 20.48

cnf9 3.63E+05 1024 2.55

Table 4.4 presents the results for a Hybrid-Iteration-Based scheme

presented in Algorithm 3.4.2. In this case, the hybrid value is 1. I.e. if

it took t constraints to make the formula unsatisfiable, we run the exact

counter on the formula with t − 1 constraints. As our experiments show,

this is the optimal value because it gives relatively accurate results in an

acceptable amount of time. Attempts to enlarge this value result in worse

estimations.

The values in the right-most column are the most interesting. They

indicate the level of accuracy of the approximation. There are mostly over-

approximations in this column. This can be explained by the fact that the

value is an average over 100 estimations. If even a few of the estimations

are over-approximations, this error has an exponential weight in the final

average.

For example, suppose we have a formula with m solutions, and we run

the Hybrid-Iteration-Based algorithm only for two iterations. Suppose

also that the first iteration finishes after log(m) + 1 constraints and the

second after log(m) − 1. Let us assume also that the result of the exact

counter is 1 for both iterations. The average of the constraint number is
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still as expected:

log(m)− 1 + log(m) + 1

2
= log(m).

But the average of the estimations is

2log(m)−1 + 2log(m)+1

2
=

5m

4
,

as opposed to the expected m. Although the error occurs in both itera-

tions, the weight of the over-approximation is larger than that of the under-

approximation.

In addition to the hybrid and plain iteration-based approaches we tried

another two methods of calculation.

• Average of iteration estimations. This is a variation of Algorithm

3.4.1. But instead of calculating the average of iterations number of

the experiments, we calculate an estimation per experiment and then

output the average of those estimations. Denote the iterations number

of the experiment i as ni. The estimation ei of the experiment i is

ei = 2ni . Thus, if the number of experiments is N , the approximated

value is ∑N
i=1 ei
N

.

• Average of ”calculated” iterations number. This is a variation of Al-

gorithm 3.4.2. But instead of calculating the average of estimations

of the experiments, we convert the result of exact counter to addi-

tional number of iterations. Denote the number of the iterations in

the experiment i as ni. Denote the exact counter result in the exper-

iment i after ni added constraints as ri. This result is converted into

additional iterations number as follows:

n′i = blog2 ric .

If the number of experiments is N , the result of the approximation

algorithm is ∑N
i=1 ni + n′i
N

.
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Both methods did not give any improvement.
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Table 4.4: Results of the Hybrid-Iteration-Based Algorithm

Formula Name E
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logistics.b 4.53E+23 11 5 7.61E+23 1376 0.749

Q3inK08 2.35E+08 11 5 1.58E+08 154154 0.573

AProVE09-13 3.86E+22 11 5 1.71E+22 32087 1.176

php-010-020 6.70E+11 11 5 1.54E+10 4668 5.441

logistics.b 4.53E+23 11 4 1.37E+27 2051 11.568

Q3inK08 2.35E+08 11 4 2.35E+17 76 29.896

AProVE09-13 3.86E+22 11 4 8.67E+27 29692 17.777

php-010-020 6.70E+11 11 4 1.19E+16 16961 14.118

logistics.b 4.53E+23 11 3 2.37E+24 1398 2.391

Q3inK08 2.35E+08 11 3 3.35E+09 457 3.832

AProVE09-13 3.86E+22 11 3 5.19E+23 2974 3.749

php-010-020 6.70E+11 11 3 2.47E+11 52499 1.442

logistics.b 4.53E+23 25 12 4.97E+63 255607 133.013

Q3inK08 2.35E+08 25 12 2.79E+71 29606 209.530

AProVE09-13 3.86E+22 25 12 1.65E+67 250765 148.258

php-010-020 6.70E+11 25 12 1.60E+50 37523 127.485

logistics.b 4.53E+23 25 10 3.67E+33 24973 32.917

Q3inK08 2.35E+08 25 10 9.29E+33 2629 85.031

AProVE09-13 3.86E+22 25 10 1.01E+30 85796 24.638

php-010-020 6.70E+11 25 10 5.76E+17 57920 19.714

logistics.b 4.53E+23 25 8 4.53E+27 5265 13.290

Q3inK08 2.35E+08 25 8 5.83E+16 24057 27.887

AProVE09-13 3.86E+22 25 8 1.60E+25 69254 8.695

php-010-020 2.1E+40 25 8 3.40E+15 45486 82.354
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4.1.3 MBound Variation

To test the MBound variation, we compared the lower bounds that can

be achieved using cardinality constraints against those that can be achieved

using XOR constraints. We are interested in the overall runtime and in the

quality of the lower bound, that is, how close it is to the real count.

