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Abstract

Model-Counting (MC) is the problem of determining the number of solu-
tions (models) for a given propositional formula. Weighted Model Counting
(WMC) is the problem of finding the total weight of the models of a propo-
sitional formula, where that weight is based on weights assigned to each of
the literals. MC and WMC are #P problems (#P is the class of problems of
finding the number of solutions for an NP hard problem). There are efficient
methods for exact counting, but since the problem is hard both theoretically
and in practice, it makes sense to find approximations. Indeed several ap-
proaches exist for MC and WMC approximations, and for approximating
lower /upper bounds on the count/weighted count. Those methods are usu-
ally based on various sampling methodologies. Another approach tries to
provide lower and upper bounds by adding constraints to the target formula
that reduce the number of solutions in a predictable manner.

In this thesis we describe a new approach to approximating MC and
WMC. Our solution is based on a controlled reduction of the number of
models or their weight by adding specially constructed constraints. We
present several types of constraints and methods of using them in order to
approximate the model count or the weight of a given propositional for-
mula. We show theoretically and experimentally that a single constraint, on
average, removes the expected ratio of formula weight or solutions. Unfortu-
nately, however, our experiments with real formulas show that the variance
in the number of removed solutions (or formula weight) is too high to create
a practical approximation scheme.



Abbreviations and Notations

Al
R-l-(wvv)

PAR(x)
S()

C:vor
Ccard(n7 k)

Cweight (k, w)

The size of the set A

The ratio of solutions of a formula ¢ in which the variable v
appears positive

The set of parent nodes of node x in a Bayesian network
The set of solutions of the formula

A XOR constraint that only allows an odd number of vari-
ables to be TRUE

A cardinality constraint that allows a maximum of &k variables
out of n to be TRUE

A weight constraint over k random chance variables from the
weighted propositional formula v



Chapter 1

Introduction

1.1 The Problem

Model Counting (MC) is the problem of determining the number of solu-
tions (models) for a given propositional formula. Similarly, Weighted Model
Counting (WMC) is the problem of finding the total weight of the models,
when that weight is based on the weights assigned to each literal of the for-
mula. This thesis describes a new approach to approximating the number
of solutions (MC) and weighted model counting (WMC) problems. Our so-
lution is based on a controlled reduction of the number or weight of models
by adding structured constraints.

For example, let us define the weight of a solution as the product of
the weights of its literals. Now let us assign a weight of 0.5 to each literal,
regardless of whether the variable is positive or negative in the solution. For
the formula ¢ = (z V y) we will get a total weight of 0.75. This is because
each solution “weighs” 0.25 and only 3 out of all 4 possible assignments
are models for this formula. For MC, the result here is 3. For WMC, it is
0.75. Note that because of our specific weight setting, this is precisely the
probability of any random variable assignment to be a satisfying assignment
(or a solution).

MC is a #P-complete problem [25] (#P is the class of problems of count-
ing solutions to NP-hard problems). In fact, even #2SAT is #P-complete
as shown in [26]. WMC is simply an extension of MC. As such, it can be
modeled by the latter, albeit at the cost of more variables and hence at a
greater calculation effort. There is a practical usage of WMC as one of the



ways to solve Bayesian inference problem [21]. Thus, while MC, being a
canonical #P-complete problem, has fundamental theoretical importance,
improving methods for WMC can have important practical implications.

1.2 Existing Solutions

There are two main categories of solutions to MC and WMC: exact and
approximated. Exact counting is usually based on the DPLL procedure [14].
Unlike the regular DPLL procedure, here the search does not stop after all
clauses in the target formula are satisfied. Instead, when a satisfiable branch
is found after assigning t out of all n variables, 2"~ is added to the total
count and the search is continued. The inherent computational complexity
of MC and WMC has led to development of approximations. Approximated
solutions are often the only ones possible given a time limit (and an ex-
act count is sometimes not necessary). The following review of existing
approaches to MC and WMC is based on [14].

1.2.1 Exact Counters for MC

The exact counting scheme based on DPLL was first used in CDP [2]. It
basically ran DPLL until all solutions were enumerated. More effective exact
counters like Relsat and Cachet use component analysis[16]. That is, they
divide the formula into connected components and process them separately.
Let us present the CNF formula as a graph where each variable is a vertex.
An edge appears between every two variables that appear in the same clause.
If this graph can be partitioned into disjoint components, we will get sets of
clauses that represent separate subproblems of the original formula. Clearly,
counting models is faster for smaller formulas.

Relsat [16] determines the components lazily while it advances on the
search space. The total number of solutions is calculated by combining the
results of all components. Cachet [20] also incorporates a caching mech-
anism to detect already-seen subproblems and skips the calculation if the
result is already known. The more advanced counter sharpSAT [24] employs
implicit BCP, in addition to component analysis and more sophisticated
caching. Implicit BCP is a known technique in the SAT community. We
regularly test whether setting a variable v to TRUE (FALSE) makes the for-



mula unsatisfiable. If the test is positive, we assign v =FALSE (TRUE) and
simplify the formula.

The opposite approach is taken in another exact counter - c2d [6]. Tt
converts the given CNF formula into deterministic, Decomposable Negation
Normal Form (d-DNNF). d-DNNF is a strict superset of ordered BDDs. By
traversing the d-DNNF tree bottom up, one can calculate the model count
in polynomial time. While converting the CNF formula to d-DNNF might
consume exponential time, the advantage of this technique is that many
other queries besides model count can be performed against the final tree,
such as consistency or validity check.

1.2.2 Exact Counters for WMC

There are two exact solvers in the WMC domain. WeightedCachet [2]]
is similar to the same MC Cachet, but it maintains the weight of each
component instead of its solutions count. The second one is ACE [3], which
is not a plain WMC solver but rather a probabilistic inference tool that
works by converting a given Bayesian network into a weighted CNF and
solving it. Both tools are used for probabilistic inference, which is the main
practical application of WMC.

ACE uses c2d to convert the CNF to d-DNNF. It then uses this output
to perform models weight calculation the same way as the MC — that is,
by traversing the d-DNNF tree bottom-up. However, instead of simply
summing up leaves, the tool associates with each leaf node the probabilities
from the original Bayesian network as the weight of the variables, and sums
these values during the tree traversal.

1.2.3 Approximations for MC and WMC

Now let us turn to the other type of solutions — approximation. The quality
of approximation is determined by the proximity of the estimation to the
real value. The approximation algorithm can estimate the lower and/or
upper bound of the real value. In this case, one seeks a confidence level —
that is, the probability that the estimated lower (upper) bound is no higher
(lower) than the estimated value.

Ideally we would like to have approximation scheme that gives estima-
tions as close to the real count as possible and have 100% confidence that



there is no error in the results. Of course, this is very hard to achieve, but at
least we can seek a way to control the quality of the reported estimate and
its associated correctness confidence. It is obvious that the cost of better
runtime is worse precision - clearly there is a trade off between them.

The Authors of ApproxCount [29] introduced a local search-based method
that utilizes Markov Chain Monte Carlo (MCMC) sampling to compute an
approximation of the true model count of a given formula. ApproxCount can
solve several instances quite accurately. As the problem size increases, it
can scale much better than exact model counters. This tool uses SampleSat
[28], an extension of the well-known local search SAT solver Walksat [22],
to sample the satisfying solutions.

Let us define the ratio of solutions of a formula v, in which variable v
appears positive, as R4 (¢,v). SampleSat selects some variable v and cal-
culates R (1, v), the estimate for R, (1,v). If we sample formula solutions
uniformly at random, this ratio will converge, with increasing sample size,
to the true ratio R4 (¢,v). If we set the variable to TRUE and simplify
the formula, we will receive a reduced problem. If the result formula has
model count M, then the expected model count of the original formula is
M - Ry (,v)"", where Ry (1,v) ! is the multiplier attached to the variable
v.

ApproxCount performs 100-300 iterations of sampling, calculating a mul-
tiplier and simplifying. In the end, it feeds the reduced formula to an exact
counter. The result of the counter is multiplied by the product of all calcu-
lated multipliers of all the assigned variables. The result is the approxima-
tion of the real model count.

The authors of ApproxCount have shown that it is extremely fast and can
provide very good estimates for MC. Unfortunately, there is no guarantee
to the uniformity of samples drawn by SampleSat, and so the calculated
multiplier might introduce substantial errors. Moreover, SampleSat is in
essence a DPLL-based SAT solver. As such, it is very good in finding easy
solutions and thus inherently produces solutions in a non-uniform manner.
Indeed the authors observed cases of significant over-estimations or under-
estimations.

Another, more solid approach is SampleMinisat by Gogate and Dechter
[10]. This approach is based on importance sampling [19] of the backtrack-
free search space of a formula. If we take the complete DPLL search tree of a



formula and delete from it all paths that do not lead to a valid assignment, we
get backtrack-free search space. By walking this tree top-down and selecting
the next child of a node uniformly at random, we can produce a scheme of
sampling from the solutions space. Still, this is clearly not uniform sampling
because some subtrees might contain fewer solutions than the others. This
is where importance sampling becomes relevant.