Table 4.5 summarizes the results of running the MBound variation on

some of the formulas. They represent various observed cases. It is worth

noting that Ramsey problems are the only family of formulas for which

MBound produces better lower bounds and in shorter time with cardi-

nally constraints. For all other formulas, the bounds were lower than those

achieved using XOR constraints. In addition, in many cases the runtime of

the SAT solver was longer on the formulas with the cardinality constraints

than on those with the XOR constraint.
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Table 4.5: Results of MBound. Cardinality vs. XOR

Formula Name R
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ls15-normalized 264 7813 264 295

logistics.b 279 27 1< 250 3

Ramsey 20 rd r45 260 617 250 16072

Ramsey 23 rd r45 223 2568 216 8130

fphp-010-020 239 210 1< 235 7

een-tip-texas 2162 21 1< 22 3

2bitmax 6 295.7 232 1< 285 1.7257

AProVE09-24 2207 222 128 2130 444

bw large.d 27 21 4 21 10

een-tip-sat-texas-tp-5e 2163 21 1< 21 1<

fclqcolor-18-14-11 2133 260 53 2120 54

fclqcolor-20-15-12 2153 260 399 270 3.51

fphp-010-020 210 232 1< 235 7.23

instance n6 i7 pp 26 3387 210 1151

lang24 28 12 230 14

ls11-normalized 240 122 240 15693.73

ls15-normalized 250 1138 250 8

ndhf xits 21 SAT 25 28466 215 2467

q query 3 l40 lambda 220 1665 220 343

QG7a-gensys-ukn001 2930 2884 21075 1218
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4.2 Experiments Related to WMC

Similarly to the MC experiments, we conducted some experiments with

the weight constraints to examine the average ratio of removed formula

weight. We also examined the effect of the constraint size on the removed

weight ratio. Table 4.6 summarizes the results on some of the formulas with

cardinality weight constraints, while table 4.7 summarizes the results on the

same formulas with plain weight constraints.

In some cases, like that of the tcc4f.obfuscated formula family, adding

long cardinality weight constraints makes the formula too difficult for the

exact weight counter. This is why these formulas have no exact results.

As expected, each added constraint decreases the formula weight by a

factor of 2. It can also be observed that a relatively small constraint still

provides a ratio close to the expected.

4.2.1 Results for WMC Approximation

The results for the algorithm WMC-Approx, presented in Section 3.4.3, are

highly disappointing. We expected to find formulas for which WeightedCachet

would perform better when they are constrained. The idea is that the less

there is to count, the less time the counter would run. In practice, however,

the runtime of WeightedCachet was never shorter on constrained formulas.

In fact, it sometimes required almost five hours to produce an estimation,

while unconstrained formulas can be solved in less than 30 minutes. More-

over, because we must run WeightedCachet many times, once per iteration,

it is not viable to use such a scheme unless the runtime of WeightedCachet

is largely reduced. In addition, the accuracy of the results were inaccurate,

and indeed very far from the real formula weight. Producing an estimation

of 2 · 10−3, when the real weight is 2 · 10−190, was not uncommon.

4.2.2 Results for Evidence Comparison

The other heuristic we presented, the evidence comparison, showed better

results but still not good enough. Only some of the comparisons work as

expected. Occasionally, the average constraint number fails to correspond to

the real formula weight. For example, if two formulas have the same weight,

the same average constraint number is expected on both formulas. Experi-
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Table 4.6: Remaining Weight Ratio per Number of Added Cardinality
Weight Constraints

Name Real Weight Constraint Size # of Constraints Actual Expected

tcc4f.obf-4 2.00E-99

30 1 timed out 50.0%
30 2 timed out 25.0%
30 3 timed out 12.5%
30 4 timed out 6.3%

20 1 45% 50.0%
20 2 7% 25.0%
20 3 0% 12.5%
20 4 0% 6.3%

9 1 59% 50.0%
9 2 30% 25.0%
9 3 15% 12.5%
9 4 8% 6.3%

master-3 8.09E-192

30 1 42% 50.0%
30 2 27% 25.0%
30 3 18% 12.5%
30 4 12% 6.3%

20 1 33% 50.0%
20 2 27% 25.0%
20 3 6% 12.5%
20 4 0% 6.3%

9 1 48% 50.0%
9 2 26% 25.0%
9 3 11% 12.5%
9 4 7% 6.3%
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Table 4.7: Remaining Weight Ratio per Number of Added Plain Weight
Constraints

Name Real Weight Constraint Size # of Constraints Actual Expected

tcc4f.obf-4 2.00E-99

30 1 55% 50.0%
30 2 32% 25.0%
30 3 18% 12.5%
30 4 10% 6.3%

20 1 44% 50.0%
20 2 24% 25.0%
20 3 13% 12.5%
20 4 5% 6.3%

9 1 50% 50.0%
9 2 26% 25.0%
9 3 11% 12.5%
9 4 5% 6.3%

master-3 8.09E-192

30 1 45% 50.0%
30 2 25% 25.0%
30 3 13% 12.5%
30 4 5% 6.3%

20 1 48% 50.0%
20 2 26% 25.0%
20 3 11% 12.5%
20 4 7% 6.3%

9 1 57% 50.0%
9 2 28% 25.0%
9 3 14% 12.5%
9 4 7% 6.3%
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ments showed, however, that even though the weight remains the same, the

structure of the formulas is different enough so that the average number of

constraints produced by Evidence-Comparison-Helper is different.

Table 4.8 summarizes the results of the Evidence-Comparison-Helper

procedure. It contains the average number of constraints produced with both

weight constraint types, cardinality and plain.

A column order is also included: In each formula family, the formu-

las were ordered according to their ascending weight. This is reflected in

the order column. The average numbers were expected to form the same

ascending order as the formulas’ weights, yet they did not.
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Table 4.8: Results for Evidence-Comparison-Helper

Formula Family Order Real Weight Cardinality Avg. Iter. # Plain Avg. Iter. #

alarm

1 5.29254E-11 5.6061 15.212

2 1.9847E-10 3.5455 10.758

3 1.46481E-07 6.0606 10.636

4 1.87587E-07 5.4848 22.879

5 0.00026977 4.5758 32.394

blockmap 05 03

1 1.9274E-282 0.78788 2.0303

2 5.7821E-282 0.48485 2.2121

3 5.7821E-282 0.78788 2.1212

4 5.7821E-282 0.84848 2.5152

5 6.1033E-282 1.4242 2.2727

mastermind 03 08 03

1 1.2345E-196 0.9697 1.9697

2 2.469E-196 0.9697 2.1515

3 2.469E-196 1.2121 2.3939

4 2.469E-196 0.78788 1.6061

5 1.4814E-195 0.87879 2.0303

pigs

1 2.21079E-75 6.1515 11.576

2 1.4149E-73 6.6364 10.485

3 2.82983E-73 4.4242 10.848

4 4.52772E-72 5.5152 7.8788

5 9.05552E-72 5.8182 6.8485

tcc4f.obfuscated

1 2.0024E-99 3.9697 7.5758

2 4.50166E-94 4.0909 7.6364

3 1.17006E-92 3.697 6.5758

4 6.93726E-91 3.7576 7.3636

5 9.81259E-84 3.8788 7.3333

water

1 0.000217273 18.091 451.7

2 0.0280042 19.909 462.85

3 0.032759 13.273 477.52

4 0.0351524 19.303 498.67

5 0.0617444 12.303 453.76
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4.3 Discussion

Our experiments demonstrate that the proposed heuristics do not provide

good estimations. Moreover, the results now require more time than when

running the exact counters. This is mainly because every one of the pre-

sented heuristics relies on average values. For MC approximation, we rely

on the ratio of removed solutions. For WMC approximation, we rely on the

decreased weight of the formula. Although the average is correct in theory,

the variance of these values is very large as illustrated in the Table 4.9,

which compares the variance of removed solutions ratio for XOR and car-

dinality constraints. Even though the ratio of dropped solutions is similar,

the variance of cardinality constraints is much worse.