The probability of a solution to be found by the described scheme is
274 where d is the number of random decisions that must be made to reach
the solution. Therefore, in order to sample uniformly from valid solutions,
one must do the following: (a) sample k solutions from the backtrack-free
distribution; (b) assign a new probability to each sampled solution that
is proportional to the inverse of its original probability in the backtrack-
free distribution (that is, proportional to 2¢); and finally (c) sample one
solution from this new distribution. However, note that for this process to
be practical, £ must be sufficiently large.

SampleMinisat does not need to create the backtrack-free search space,
and in many cases this is impractical. Instead it explores the original search
space only to some extent. Naturally, the more search space is explored,
the more precise the estimation becomes. In [11] the authors use sam-
pling augmentations' and prove that their method of sampling converges
to the true count in the limit. A major difference from ApproxCount is
that SampleMinisat provides probabilistic correctness guarantees on the
lower bound of the model count. This is similar to what is described in
SampleCount by Gomes et al. [12] and in work by Davies and Bacchus [7].

The works described below, besides improving approximation quality,
enable control over the desired confidence guarantees. Gomes et al. [12]
in SampleCount suggest an alternative approach of using samples from
SampleSat. The samples are used to determine the next-most balanced
variable in terms of appearing positively or negatively in a solution. After
sampling a set of solutions, SampleCount selects a variable with R+(w,v)
closest to 0.5. It then assigns a value to the variable, TRUE or FALSE at
random, and simplifies the formula. On average, because of the randomly
chosen value, the reduced formula receives half of the solutions of the origi-
nal.

!The authors use a Sampling/Importance Resampling and Metropolis-Hastings
method, a description of which is out of the scope of this thesis.



Another technique introduced by SampleCount is using ”half-equivalence”
of variables. If a variable v; appears in half of the samples under the same
polarity as the variable vy, and they receive different polarities in the rest
of the samples, we can replace v; with ve or —wy (chosen at random) and
simplify. The effect is the same as with assigning and simplifying with a
balanced variable.

Similar to ApproxCount, after several iterations of sampling and sim-
plification, the result is fed to an exact counter and the approximation is
multiplied by 27, where i is number of assigned variables. The authors pro-
vide probabilistic guarantees for the estimation to be a lower bound on the
real model count. These are based only on a number of iterations done by
SampleCount and some ”slack” positive real number.

Another work by Gomes, Sabharwal and Selman [15] focuses on giving
lower and/or upper bounds for MC instances. In short, the authors describe
a procedure MBound that adds structured constraints to the target formula
in order to reduce the solutions count. The constraints are so generated
that each constraint halves the solutions number. Therefore, after adding
n constraints and checking whether the formula is still satisfiable, one can
assume that the original formula has at least 2" solutions. In fact, this
lower bound depends on several parameters other than the number of added
constraint. The authors also describe how to adjust these parameters to
achieve the desired confidence levels and control the approximation quality.
One of the efforts described in this thesis is to extend this approach. MBound
is therefore explained in greater details in Section 2.2.

Kroc et al. [17] proposed two ways for MC approximation. The first one
is BPCount, which uses Belief Propagation (BP). BP is used for problems
that can be represented as a set of variables V' and a set of functions F', where
each function f € F takes as parameters subset v = {v1,v2,...},v C V. A
variable can appear as a parameter in more than in one function.

In BPCount, BP is used to calculate the marginal probability of a variable
to appear positively in a solution, or R (v,v) as defined earlier in this
section. In this case, the role of functions is played by the clauses set.
After R4 (v, v) is calculated, BPCount proceeds like SampleCount and thus
provides the same lower bound guarantees. The improvement of BPCount
over SampleCount is that BP works much faster on formulas with a tree-like
structure than sampling with SampleSat.



The second approach, proposed in [17], is based on a modified MiniSat
[8]. This SAT solver was changed to randomly select the value of an assigned
variable and not to perform restarts. Let us denote the number of branching
decisions by d (not counting unit propagations and failed branches) made by
MiniSat before reaching a solution. d can be viewed as a random variable
and in expectation is not any lower than a logs of the solutions count[l7].
Estimating this expectation, however, is problematic. As already mentioned
in this section, being an efficient SAT solver, Minisat seeks easy solutions,
and thus estimation for F(d) can be very biased.

However, the authors observed that the distribution of d is well-approximated
by a log-normal distribution. Thus, MiniCount performs a number of MiniSat
runs and obtains a set of samples of d. This set can be tested to determine
whether it comes from log-normal distribution. Then, if the result if pos-
itive, we can calculate both the value ¢ s.t. ¢ > E(d) and the confidence
interval for c¢. This value is the upper bound emitted by MiniCount. The
authors demonstrate that on many domains, the distribution of d is very
close to log-normal. MiniCount provides a good upper bound in seconds.
Moreover, these upper bounds are often very close to the true counts.

Davies and Bacchus [7] created an entire framework of sampling and
approximation that provides probabilistic confidence guarantees based on a
choice of statistical checks. This is the only approximation scheme for WMC
that is known to us. They use distributed sampling, similar to importance
sampling used in SampleMinisat [10]. While regular sampling schemes re-
quire one to assign random values to all variables, distributed sampling
enables one to select a subset of variables and random values assigned only
to those variables. We then attempt to expand the partial assignment to
a solution. For this method to work, the variables in a sampled set must
be balanced, or the quality of the result estimation would suffer. In case
of WMC, the authors select a random subset of variables with the weight
1 (that correspond to state variables in Bayesian networks). For MC, the
authors use the c2d compiler [(] to create a decomposition tree, and then
choose from variables that appear in the largest separator sets. The authors
propose three ways of calculating the confidence level of the estimation: (a)
Markov inequality as in [15]; (b) the Central Limit theorem; and (c¢) Cox’s
confidence interval for the log-normal mean if the sampling results pass the
test for log-normal distribution.



1.3 Our Approach

We propose an approximation scheme based on adding constraints to the
target formula. Adding such constraints reduces the model count for MC,
or formula weight for WMC, in a controlled manner.

Let us demonstrate on a simple case without any correctness guarantees:
we use several types of constraints, one of which is the cardinality constraint.
A cardinality constraint over n propositional variables receives the form of
Zi v; < k and allows no more than k of the v; variables to be TRUE. Adding
cardinality constraints to the propositional formula halves the model count
on average. If we add constraints until the formula is unsatisfiable, and
number of added constraints is n, we can estimate the lower bound on the
real model count by 2". A similar technique was described in [15], except
that the authors used XOR constraints instead of cardinality constraints.

For WMC, we modified the cardinality constraint to remove a propor-
tion of the formula weight instead of reducing the number of formula so-
lutions. Unfortunately, this technique in general does not produce better
results than existing methods for both domains, MC and WMC. It did not
produce either high-quality estimates or worked faster than other methods.
Only on some formulas does our approach perform significantly better than
previously described methods.

The following sections describe in detail our approach and the results
of our experiments. Chapter 2 formalizes the MC and WMC problems. It
then describes some background concepts (such as Bayesian networks) and
includes a detailed explanation of encoding Bayesian networks into CNF.
Chapter 3 describes in detail various constraint types and lists proposed
methods of using them for approximation of MC and WMC. Chapter 4
describes the experiments we conducted and our analysis of the results.
Finally, Chapter 5 concludes the thesis.
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Chapter 2

Preliminaries

The following sections provide background material which is necessary for
understanding the algorithms described later in Section 3.

2.1 Problem Definition

Definition 2.1.1 (Model Counting) Given a CNF formula v, denote
the set of all satisfying assignments (solutions) of v by S(¢). Model Count-
ing is the problem of determining the size of S(v).

To define WMC, the weight of a single solution must first be defined:

Definition 2.1.2 (Weight of an Assignment) Given a CNF formula 1,
denote the weight of a literal | as w(l) € [0,1]. Regard an assignment as a
set of literals, so the notion | € o means that the literal | is included in the
assignment «. The weight of an assignment « is defined as

w(a) = Hw(l).

lea

w(«) is defined as a product of the literals’ weight because, in the context
of this thesis, the weight of an assignment represents the probability of the
evidence represented by the assignment. This is also why the weight is in
the range of [0, 1], as it represents the probability associated with the literal.

11



Definition 2.1.3 (Weighted Model Counting) The weight of a propo-
sitional formula v is defined as

a€S(y)

Weighted Model Counting is the problem of determining w(1) given propo-

sitional formula .

2.2 MBOUND

A part of our work here relies on the MBOUND algorithm presented by
Gomes at al. [15]. We attempt to improve the algorithm by replacing the
original XOR constraints with a different type of constraints. In this section,
the original algorithm is described in full detail. Our own work is presented
later, in Chapter 3.

Definition 2.2.1 (XOR Constraint) A XOR or parity constraint Cy,, over
a set of variables {v1,va,...,v,} is the logical “xor” of that set. The general
form of the constraint is

V1 D2 D ... D v, @ TRUE.

An assignment satisfies Cpop if it assigns the value TRUE to an even number
of variables in the set.