Table 4.9: Average Deviation per Constraint Type of the Remaining

Solution Count

# of Constraints XOR Ccard(k, k/2), k = 11

1 4.4% 61.1%

2 5.8% 79.6%

3 6.5% 110.0%

4 8.0% 131.3%

5 8.6% 127.8%

6 9.1% 124.8%

7 9.0% 130.6%

8 10.1% 155.7%

9 10.7% 177.6%

10 11.2% 268.0%

The two following tables summarize the implications of the difference

in variance. The first, Table 4.10, summarizes the results of Iteration-

Based. The second, Table 4.11, summarizes the results of Iteration-

Based, except that XOR constraints were used instead of cardinality con-

straints.
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Table 4.10: Average Constraint Number per Constraint Size when Using

Cardinality Constraints

Formula Name Average Constraint Number Expected

10% of Variables 25% of Variables 50% of Variables

cnf8 9.16 8.79 8.38 15.3

cnf9 9.51 9.21 8.78 18.4

Table 4.11: Average Constraint Number per Constraint Size when Using

XOR Constraints

Formula Name Average Constraint Number Expected

10% of Variables 25% of Variables 50% of Variables

cnf8 14.9 15.2 15.2 15.3

cnf9 18.2 18.7 18.8 18.4

It is clear that XOR constraints give better results: The average number

of constraints is much closer to the real MC logarithm. Each cardinality

constraint has a much higher probability to make the formula unsatisfiable,

a probability that differs from formula to formula. In fact, if a constraint

has a probability ρ to make the formula unsatisfiable, the average number

of constraints would be 1/ρ. Thus, even if each constraint removes half of

the solutions or the formula weight on average, the average of constraint

number remains 1/ρ regardless of the weight or the real model count.

An additional issue with two of our heuristics, Hybrid-Iteration-

Based and WMC-Approx, is the use of external tools. The reason to

use the tools is to improve the accuracy of the estimation by calculating

MC or WMC of a constrained formula. The problem is that the runtime of

the tools used, Cachet and WeightedCachet, does not improve on the con-

strained formulas. On the contrary – in some cases, the constrained formula

proves too difficult for the counter while the unconstrained formula can be
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processed within a few minutes.
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Chapter 5

Conclusion

In this thesis we presented several heuristics for approximating MC and

WMC. All the heuristics are based on the core idea of removing controlled

ratio of formula solutions or formula weight. The removal is done by adding

structured constraints to the target formula. None of the presented methods

is better than the known methods, described in Chapter 2. We couldn’t

achieve better quality or better runtime results.

We showed theoretically and experimentally that a single constraint,

on average, removes the expected ratio of formula weight or the formula

solutions. But it is not enough to create an approximation scheme. Our

experiments showed that the variance of removed solutions or formula weight

is very large. Thus, for good estimations, many experiments were required,

which is not practical because of the time it takes to run a single experiment.

It is better to run the exact counter and get exact results than use our

scheme.

Moreover, it turns out that any constraint can make the formula unsat-

isfiable, and the probability of this event is specific per formula. This fact

largely reduces the expected number of constraints we need to add until the

formula becomes unsatisfiable. Thus, because our approximation heuristics

depend on that number, our estimation is of a lower quality than the results

obtained with other methods.
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Appendix A

How Many Solutions Does

Ccard(n, k) Remove?

This appendix describes how one can effectively calculate the ratio of dropped

solutions ρ as a result of adding general normalized cardinality constraint

Ccard(n, k), where k < n/2.