Valiant & Vagzirani observed that a XOR constraint, that contains all the
variables of the formula, reduces the number of models by 50% on average
when it is added to the formula [27] . On some formula families this also
works with much shorter XOR constraints [13].

The MBOUND algorithm computes lower or upper bounds, based on the
model count of a given propositional formula in CNF. The algorithm uses
XOR constraints to check whether the target formula has more or fewer
solutions than the specified power of 2. By adding n XOR constraints, the
number of solutions of a formula is reduced by 2™ on average. Thus, after
the algorithm adds the constraints and the formula remains satisfiable, one
can say that the true model count is above 2".

The MBOUND algorithm has five parameters:

12



e k : The number of variables in the constraint
e 5 : The number of constraints to add

e ¢ : The number of repetitions

e 0 : The deviation from 50% ratio. ¢ € (0, 0.5]

e « : The precision slack. o > 1

Algorithm 2.2.1 MBound

MBOUND(s, 9, t, k, a, §)
1 numSat <0
2 fori<1tot
3 ! < {s random XOR constraints of size k}
4 W =P Al
5 if (¢ is satisfiable)
6 numsSat < numsSat + 1

7 if (numSat >1t-(1/246))
8 return Lower bound: MC(y) > 257¢
9 else if(numSat <t-(1/2—9))
10 return Upper bound: MC(v)) < 25T
11 else
12 return Failure

MBoUND performs the following t times: Adds s random constraints of
size k to the original formula 1 and checks whether 1 is still satisfiable. If
after ¢ attempts the ratio of satisfiable instances is greater than 50% + ¢,
the algorithm produces an output of 2°7% as a lower bound. If the ratio is
less than 50% — &, the algorithm produces an output of 257* as an upper
bound.

Following are the main properties of MBOUND that are described in [13]:

13



For any positive integer t,0 < § < 1/2,and o > 1, let § = 2%(1/2+4)—1
and define

9ot if 6 =1/2

p(ta(sa Oé) = ebB t/2% .

Threorem 2.2.1 (MBOUND Lower Bound Guarantees) For 1 < k < n/2,
the lower bound of 2°~% reported by MBOUND with parameters (k,s,t,0, )
is correct with probability of at least 1 — p(t,d, ).

Threorem 2.2.2 (MBOUND Upper Bound Guarantees) An upper bound of
25T reported by MBOUND with parameters (n/2,s,t,d,a), where n is the
number of variables in the formula, is correct with probability of at least
1—p(t,0,a).

2.3 Bayesian Networks

The application of WMC must be described before proceeding to the de-
scription of the basis of our WMC approximation.

In probabilistic reasoning, it is useful to describe some knowledge base
by a set of random variables which have joint probability distribution de-
fined on them. Then, one can also define conditional probabilities for every
single variable that can be used to calculate queries on the knowledge base.
The Belief network or Bayesian network represents the knowledge base by
describing dependencies between the variables in terms of conditional prob-
abilities.

A Bayesian network is a probabilistic model that represents a set of
random variables and their conditional dependencies via a directed acyclic
graph (DAG). Each node in such a graph represents a variable from some
bounded domain. A directed edge between two vertices encodes the de-
pendency between them. The source node of the edge is a parent of the
target node. The probability of a value to be assigned to a node depends
on the values of its parent nodes. For a variable xz and the set of its parents
PAR(z) = {y1,y2,---,Yn}, let us denote the conditional probability of z
as Pr(x |PAR(x)) = Pr(z | yi,vy2,...,Yn). This is stored in a conditional

14



probability table (CPT) associated with each node in the graph. Given
an assignment for all nodes in a Bayesian network, one can calculate the
probability for this assignment.

Pr(zy1,z9,...,2y) = H Pr(z; |PAR(z;)).

Given a partial assignment of variables, or evidence, one can calculate
its probability. One of the ways to do so is to convert the Bayesian network
into a weighted CNF formula and then solve its relevant WMC.

Figure 2.1 describes a simple Bayesian network with three variables: A,
B and C. Variables A and B can be thought of as Boolean variables and
variable C has a domain of size 3. Given the evidence C' = Green, one can
calculate its as 0.4375. It is calculated in the following manner:

Value | Probability Value | Probability
Up 0.5 TRUE 0.25
Down 0.5 FALSE 0.75
Parents’ values Probability

A value | B value || Green Yellow Red
UP TRUE 0.8 0.1 0.1
UP FALSE 0.7 0.3 0.0

DOWN | TRUE 0.3 0.3 0.4

DOWN | FALSE 0.1 0.1 0.8

Figure 2.1: A Simple Bayesian Network

15



Pr(C = Green) = Pr(A = UP) - Pr(B = TRUE) - Pr(C = Green|A = UP, B = TRUE)+
Pr(A = UP) - Pr(B = FALSE) - Pr(C = Green|A = UP, B = FALSE)+
Pr(A = DOWN) - Pr(B = TRUE) - Pr(C = Green|A = DOWN, B = TRUE)+
Pr(A = DOWN) - Pr(B = FALSE) - Pr(C' = Green|A = DOWN, B = FALSE)

2.4 CNF Encoding of a Bayesian Network

In [1] the authors list several CNF encodings for Bayesian networks. The
encodings differ in the final size of the CNF formula. The authors demon-
strate that an encoding that produces a more compact CNF improves the
runtime of their counter ACE. However, for our purposes, the less compact
encoding is more suitable because the tool WeightedCachet only accepts
the input CNF in this encoding.

This encoding was introduced by Sang et al. in [21]. For node = with a
domain of size k, let us define k propositional variables v,1, vzo, ..., vk that
correspond to its domain values z1,z2,...,xk. These variables are called
state variables and the weight of their literals is set to 1. In addition, let
us define clauses that verify that only one of these variables is assigned the
value TRUE by the model:

Vgl VU2 VooV Ugke (2.1)
e V g, for every i < j,j <k. (2.2)

Chance variables are used to encode the dependencies between variables
and their probabilities. Following the CPT associated with a node, the
clauses that encode the conditional probabilities for the node can be recon-
structed. Each row in the table consists of two types of columns: values of
parents and probabilities for possible values. Let us denote the state vari-
ables for the m parent nodes as {y1,v2,...,¥ym}. For a node with a domain
size k, let us define k£ — 1 additional chance variables p.1,pz2, ... Pask—1 PEr
row in CPT. In addition, k£ clauses are created to encode the conditional
probabilities of the CPT row:
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YIANY2.. . NYm
APzt N 7Pg2 Ao N TDgi—1 (2.3)
Apri= vy 1<i<k
YLAY2 - AYm APl A"Dga A oo o A Dgg1 = Ugk (2.4)

The clauses defined in (2.3) verify that the state variable that corre-
sponds to the specific setting of parent nodes and chance variables is en-
tailed. The clause in (2.4) is used for the last value in the node’s domain.
It is clear why there is no need for a k-th chance variable : The fact that
all k£ — 1 variables are FALSE implies that the node is assigned the last value
in the domain. For example, the first row of the CPT of the node C from
Figure 2.1 produces the following clauses:

TANTBA DGreen = TGreen
TANEBATDGreen/N DYellow = TYellow
TANTBATDPGreen N\ DY ellow = TRed-

It can now be described how the weights are assigned to the chance
variables. The first chance variable p,; in the row (like pgreen in Figure
2.1), receives the weight equal to the probability in the CPT,

w(pz1) = Pr(z1|PAR(x)).

The second chance variable (like py¢jo in the example), receives the value
proportional to its conditional probability from the remaining probability
(remaining from the total 1),

_ Pr(z2|PAR(x))
w(p:ﬂ) T 1 Pr(xl‘PAR(x))'

In the same manner, the third chance variable receives the weight

- Pr(z3|PAR(z))
w(pa3) = 7= Pr(z1|PAR(z)) — Pr(z2|PAR(z))’

And so on.
In other words, a chance variable p,;, ¢ > 1 receives the probability that
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the node is assigned the value x;, provided that it is not assigned any of the
prior values in the CPT order, z1,...,z;_1.

Until now we have described the weights for positive literals, that is, the
weight a variable receives when it is assigned the value TRUE. As for the
negative literals of chance variables, they receive the weight complementary
to 1, that is,

w(—pzi) = |1 — w(pw)l- (2.5)
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Chapter 3

Approximations for the MC
and WMC problemes

This chapter describes the basis for our approach and the various heuristics
we attempted. Section 3.1 discusses the normalization of a formula. Sections
3.2 and 3.3 describe the types of constraints used. Section 3.4 describes the
algorithms and the heuristics used.

3.1 The Normalization of a Propositional Formula

Definition 3.1.1 (Flip of a Variable) The flip of a variable v in a given
formula is the rewriting of the formula so that every occurrence of the literal
v is replaced by the literal —v, and every occurrence of the literal —v is

replaced by v.

Flipping one or more variables clearly does not affect the formula’s satisfi-
ability. The only thing changed is the value assigned to the variable in the
satisfying assignments. Denote by R (¢, v) the proportion of models of
that set the value TRUE to the variable v. Assume, for example, that for a
variable v in ¥, R4 (¢,v) = 0.3. By flipping v, the result is R4 (¢, v) = 0.7.
If one solution o is a sampled from S(¢)) (recall that S(¢) denotes the set of
solutions of 1), then the probability that o will assign TRUE to v is 0.3. In
other words, Pry, (¢(v) = TRUE) = 0.3. Denote the rewriting of 1) where v
is flipped as ¢/, then Pry, (o0(v) = TRUE) = 0.7. Thus, if we flip the variable
randomly with a probability of 0.5 and sample a large number of solutions,
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we can expect half the solutions with v = TRUE and half with v = FALSE.
This is because the probability of getting v = TRUE is

0.5-Pry (o(v) = TRUE) + 0.5 - Pryy (0(v) = TRUE) =
0.5-0.34+05-0.7=0.5.

We call a variable v, s.t. R4 (¢,v) = 0.5, a balanced variable in . This
property is of interest to us because, as it will be described later, balanced
variables are the essential part of constructing the constraints that remove
a controlled proportion of the solutions. Since variables are mostly non-
balanced, we invoke a procedure that flips their polarity randomly. Flipping
each variable with probability 0.5 gives us the following property of balanced
variables:

Vv E(Ri(y,v))=0.5.

The process of flipping each variable of the formula with the probability of
0.5 is referred to as the normalization of the formula.

3.2 Normalized Cardinality Constraints

As stated before, our approach to MC and WMC approximation is based
on adding constraints. We experiment with various types of cardinality
constraints, described in full here.

Definition 3.2.1 (Cardinality Constraint) A Boolean cardinality con-

straint Ceqrq(n, k) is a formula over a set of n propositional variables {vy,va, . ..

which is satisfied if and only if at most k of them are TRUE. In general form
Cearda(n, k) can be presented as

n

Zvi <k.

i=1

Efficient encoding of a cardinality constraint to CNF is a well-studied
problem. We use an encoding based on sequential counter circuit, described
in [23]. This encoding meets the efficiency condition specified in [I]. This
condition specifies that if more than k variables are set to true (thus vi-
olating the cardinality constraint Ceq-q(n,k)), it can be detected by unit
propagation — that is, by a linear time decision procedure.
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Moreover, for a partial assignment that sets k of the v; variables to true,
the value of all other v;’s can be derived by unit propagation.
Now let us discuss the effect of an added cardinality constraint.

Threorem 3.2.1 Given a formula ¢ with n variables, let us denote the
congunction of the cardinality constraint Cegrq(n,n/2) and ¥ as !

W = w A Ccard(na n/2) .

If Ry (¢,v;) = 0.5, 1 <i <mn, then the following holds:

[S(n)] = 0.5-15()]

Proof Let us define a random variable I, to indicate that a variable v;
is assigned the value TRUE. The probability Pr(l,, = 1) is exactly the
proportion of the solutions that grant the value TRUE to v;, R (1, v), which
is 0.5. We can define the sum of all I,,, 1 < ¢ < n as a binomial random
variable Y ~ Bin(n,0.5), as it is the sum of independent Bernoulli random
variables with the same probability.

We can now think of a solution’s probability to satisfy a maximum of
n/2 variables as the probability of a Binomial random variable to receive a
value < n/2. We can calculate the probability Pr(Y < n/2) as follows:

n/2]
Pr(Y <n/2)=)_ (?)0.5@'(1 —0.5)" ",

1=0

The following expression, for a probability of Y < n, has a similar form:

n

[n/2]
Pr(Y <m)=Y_ <Tl_l>o.5i0.57”dr - (?)0.5@'0.5“’

i=0 i=|n/2] (3.1)
2, noon

- Z (i)o.s +A > <Z,>0.5 .
i=0 i=[n/2
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Let us assume that n is an odd number 2k + 1. We always can make the
formula contain odd number of variables by adding a don’t-care variable
which just doubles the number of solutions. Equation (3.1) can then be

rewritten as

k 2k+1
2%k +1 2%k +1
PNY'§TU::§:< N )05”*1+ > < i >05%+1. (3.2)
X 1

i=k+1

In the right hand side of the above equation, both sums have the same
‘), it can be further simplified:

number of summands. Noting that (}) = (",

k 2k+1
2k +1 ki1 2k +1 o
Pr(Y <2k+1)= Rilas 2R E
r(Y <2k +1) E < . >05 + E 2k+1—i05

=0 . i=k+1 (33)

2k+1 2k+1
:ﬂ-§:< . >05 .
i—0

Since Pr(Y < n) =1, we conclude that

%§%1<?>05"::05. (3.4)

=0

A consequence of the Thm. 3.2.1 is that if each variable v of the n vari-
ables that participate in the constraint has R (¢, v) = 0.5, then Ceyrq(n, n/2)
removes half of the solutions. If a subset of all n variables is selected at ran-
dom (instead of taking them all), the ratio of solutions removed by a con-
straint Ceqrq(k, k/2),k < n will be on average 0.5 as well. This is because
the constraints are selected uniformly at random and thus the probability
for a constraint to remove more than half of the solutions is equal to the
probability of removing less than half of the solutions.

Of course almost no formula satisfies the property of Ry(¢,v) = 0.5
per variable. We use randomized variable flipping to achieve this property.
But instead of adding the constraint to formulas with randomly flipped
variables, the variables are flipped in the constraints. This has the same

effect as flipping the variable in the formula.

22



Denote CNF encoding of a cardinality constraint over n variables of a
formula ¢ as ¢ = CNF(Cyqra(n, k)). Denote the probability of a solution o
of A to assign a value X € {TRUE, FALSE} to a variable v as Pr(o(v) = X).
The probability of a variable in ¢ to be flipped is 0.5. So the probability of
a variable to appear positive, if we flip the variables in ¢ randomly, is:

Pr(o(v) = TRUE) - (1 — 0.5) + Pr(o(v) = FALSE) - 0.5 =
(Pr(o(v) = TRUE) + Pr(o(v) = FALSE)) - 0.5 =
1-0.5=0.5.

Thus we get
Voe ¢ E(Ry(YA¢p,v))=05.

Which is exactly what we need to apply Thm. 3.2.1. A constraint with
flipped variables is called a normalized cardinality constraint.

The normalized cardinality constraint can be made more restrictive. If
the value of k in Cyrq(n, k) is reduced, the probability of a solution to satisfy
the constraint decreases. The ratio of dropped solutions p becomes greater
than 1/2. Thus, instead of having an estimation in the form of 2", the
result would be (1/p)", where 1/p > 2. The idea is that in each constraint
we remove a larger portion of the solutions, a fact that will be used later in
Section 3.4.1 to converge faster.

The normalized cardinality constraint Ceqprq(n, k), with k& < n/2 is called
a general cardinality constraint. The normalized cardinality constraint in
the form of Ceyrq(n,n/2) is hereby referred to as the cardinality constraint.
The general form of the normalized cardinality constraint, Ceerq(n, k), k <
n/2, is refereed to as the general cardinality constraint.

Appendix A describes how to calculate the expected ratio p of dropped
solutions as the result of an added general cardinality constraint.

3.3 Weight Constraints

The normalized cardinality constraints introduced in Section 3.2 can be used
to gradually reduce the number of solutions of the target formula. But in the
case of WMC, the goal is to find the solutions weight of the formula, not the
number of its solutions. Therefore, in order to apply the same technique of
controlled reduction, the sought goal is a constraint that imposes restrictions
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on the total formula weight.

As mentioned earlier, the weight of the formula equals to the probability
of the evidence in the knowledge base. Because we use the CNF encoding
described in Section 2.4, and because weight information is encoded only in
chance variables, only chance variables can be used for the constraints that
reduce the formula weight.

Similarly to the normalized cardinality constraints, weight constraints
can be constructed. The main idea of these constraints is to reduce in half
the sum of the products of the weights of the variables in the constraint.
Each variable can contribute the weight of its positive literal or the weight
of its negative literal, depending on the literal that appears in the specific
solution. Because the total weight of a solution is the product of the weights
of its literals, the total weight can be halved by reducing the weight of a
single variable by a factor of 2, that is, both literals of the variable.

Note that neither the formula nor the constraint is normalized here,
because such normalization would affect the conditional probabilities. We
cannot reduce the weights of the variable’s literals for the same reason.

Instead, a subset of the variables is selected and their total contribution
is reduced. The possible weight contribution of a set of chance variables
{p1,p2,...,pn} for a given assignment « is the weight of the projection of
the assignment on these variables. This is called a possible contribution
because the assignment might not be a solution.

Definition 3.3.1 (Weight Assignment Order) Given a set of variables
{p1,p2,...,pn}, let < denote a relation between assignments, such that o; <
aj if and only if w(a;) < w(ay) and if w(oy) = w(ey), then a; and o are
ordered lexicographically.

With this definition of the ordering, all 2" assignments can be divided
into two parts, the sums of which are almost equal.

Definition 3.3.2 (o* and 7*) Given a set of n variables {vi,va,...,v,}
and an ordered sequence of the assignments according to =<, find an indezx k,
s.t.,

Z w(a;) <0.5

=1
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and

k+1
Zw(ai) >0.5.