To calculate the expected ratio we use the approximation of a Binomial

distribution by Normal distribution. More formally, by the de Moivre–Laplace

[18] theorem, a random variable Y ∼ Bin(n, p) can be approximated by

X ∼ N (np, np(1− p)).
Section 3.2 shows that if ∀v ∈ ψ, R+(ψ, v) = 0.5, then the probability to

satisfy a random normalized cardinality constraint of size n can be modeled

by a random variable Y ∼ Bin(n, 0.5). It can thus be approximated by a

random variable X ∼ N (n/2, n/4). With this in hand, we can approximate

the probability Pr(Y ≤ k) , k < n by Pr(X < k). Because X is a normally

distributed variable, the following is true:

Pr(X ≤ k) = Pr

(
X − E(X)√
V AR(X)

≤ k − E(X)√
V AR(X)

)

= Pr

(
X − n/2√

n/4
≤ k − n/2√

n/4

)

= Φ

(
k − n/2√

n/4

)
.
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Φ(. . .) denotes the cumulative probability function of the a standard normal

distribution. Therefore, the probability of a solution to satisfy Ccard(n, k)

is the following:

Φ

(
k − n/2√

n/4

)
.

The ratio of dropped solutions is thus the following:

1− Φ

(
k − n/2√

n/4

)
.
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דומשלק כרמל ופרופ' שטריכמן עופר פרופ' בהנחיית נעשה .המחקר
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במחקרי. אותי להנחות כדי שהשקיעו היקר הזמן על





תקציר

פתרונות מספר של חישוב בעיית היא ,MC או Model־Counting בעיית
היא WMC או Weighted Model Counting בעיית בולאנית. נוסחה של
של (משקל בולאנית נוסחה של ממושקלים פתרונות של חישוב בעיית
הבעיות שתי משלו. משקל מוצמד בנוסחה ליטרל לכל כאשר הנוסחה),
של פתרונות ספירת לבעיות מחלקה היינה #P כאשר P#־שלמות, הן
לבעיות פתרון שיטות למצוא ומעשי תאורתי עניין קיים NP־קשות. בעיות
לחשב כדי משתמשים WMCב־ .#P עבור קנונית כבעייה נחשבת MC אלו.

הסתברותי. הסק בתחום בייסיאניות ברשתות שוליות הסתברויות

ושל MC של מדויק לחישוב כלים מספר פותחו האחרונות שבשנים למרות
מצליחים אינם הללו הכלים הנוסחאות, קושי את מעלים קצת אם ,WMC
MC של מקורב חישוב של בשיטות ועניין צורך קיים לכן עמן. להתמודד
רוב .WMCו־ MC של מקורב לחישוב שיטות מספר קיימות אכן .WMC ושל
קיימת כן, כמו קרלו. מונטה סימולציות על בעיקר מתבססות השיטות
של מסוימת חזקה אם בודקת מיוחדים אילוצים הוספת ע"י אשר שיטה
נתונה. נוסחה עבור פתרונות מספר של עליון או תחתון חסם הינה 2
.WMC ו־ MC של מקורב לחישוב חדשה גישה מתארים אנחנו זו בתזה
משקל או פתרונות מספר של מבוקר צמצום על מתבססת שלנו הגישה
סוגים כמה מתארים אנחנו יעודיים. אילוצים הוספת ע"י הנוסחה של
.WMC או MC את בקירוב לחשב מנת על בהם שימוש ודרכי אילוצים של
משקל את מוריד בודד אילוץ כי ניסויים וע"י תאורתי באופן מראים אנו