Denote ay, by o and w(ax) by ©*. In addition, the weight of the i-th as-
signment in the order, w(«oy), is referred to as ;.

We now present two type of constraints for the WMC problem which are
based on o* and 7*. The algorithms that we will present in Sections 3.4.3

and 3.4.4 uses either one of them.

3.3.1 Cardinality Weight Constraint

With 7* defined above, we can construct a constraint over all variables in
the formula.
[T (w) v+ w(=v)-—w) <7 (3.5)
vEY
This constraint imposes a restriction on a solution so that the total weight
of the solutions of the formula can be 0.5 at most.
Two issues must be addressed here:

e A product is hard to convert to CNF. Although the products can be
expanded by sums, this would add an exponential number of auxiliary
variables. To convert (3.5) into a more convenient form for CNF,
we take logarithm on both sides of the inequality. Thus, while the
inequality still holds, the result in the left part of the inequality is a
sum instead of a product.

e The weights are non-integer values, especially after we take a loga-
rithm on them. Yet because only approximated values are of interest
here, the inequality can be multiplied by some large value M and the
fractional parts can be removed.

Definition 3.3.3 (Cardinality Weight Constraint) Given a set of chance
variables CV = {v1,v9,...,vn}, a weight function w, an integer value M

and 7, the cardinality weight constraint is defined as

> (M- log(w(v)) - v] + | M - log(w(-w)) - —wv]) < | M -log(m*)].
veCV
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The number M converts the coefficients of the inequality from numbers
less than zero into real numbers with positive integer parts. M can be
calculated, so that for the smallest possible weight, 71, the following holds:

1 - M| > 10. (3.6)

Increasing 10 to 100 or more would give a more precise constraint, but
our experiments demonstrate that 10 is sufficient. The technique described
in [9] is used to convert the weight cardinality constraint into CNF.

As with a regular cardinality constraint that can be defined on a small
subset of formula variables, the weight cardinality constraint can also be
defined on a subset of chance variables of the formula.

Until now we did not refer to the fact that there is no guarantee that the
constraint will reduce the formula weight by 50%. This is because not all
possible assignments for the variable subset can be extended to a solution
for the formula. In this case the constraint will cut much more or much less
than half of the formula weight. To cope with this issue, we randomly select
the inequality sign from {<,>}. This enables us to even the probability of
each constraint to deviate from the ratio of 50% of the dropped weight in
either direction.

3.3.2 Plain Weight Constraint

An additional constraint based on the usage of 7* is the Plain Weight Con-
straint. The plain constraint explicitly enumerates all assignments that come
before o* in the order defined in Definition 3.3.2. Of course, in case of a
large variable set, this constraint is not practical because even generating
it requires exponential time in the size of the set. However, for small con-
straints, the exponent is small and the constraint can be generated in a
short amount of time. With a subset of assignments {a1, ag,...,a*} that
contributes near half of the total weight of the set {a1,9,...,aom}, the
plain weight constraint can be constructed:

arVagV...Va'. (3.7)

In most cases, only a small number of assignments consume most of the
possible weight contribution of the variables set. For example, if a set of

26



variables {v1,ve,...,v,} has the weight function w(v;) = 0.9, w(-w;) = 0.1,
0 <7 < n, we can calculate the assignment that assigns TRUE to all variables
in the set and constitutes most of the weight: 0.9”.

Also, because the assignments that consume most of the weight are usu-
ally very similar, the constraint can be simplified and encoded in a few
clauses.

Table 3.1: Example of the weight distribution between formula assignments

U1 Vg U3 w(vy) w(vy) w(vs) w(ay)
a1 TRUE TRUE TRUE 0.7 0.7 0.5 0.245
vy TRUE TRUE FALSE 0.7 0.7 0.5 0.245
a3 TRUE FALSE TRUE 0.7 0.3 0.5 0.105
a4 TRUE FALSE FALSE 0.7 0.3 0.5 0.105
a5 FALSE TRUE TRUE 0.3 0.7 0.5 0.105
g FALSE TRUE FALSE 0.3 0.7 0.5 0.105
a7 FALSE FALSE TRUE 0.3 0.3 0.5 0.045
ag FALSE FALSE FALSE 0.3 0.3 0.5 0.045

For example, as we can see from Table 3.1, for three variables vy, v, v3
with weights 0.7,0.7,0.5 the assignments {v; = TRUE,vy = TRUE,v3 =
TRUE} and {v; = TRUE,v2 = TRUE,v3 = FALSE} contribute the weight of
0.49. In this case, the CNF encoding of the plain weight constraint is v; Avs.

3.4 Heuristics Overview

In the previous sections the fundamentals of our approach were explained:
normalization and the types of constraints. The following subsections de-
scribe the constraints are used for our purpose.

The following heuristics were attempted for the MC approximation:

1. Approximation based on number of added constraints.

2. HYBRID scheme, based on a number of added constraints in conjunc-
tion with an exact counter.

3. Variations of the MBOUND scheme.
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For the WMC approximation, our approaches were the following:

1. Approximation based on the number of added constraints in conjunc-
tion with an exact weight counter.

2. Comparison of the weights of two pieces of evidence for the same
knowledge base by the number of added constraints until the formula
becomes unsatisfiable.

In the following algorithms we use three functions based on external
tools:

e ISSATISFIABLE: A function that checks whether the given formula is
satisfiable. We implemented this function by running the Minisat

SAT solver.

o EXACTCOUNT: A function that returns the exact model count of the
given formula. We implemented this function by running the Cachet
exact counter.

o EXACTWEIGHTCOUNT: A function that returns the exact weight of
the given formula. We implemented this function by running the
WeightedCachet exact weight counter.

3.4.1 TIterations-based MC Approximation

The first approach to approximate MC is based on counting the number
of cardinality constraints added to the formula until the formula becomes
unsatisfiable. The scheme is depicted in Algorithm 3.4.1. The algorithm

receives two parameters:
e 7n: The number of iterations
e k: The number of variables to include in each constraint

The algorithm performs n iterations, each corresponds to an experiment.
In each iteration, it adds a cardinality constraint as long as the formula is
satisfiable. Each constraint reduces the model count by 50% on average,
and so the average of the added constraints can be viewed as an estimation
of the logarithm of the model count. Denote this average by a. The value
that the algorithm produces is 2. Note that in line 6 we can generate a
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Algorithm 3.4.1 Tteration-based Approximation

ITERATION-BASED(n, k, 1)

> ¢: a propositional formula in CNF with NV variables

> m: a positive integer, representing the number of experiments.
> k: a positive odd integer, k < & representing the size of the constraint.
sum < 0
fori+ 1ton

W N =
<

/]\

<

p+<—p+1
create Ceqrq(k, k/2) over k random variables from )
1 < Y1\ Cegra(k, k/2)
while ISSATISFIABLE(1)/)
sSum <— sum +p
return 2svm/n

© 0 O Ot

general normalized cardinality constraint Cgq.q(k, k), where k' < k/2. In
this case, the result of the approximation is (1/p)**™/™ where p is the ratio
of dropped solutions calculated from k and k' as described in Appendix A.
The added value of such constraints here is that we expect the same results
with less iterations number, and thus with less invocations of SAT solver
with results in shorter overall runtime.

A variation of this approach is to use the exact counter just before the
formula becomes unsatisfiable. It is depicted in Algorithm 3.4.2.

In addition to the parameters of Algorithm 3.4.1, this algorithm also re-
ceives a hybrid value. This value controls how many of the added constraints
are ignored when the formula is passed to the exact counter.
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Algorithm 3.4.2 Hybrid Iteration-based Approximation

HYBRID-ITERATION-BASED(n, k, ¢, )

> ¢: a propositional formula in CNF with N variables

> mn: a positive integer, representing the number of iterations.

> k: a positive odd integer,k < N/2, representing the size of the constraint.
> x: a positive integer, x > 0, representing the hybrid value.

> S: a stack of formulas.

1 sum <+ 0
2 fori+1ton
3 W
4 S.CLEAR()
) p+——1
do
6 p—p+1
7 create Ceqrq(k, k/2) over k random variables from
8 WYl < I N Ocard(k7 k/2)
9 S.PUSH(1)/)
10 while ISSATISFIABLE(¢)/)
11 if p > = then
12 for j«— 1Tox
13 S.POP() > ignore last = formulas
14 count <— EXACTCOUNT(S.POP())
15 sum < sum + 2P~ count
16 else > cancel current iteration
17 1+ i—1

return sum/n

3.4.2 MBounD-based MC Approximation

A different approach is based on the MBOUND algorithm described in details
in Section 2.2. The MBOUND algorithm and its correctness guarantees are
based on the fact that a XOR constraint, on average, removes 50% of the so-
lutions. Because a normalized cardinality constraint has the same effect, we
replaced the XOR constraints with the normalized cardinality constraints.
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This can be done by generating a set of cardinality constraints instead of
XOR constraints in line 3 of MBOUND in Algorithm 2.2.1.

Because each constraint reduces the model count by a known propor-
tion, the lower and upper bounds produced by MBOUND provide correctness
guarantees. We can therefore enjoy the same correctness guarantees after
replacing the XOR, constraints with the cardinality constraints.

In addition, the efficiency of the cardinality constraints can be improved
by lowering the value of k in Ceurq(n, k). As a result, each constraint re-
moves more solutions, and less clauses and auxiliary variables are required
to remove the same number of models.

Moreover, the cardinality constraints can be easier for SAT solver than
the XOR constraints. This is because SAT solvers cannot reject an assign-
ment until all the variables in the XOR constraint receive a value. Only
then can the constraint’s parity can be decided. For cardinality constraints,
the decision to reject an assignment can be made before all variables in the
constraint get their values, as described in Section 3.2.

3.4.3 Weight Approximation

The idea for WMC approximation is similar to the HYBRID-ITERATION-
BASED algorithm. Here also, constraints are added until the formula be-
comes unsatisfiable. The x last constraints are then removed and the result
is fed to the exact weight counter. Let us denote the number of iterations
as n, the number of constraints added in iteration 7 as ¢; and the result of
the counter in iteration ¢ as w;. The algorithm calculates the average as the
estimation of the formula weight:

n Ci—_
D1 2977 Wiy
" .

This approach is described in Algorithm 3.4.3

Definition 3.4.1 Denote the weight constraint over k random chance vari-
ables from the weighted propositional formula v as Cuyeignt(k, 1)
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Algorithm 3.4.3 WMC Approximation

WMC-AprPROX(n, k, 1, x)
> ¢: a propositional weighted formula in CNF with N variables
> n: a positive integer, representing the the number of iterations
D> k: a positive integer, k < N/2, representing the the size of the constraints
> x: a positive integer, x > 0, representing the the hybrid value
> S: a stack of formulas

1 sum+20

2 fori<1ton

3 W

4 S.CLEAR()

) p+——1

do

6 p—p+1

7 C <« Cweight(k7 ?l))

8 Wl Y1t AN C

9 S.PUSH(1)/)
10 while ISSATISFIABLE(¢)/)
11 if p > = then
12 for j«— 1Tox
13 S.POP() > ignore last « constraints
14 weight < EXACTWEIGHTCOUNT(S.POP())
15 sum < sum + 2P~ . weight
16 else > cancel current iteration
17 i — i—1

return sum/n

In Algorithm 3.4.3, in line 7, the created constraint can be a cardinality
weight constraint or a plain weight constraint.

3.4.4 Evidence Comparison

As described earlier, the use of WMC for probability inference is targeted at
getting the probability of the evidence at hand. However, another use can
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be comparing the probability of two pieces of evidence to decide which one
is a more probable explanation for the observed facts. If this is the goal,
then an appropriate method can be sufficient provided that it is faster.

For example, given a Bayesian network that encodes some medical knowl-
edge base, and given the observed symptoms, one can test which of the two
possible diseases is the most probable. For this purpose we can encode the
observed symptoms and the first disease as evidence A, and the observed
symptoms and the second disease as evidence B. We can then compare the
probability of the two pieces of evidence by calculating and comparing their
weights.

We present a heuristic to perform this type of comparison without ac-
tually calculating the probability of the evidence. Let us denote by u(1))
the average number of weight constraints that must be added to v until it
becomes unsatisfiable. Our idea is, given two pieces of evidence encoded
into two formulas 14 and ?, to compare u() and u(¢?). Algorithm
3.4.4, similar to ITERATION-BASED (Algorithm 3.4.1), describes how u(v))
is calculated:

Algorithm 3.4.4 Evidence-Comparison-Helper

EVIDENCE-COMPARISON-HELPER(n, k, 1))

1 sum<+ 0
2 fori+1ton

3 WPl — 1
4 p+——1
do
) p—p+1
6 C <« Oweight(ku ¢)
7 Wl Yr AN C
8 while ISSATISFIABLE(¢)/)
9 sum 4— sum +p

return sum/n

Note that in line 6 we can create a constraint of either type of weight
constraints described in Section 3.3.

33



Chapter 4

Experiments

This part of the thesis describes the experiments performed in order to test
the heuristics described in the previous chapter. The benchmark formulas
used are taken from several sources.

For the MC experiments, two main sources were used: the collection of
formulas that accompanies the work of Gomes et al. in [15] and [12], and the
easy subset of formulas used in the SAT Competition 2009. These formulas
can be solved by modern SAT solvers in a very short amount of time, but
some of them are very hard for the exact MC counter. In addition, we used
our hand-crafted formulas that represent the problem of placing n pigeons
into n places. This is a very easy formula for both SAT solver and the exact
MC counter.

For the WMC problem we used the Bayesian networks and the evidence
available from the authors of the ACE tool [5], which was compiled into CNF
by ACE.

4.1 Experiments Related to MC

4.1.1 The Effect of Constraint Size and Type

First we conducted experiments to see the actual average number of dropped
solutions as a result of an added cardinality constraint. This experiment in-
cluded 100 iterations of adding cardinality constraints in the form Ciq.q(k, k/2),
where k = 11. The solutions of the formula were counted after each added
constraint. We then calculated the average number of the remaining solu-
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tions per number of added constraints. Table 4.1 demonstrates the results
of this experiment. It shows that the average number of the remained solu-
tion is indeed as expected. It exponentially decreases as a function of the
number of added constraints.

Table 4.1: The Average Ratio of Remaining Solutions per Number of
Cardinality Constraints

Formula Name Number of Constraints
1 2 3 4 5 6

expected % 50.0% 25.0% 12.5% 6.3% 3.1% 1.6%
logistics.a 48.1% 22.5% 104% 54% 2.5% 1.2%
logistics.b 48.4% 26.2% 11.1% 51% 2.7% 1.2%
cnf® 495% 24.7% 12.3% 74% 4.3% 1.9%
cnf9 47.0% 23.8% 104% 5.6% 2.2% 1.3%
instance_n4_i4_pp 50.7% 28.1% 10.9% 6.4% 2.5% 0.9%
Average 48.7% 25.1% 11.0% 6.0% 2.8% 1.3%

These experiments were done with relatively easy formulas, so the exact
model count is feasible and can be done in a short amount of time. In
addition, similar experiments were run with general constraints. Table 4.2
shows the results of the experiment with the general cardinality constraint
Ceard(n, k), where n = 11 and k € {4, 3,2}. The expected drop ratio is 72%,
88% and 94%, respectively. The expected ratio of remaining solutions after
the first constraint is therefore 28%, 12% and 6%. The table demonstrates
that the accuracy is not as good as with Cesq(k, k/2), but nonetheless close
to the expected.

Our experiments show that it is not practical to use large constraints.
Each constraint increases the formula size and it becomes harder for the SAT
solver. After a certain number of large constraints, the SAT solver needs
hours to solve a single instance. Therefore, constraints with fewer variables
must be used.

We checked the effect of the constraint size on the accuracy of the
dropped solution ratio. Figure 4.1 shows the different logarithms accord-
ing to the number of expected solutions and the average number of solutions
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Table 4.2: The Average Ratio of Remaining Solutions per Number of the
General Constraints

Number of Constraints

Formula Name 1 2 3 4 5

Expected 28.19% T7.95% 2.24% 0.63% 0.18%
logistics.a 29.44% 6.68% 0.96% 0.25% 0.13%

logistics.b 23.48% 3.77% 0.93% 0.18% 0.06%

k=4 cnf8 34.22% 9.63% 2.44% 1.03% 0.21%
cnf9 28.45% 6.26% 1.64% 0.19% 0.05%
instancen4_i4 pp 34.95% 9.00% 2.81% 0.78% 0.17%

Average 30.11% 7.07% 1.76% 0.49% 0.12%
Expected 11.97% 1.43% 0.17% 0.02% 0.00%
logistics.a 11.48% 1.70% 0.15% 0.00% 0.00%

logistics.b 11.90% 2.77% 0.69% 0.09% 0.00%

k=3 cnf8 9.66% 1.16% 0.05% 0.01% 0.00%
cnf9 14.90% 2.19% 0.29% 0.00% 0.00%
instancen4_i4 pp  8.07% 0.20% 0.01% 0.00% 0.00%

Average 11.20% 1.60% 0.24% 0.02% 0.00%
Expected 5.83% 0.34% 0.02% 0.00% 0.00%
logistics.a 1.18% 0.07% 0.00% 0.00% 0.00%

logistics.b 7.96% 0.40% 0.04% 0.00% 0.00%

k=2 cnf8 4.43% 0.07% 0.00% 0.00% 0.00%
cnf9 5.64% 0.49% 0.01% 0.00% 0.00%
instancen4_i4 pp  4.89% 0.15% 0.00% 0.00% 0.00%

Average 4.82% 0.24% 0.01% 0.00% 0.00%
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per constraint size. The logarithm is described here because the exponential
decrease is easier to demonstrate using logarithms.

Let us denote the model count of the original formula as mg, and the
expected number of solutions of the formula after adding ¢ constraints as
my;. The constraint is thus expected to reduce the model count by 50%,
my = 0.5" - mg. Let us also denote the average number of solutions after
adding ¢ constraints as a;. We expect that logy(ay) = logy(my).