צפוי. בשיעור פתרונותיה מספר או הנוסחה

MCל־ שלנו הגישה

מצמצמים אשר קרדינליות אילוצי על מתבססת MC עבור שלנו השיטה
קרדינליות אילוץ מספקת השמה בחצי. הנוסחה של הפתרונות מספר את
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kל־ היותר לכל true ערך נותנת ההשמה אמ"מ
∑n

i=1 xi ≤ k מהצורה
true ערך עם מופיע משתנה כל אם באילוץ. המשתתפים משתנים מתוך
קרדינליות אילוץ כי להראות ניתן הנוסחה, של מהפתרונות בחצי בדיוק
אחד למשתנה אפילו כי מובטח שלא כמובן מהפתרונות. חצי מוריד בודד
"נרמול הנקראת בפעולה משתמשים אנחנו לכן זו. תכונה תהיה בנוסחה
בנוסחה. משתנה של מופע כל הופכים אנחנו זו בפעולה נוסחה”. של
כמו .¬xל־ הופך xו־ ,xל־ הופך ¬x של מופע כל x משתנה עבור כלומר,
התוצאה הנוסחה. את לשנות מבלי עצמו האילוץ את רק לנרמל אפשר כן
בעזרת הנוסחה. של לנרמול זהה לנוסחה הנוסף אילוץ של רק נרמול של
כל בממוצע כלומר הרצויה, התכונה את מקבלים אנחנו זו נרמול פעולת

מהפתרונות. בחצי חיובי מופיע משתנה

את ניסינו אנחנו קרדינליות ואילוצי הנרמול תוצאות את לנצל בכדי
הבאות: הגישות

מספר מבצעים אנו זו בשיטה איטרציות. מבוסס מקורב חישוב •
עוד אליה מוסיפים ספיקה, הנוסחה עוד כל הבא: מהסוג ניסויים
iה־ בניסוי שהתווספו האילוצים מספר את נסמן קרדינליות. אילוץ
פתרונות מספר של קירוב הנו 2a אזי ,a כ־ ni של ממוצע נסמן .niב־

הנוסחה. של

של ניסויים מספר כן גם מבצעים אנחנו זו בגישה היברידית. גישה •
להיות מפסיקה שהנוסחה ברגע אבל קרדינליות. אילוצי הוספת
מספר את ומחשבים אחרונים, אילוצים X מורידים אנו ספיקה,
באיטרציה שהתווספו האילוצים מספר את נסמן המדויק. הפתרונות
,miב־ אילוצים ni − X אחרי שנשארו פתרונות מספר ואת niכ־ i

היא בודד ניסוי של תוצאה אזי

. e = 2ni−X ·mi

הנוסחה. של פתרונות מספר של קירוב הינו e של ממוצע

או תחתון חסם לתת מנסה MBound שיטת .MBound של וריאציה •
השמה .XOR באילוצי משתמשים MBoundב־ .MC עבור עליון חסם
זוגי למספר true ערך נותנת ההשמה אמ"מ XOR אילוץ את מספקת
אילוצי מספר מוסיפים זו בשיטה באילוץ. המשתתפים משתנים של
כי להראות ניתן ספיקה. עדיין הנוסחה אם ובודקים לנוסחה XOR
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אחרי אם כלומר בחצי. נוסחה של פתרונות מספר מוריד XOR אילוץ
חסם הינו 2n כי לומר ניתן ספיקה, עדיין הנוסחה XOR אילוצי n

MBoundב־ XOR אילוצי מחליפים אנחנו הפתרונות. למספר תחתון
קרדינליות. לאילוצי

WMCל־ הגישה

אילוצים לנצל מנסים אנחנו כאן .MC של לזו דומה WMCל־ שלנו הגישה
אילוצי בקצרה או בחצי, הנוסחה משקל את מורידים בממוצע אשר
הפתרונות של המשקלות סכום להיות מוגדר נוסחה של משקל המשקל.
הליטרלים של המשקלות של מכפלה הינו פתרון של משקל כאשר שלה,
מהפתרונות חלק מורידים אשר המשקל, אילוצי סוגי שני ניסינו אנחנו שלו.
לכך לגרום בעצם היא הסוגים שני של מטרתם מהמשקל. חצי שתורמים
חלק של הכולל ומשקל אותם יספקו הנוסחה של מהפתרונות חלק שרק

הנוסחה. של ממשקל חצי יהווה זה פתרונות

להצביע נוכל שלהם, המשקל לפי הנוסחה של הפתרונות את נסדר אם
שווה או קטן שלפניו הפתרונות של המשקלות כל שסכום כך α פתרון על
כבר פתרון עוד של משקל של ותוספת הפתרונות, כל של משקל של לחצי