Figure 4.1 depicts data for four constraint sizes, constraints that consist
of 10%, 25%, 50% and 75% of all variables in the formula. The horizontal
axis shows the number of constraints. The vertical axis shows the absolute
error of the estimation defined as |logy(a;) — logy(my)|. For example, this
value is close to zero for the first constraint, regardless of its size. Only after
nine constraints does the difference become noticeable. ”Noticeable” in this
sense means that the value of absolute error, as we defined it, is greater
than 1.
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Figure 4.1: Difference Between the Expected and Average Number of
Remaining Solutions
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Error value after number of constraints per constraint size.

4.1.2 TIteration-based Approximation

In Section 3.4.1 we described an iteration based approximation. We al-
ready showed in Section 4.1.1 the effect of constraint size and constraint
type. Here we will concentrate on cardinality constraints in the form of
Crara(11,5). Our experiments showed that constraints of size 11 are opti-
mal for the formulas with which we experimented.

Table 4.3 presents the results of the experiments with the ITERATION-
BASED scheme presented in Algorithm 3.4.1. The number of iterations is 100
in all experiments. The right-most column represents the error, calculated
in the following manner: Let us denote the expected model count after ¢
constraints as m; and the estimation as a;. The absolute error is defined as
|loga(my) —loga(ai)|. The results are always under-approximations. More so,
in some cases the number of added constraints does not pass 3-4 while more
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than 20 were expected. The results of the iteration-based approach suffers
from the non-uniform probability of the algorithm to reach the t-th power
of 2. In each iteration, the probability of finishing with the lower powers
of 2 is higher than the probability of finishing with the higher powers of 2.
This is because each added constraint has the potential to make the formula
unsatisfiable.

Table 4.3: Results of Iteration-based Approximations

Formula Name Real MC Estimation Error
logistics.b 4.53E+23 1024 20.65
php-010-020.cnf 1.85E405 8192 1.35
instance n4_i4 pp 5.46E+410 64 8.93
AProVE09-13 3.86E+22 128 20.48
cnf9 3.63E+405 1024 2.55

Table 4.4 presents the results for a HYBRID-ITERATION-BASED scheme
presented in Algorithm 3.4.2. In this case, the hybrid value is 1. Le. if
it took t constraints to make the formula unsatisfiable, we run the exact
counter on the formula with ¢ — 1 constraints. As our experiments show,
this is the optimal value because it gives relatively accurate results in an
acceptable amount of time. Attempts to enlarge this value result in worse
estimations.

The values in the right-most column are the most interesting. They
indicate the level of accuracy of the approximation. There are mostly over-
approximations in this column. This can be explained by the fact that the
value is an average over 100 estimations. If even a few of the estimations
are over-approximations, this error has an exponential weight in the final
average.

For example, suppose we have a formula with m solutions, and we run
the HYBRID-ITERATION-BASED algorithm only for two iterations. Suppose
also that the first iteration finishes after log(m) 4+ 1 constraints and the
second after log(m) — 1. Let us assume also that the result of the exact
counter is 1 for both iterations. The average of the constraint number is
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still as expected:

log(m) — 1+ log(m) +1
2

But the average of the estimations is

210g(m)71+210g(m)+1 5m.
2 4

as opposed to the expected m. Although the error occurs in both itera-
tions, the weight of the over-approximation is larger than that of the under-
approximation.

In addition to the hybrid and plain iteration-based approaches we tried
another two methods of calculation.

e Average of iteration estimations. This is a variation of Algorithm
3.4.1. But instead of calculating the average of iterations number of
the experiments, we calculate an estimation per experiment and then
output the average of those estimations. Denote the iterations number
of the experiment 7 as n;. The estimation e; of the experiment 7 is
e; = 2™, Thus, if the number of experiments is N, the approximated

Zﬁil i
=N

value is

e Average of ”calculated” iterations number. This is a variation of Al-
gorithm 3.4.2. But instead of calculating the average of estimations
of the experiments, we convert the result of exact counter to addi-
tional number of iterations. Denote the number of the iterations in
the experiment ¢ as n;. Denote the exact counter result in the exper-
iment ¢ after n; added constraints as r;. This result is converted into
additional iterations number as follows:

n} = [logy T

If the number of experiments is N, the result of the approximation
algorithm is
Zij\il ni + n;
N .
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Both methods did not give any improvement.
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Table 4.4: Results of the HYBRID-ITERATION-BASED Algorithm

o =

3 g & S

K % £ &

e = g |

o 5 B = —

g £ g 3 = s

£ 5 = 3 g 2
Formula Name €a) o > ~ ~ ol
logistics.b 4.53E4+23 11 5 7.61E+23 1376 0.749
Q3inK08 2.35E+08 11 5 1.58E+4+08 154154 0.573
AProVE09-13 3.86E+22 11 5 1.71E+22 32087 1.176
php-010-020 6.70E+11 11 5 1.54E+10 4668 5.441
logistics.b 4.53E4+23 11 4 1.37E+27 2051 11.568
Q3inK08 2.35E+08 11 4 2.35E+17 76 29.896
AProVE09-13 3.86E+22 11 4 8.67TE+27 29692 17.777
php-010-020 6.70E+11 11 4 1.19E+16 16961 14.118
logistics.b 4.53E4+23 11 3 2.37E+24 1398 2.391
Q3inK08 2.35E+08 11 3 3.35E+09 457 3.832
AProVE09-13 3.86E+22 11 3 5.19E+23 2974 3.749
php-010-020 6.70E+11 11 3 247E+11 52499 1.442
logistics.b 4.53E4+23 25 12 4.97TE+63 255607 133.013
Q3inK08 2.35E+08 25 12 2.79E+71 29606  209.530
AProVE(09-13 3.86E+22 25 12 1.65E+67 250765 148.258
php-010-020 6.70E+11 25 12 1.60E+50 37523 127.485
logistics.b 4.53E4+23 25 10 3.67E+33 24973 32.917
Q3inK08 2.35E+08 25 10 9.29E+33 2629 85.031
AProVE09-13 3.86E+22 25 10 1.01E+30 85796 24.638
php-010-020 6.70E+11 25 10 5.76E+17 57920 19.714
logistics.b 4.53E4+23 25 8 4.53E+27 5265 13.290
Q3inK08 2.35E+08 25 8 5.83E+16 24057 27.887
AProVE09-13 3.86E+22 25 8 1.60E+25 69254 8.695
php-010-020 21E+40 25 8 3.40E+15 45486 82.354
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4.1.3 MBound Variation

To test the MBOUND variation, we compared the lower bounds that can
be achieved using cardinality constraints against those that can be achieved
using XOR constraints. We are interested in the overall runtime and in the
quality of the lower bound, that is, how close it is to the real count.

Table 4.5 summarizes the results of running the MBOUND variation on
some of the formulas. They represent various observed cases. It is worth
noting that Ramsey problems are the only family of formulas for which
MBOUND produces better lower bounds and in shorter time with cardi-
nally constraints. For all other formulas, the bounds were lower than those
achieved using XOR constraints. In addition, in many cases the runtime of
the SAT solver was longer on the formulas with the cardinality constraints
than on those with the XOR constraint.
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Table 4.5: Results of MBOUND. Cardinality vs. XOR

: 2 ~
= o .
z 5 2 Y
= = < g
> B g =
O = 8= = g
= g £ A ~
: 2 = § &
Formula Name MmO O > <
Is15-normalized 204 7813 264 295
logistics.b 21 97 1< 250 3
Ramsey 20_rd_r45 260 617 2% 16072
Ramsey 23_rd_r45 223 2568 216 8130
fphp-010-020 239 210 1< 235 7
een-tip-texas 2162 9ol 1< 22 3
2bitmax_6 2957 232 1< 285 1.7257
AProVE(09-24 2207 922 198 2130 444
bw _large.d 27 2l 4 2! 10
een-tip-sat-texas-tp-be 2163 2! 1< 2! 1<
fclqcolor-18-14-11 2133 960 53 2120 54
fclgeolor-20-15-12 2153 260 399 270 3.51
fphp-010-020 210 232 1<« 235 7.23
instance_n6_i7_pp 26 3387 210 1151
lang?24 28 12 230 14
Is11-normalized 240 122 240 15693.73
ls15-normalized 250 1138 2% 8
ndhf xits_21_SAT 25 28466 210 2467
q-query_3_140_lambda 220 1665 220 343
QGTa-gensys-ukn001 2930 9884 21075 1218
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4.2 Experiments Related to WMC

Similarly to the MC experiments, we conducted some experiments with
the weight constraints to examine the average ratio of removed formula
weight. We also examined the effect of the constraint size on the removed
weight ratio. Table 4.6 summarizes the results on some of the formulas with
cardinality weight constraints, while table 4.7 summarizes the results on the
same formulas with plain weight constraints.

In some cases, like that of the tcc4f . obfuscated formula family, adding
long cardinality weight constraints makes the formula too difficult for the
exact weight counter. This is why these formulas have no exact results.