.π∗כ־ α פתרון של משקל את נסמן החצי. את תעבור

או קטן משקל נותנים אשר פתרונות רק מספק האילוצים של ראשון סוג
בסדר α עד הפתרונות כל של רשימה פשוט הוא שני סוג .π∗ל־ שווה
המשקל, רוב את תורם קטן מאוד מספר ובד"כ מאחר למעלה. שהוגדר

הביטוי. את לפשט ואח"כ הפתרונות את לשרשר פשוט ניתן

משמעותית או יותר משמעותית להוריד יכולים האילוצים סוגי ששני ברור
את מוסיפים 0.5 של בהסתברות אנחנו לכן המשקל. של מחצי פחות
של מהמשקל חצי מוריד אילוץ שבממוצע מקבלים וכך האילוץ, של היפוכו

הנוסחה.

זאת עושים אם אבל שהגדרנו, כמו α פתרון למצוא קשה כי מובן כן, כמו
אלה משתנים של בהשמות ומתחשבים המשתנים של קטן חלק על רק
משתני של קטנה תת־קבוצה בוחרים אנחנו כלומר, אפשרי. זה בלבד,
אמיתיים בפתרונות להתחשב בלי עבורם α ההשמה את מחפשים הנוסחה,
את מורידים באמת קטנים אילוצים שבצענו, הניסויים לפי הנוסחה. של

בחצי. בממוצע הנוסחה משקל
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:WMCל־ הקשורות שיטות בשתי המשקל באילוצי השתמשנו אנחנו

.MC של היברידית לשיטה דומה זו שיטה .WMC של מקורב חישוב •
אילוצי מוסיפים אנו ניסוי בכל ניסויים. מספר מבצעים אנחנו
מורידים אנחנו אח"כ ספיקה. בלתי נהיית שהנוסחה עד המשקל
מספר את נסמן הנותר. המשקל את ומחשבים אחרונים אילוצים X
אחרי שנשאר המשקל ואת niכ־ i באיטרציה שהתווספו האילוצים

היא בודד ניסוי של תוצאה אזי wiב־ אילוצים ni −X

. e = 2ni−X · wi

הנוסחה. של המשקל של קירוב היא e של ממוצע

נוסחאות. שתי של משקלים להשוות נרצה לפעמים משקלות. השוואת •

הסתברויות. של לחישוב WMCב־ משתמשים הסתברותי, הסק של בתחום
לפעמים מסויים. למקרה הסתברות הינו נוסחה של משקל כלומר,
מציעים אנחנו יותר. גדולה הסתברות יש מקרה לאיזה לדעת נרצה
השיטה משקלם. את לחשב בלי נוסחאות שתי של משקלות להשוות
לנוסחה להוסיף שצריך המשקל אילוצי של ממוצע מספר להשוות היא
מאוד שנוסחאות כך על מתבססים אנחנו ספיקה. בלתי שתהיה כדי

המשקל. רק הוא ביניהן הבדל ולכן שלהן במבנה דומות

סיכום

בפחות או טובות יותר הערכות נותנת לא שניסינו מהשיטות אחת אף
עונה בודד אילוץ הוספת של שתוצאה למרות הידועות. מהשיטות זמן
היא לכך הסיבה טובה. קירוב שיטת לספק כדי מספיק לא זה לציפיות,
מורידים. שלנו שהאילוצים המשקל אחוז או הפתרונות בכמות גדולה שונות
קיימת מהמשקל, או מהפתרונות חצי מוריד בממוצע בודד אילוץ אומנם
זה כלומר, ספיקה. בלתי להיות לנוסחה יגרום שהאילוץ לכך הסתברות
עקב כן, על יתר האילוצים. כמות על המתבססות בשיטות מאוד פוגע
צריכים אנו האמיתי, לערך שקרוב ממוצע לקבל כדי הגדולה, השונות
יותר ריצה זמן ולכן זמן הרבה שלוקח מה ניסויים, של רב מספר לבצע

הקיימות. מהשיטות ארוך

IV
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