As expected, each added constraint decreases the formula weight by a
factor of 2. It can also be observed that a relatively small constraint still
provides a ratio close to the expected.

4.2.1 Results for WMC Approximation

The results for the algorithm WMC-APPROX, presented in Section 3.4.3, are
highly disappointing. We expected to find formulas for which WeightedCachet
would perform better when they are constrained. The idea is that the less
there is to count, the less time the counter would run. In practice, however,
the runtime of WeightedCachet was never shorter on constrained formulas.
In fact, it sometimes required almost five hours to produce an estimation,
while unconstrained formulas can be solved in less than 30 minutes. More-
over, because we must run WeightedCachet many times, once per iteration,
it is not viable to use such a scheme unless the runtime of WeightedCachet
is largely reduced. In addition, the accuracy of the results were inaccurate,
and indeed very far from the real formula weight. Producing an estimation
of 2-1073, when the real weight is 2 - 107°, was not uncommon.

4.2.2 Results for Evidence Comparison

The other heuristic we presented, the evidence comparison, showed better
results but still not good enough. Only some of the comparisons work as
expected. Occasionally, the average constraint number fails to correspond to
the real formula weight. For example, if two formulas have the same weight,
the same average constraint number is expected on both formulas. Experi-
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Table 4.6: Remaining Weight Ratio per Number of Added Cardinality
Weight Constraints

Name Real Weight Constraint Size # of Constraints Actual Expected

30 1 timed out 50.0%

30 2 timed out  25.0%

30 3 timed out 12.5%

30 4 timed out 6.3%

20 1 45% 50.0%

tccdfobf4  2.00E-99 20 2 7% 25.0%
20 3 0% 12.5%

20 4 0% 6.3%

9 1 59% 50.0%

9 2 30% 25.0%

9 3 15% 12.5%

9 4 8% 6.3%

30 1 42% 50.0%

30 2 27% 25.0%

30 3 18% 12.5%

30 4 12% 6.3%

20 1 33% 50.0%

master-3  8.09E-192 20 2 27% 25.0%
20 3 6% 12.5%

20 4 0% 6.3%

9 1 48% 50.0%

9 2 26% 25.0%

9 3 11% 12.5%

9 4 7% 6.3%
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Table 4.7: Remaining Weight Ratio per Number of Added Plain Weight
Constraints

Name Real Weight Constraint Size # of Constraints Actual Expected

30 1 55% 50.0%
30 2 32% 25.0%
30 3 18% 12.5%
30 4 10% 6.3%
20 1 44% 50.0%
tccdf.obf-4  2.00E-99 20 2 24% 25.0%
20 3 13% 12.5%
20 4 5% 6.3%
9 1 50% 50.0%
9 2 26% 25.0%
9 3 11% 12.5%
9 4 5% 6.3%
30 1 45% 50.0%
30 2 25% 25.0%
30 3 13% 12.5%
30 4 5% 6.3%
20 1 48% 50.0%
master-3 8.09E-192 20 2 26% 25.0%
20 3 11% 12.5%
20 4 % 6.3%
9 1 57% 50.0%
9 2 28% 25.0%
9 3 14% 12.5%
9 4 7% 6.3%
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ments showed, however, that even though the weight remains the same, the
structure of the formulas is different enough so that the average number of
constraints produced by EVIDENCE-COMPARISON-HELPER is different.

Table 4.8 summarizes the results of the EVIDENCE-COMPARISON-HELPER
procedure. It contains the average number of constraints produced with both
weight constraint types, cardinality and plain.

A column order is also included: In each formula family, the formu-
las were ordered according to their ascending weight. This is reflected in
the order column. The average numbers were expected to form the same
ascending order as the formulas’ weights, yet they did not.
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Table 4.8: Results for EVIDENCE-COMPARISON-HELPER

Formula Family Order Real Weight Cardinality Avg. Iter. # Plain Avg. Iter. #

1 5.29254E-11 5.6061 15.212

2 1.9847E-10 3.5455 10.758

alarm 3 1.46481E-07 6.0606 10.636

4 1.87587E-07 5.4848 22.879

5 0.00026977 4.5758 32.394

1 1.9274E-282 0.78788 2.0303

2 5.7821E-282 0.48485 2.2121

blockmap_05_03 3 5.7821E-282 0.78788 2.1212
4 5.7821E-282 0.84848 2.5152

5 6.1033E-282 1.4242 2.2727

1 1.2345E-196 0.9697 1.9697

2 2.469E-196 0.9697 2.1515

mastermind_03_08_03 3 2.469E-196 1.2121 2.3939
4 2.469E-196 0.78788 1.6061

5 1.4814E-195 0.87879 2.0303

1 2.21079E-75 6.1515 11.576

2 1.4149E-73 6.6364 10.485

pigs 3 2.82983E-73 4.4242 10.848

4 4.52772E-72 5.5152 7.8788

5 9.05552E-72 5.8182 6.8485

1 2.0024E-99 3.9697 7.5758

2 4.50166E-94 4.0909 7.6364

tecdf.obfuscated 3 1.17006E-92 3.697 6.5758
4 6.93726E-91 3.7576 7.3636

5 9.81259E-84 3.8788 7.3333

1 0.000217273 18.091 451.7

2 0.0280042 19.909 462.85

water 3 0.032759 13.273 477.52

4 0.0351524 19.303 498.67

5 0.0617444 12.303 453.76
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4.3 Discussion

Our experiments demonstrate that the proposed heuristics do not provide
good estimations. Moreover, the results now require more time than when
running the exact counters. This is mainly because every one of the pre-
sented heuristics relies on average values. For MC approximation, we rely
on the ratio of removed solutions. For WMC approximation, we rely on the
decreased weight of the formula. Although the average is correct in theory,
the variance of these values is very large as illustrated in the Table 4.9,
which compares the variance of removed solutions ratio for XOR and car-
dinality constraints. Even though the ratio of dropped solutions is similar,
the variance of cardinality constraints is much worse.

Table 4.9: Average Deviation per Constraint Type of the Remaining
Solution Count

# of Constraints XOR  Ceura(k, k/2), k=11

1 44% 61.1%
2 58% 79.6%
3 6.5% 110.0%
4 8.0% 131.3%
5 8.6% 127.8%
6 91% 124.8%
7 9.0% 130.6%
8 10.1% 155.7%
9 10.7% 177.6%
10 11.2% 268.0%

The two following tables summarize the implications of the difference
in variance. The first, Table 4.10, summarizes the results of ITERATION-
BASED. The second, Table 4.11, summarizes the results of ITERATION-
BASED, except that XOR constraints were used instead of cardinality con-

straints.
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Table 4.10: Average Constraint Number per Constraint Size when Using
Cardinality Constraints

Formula Name Average Constraint Number Expected
10% of Variables 25% of Variables 50% of Variables
cnfl 9.16 8.79 8.38 15.3
cnf9 9.51 9.21 8.78 18.4
Table 4.11: Average Constraint Number per Constraint Size when Using
XOR Constraints
Formula Name Average Constraint Number Expected
10% of Variables 25% of Variables 50% of Variables
cnf8 14.9 15.2 15.2 15.3
cnf9 18.2 18.7 18.8 184

It is clear that XOR constraints give better results: The average number
of constraints is much closer to the real MC logarithm. Each cardinality
constraint has a much higher probability to make the formula unsatisfiable,
a probability that differs from formula to formula. In fact, if a constraint
has a probability p to make the formula unsatisfiable, the average number
of constraints would be 1/p. Thus, even if each constraint removes half of
the solutions or the formula weight on average, the average of constraint
number remains 1/p regardless of the weight or the real model count.

An additional issue with two of our heuristics, HYBRID-ITERATION-
BASED and WMC-APPROX, is the use of external tools. The reason to
use the tools is to improve the accuracy of the estimation by calculating
MC or WMC of a constrained formula. The problem is that the runtime of
the tools used, Cachet and WeightedCachet, does not improve on the con-
strained formulas. On the contrary — in some cases, the constrained formula
proves too difficult for the counter while the unconstrained formula can be
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processed within a few minutes.
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Chapter 5

Conclusion

In this thesis we presented several heuristics for approximating MC and
WMC. All the heuristics are based on the core idea of removing controlled
ratio of formula solutions or formula weight. The removal is done by adding
structured constraints to the target formula. None of the presented methods
is better than the known methods, described in Chapter 2. We couldn’t
achieve better quality or better runtime results.

We showed theoretically and experimentally that a single constraint,
on average, removes the expected ratio of formula weight or the formula
solutions. But it is not enough to create an approximation scheme. Our
experiments showed that the variance of removed solutions or formula weight
is very large. Thus, for good estimations, many experiments were required,
which is not practical because of the time it takes to run a single experiment.
It is better to run the exact counter and get exact results than use our
scheme.

Moreover, it turns out that any constraint can make the formula unsat-
isfiable, and the probability of this event is specific per formula. This fact
largely reduces the expected number of constraints we need to add until the
formula becomes unsatisfiable. Thus, because our approximation heuristics
depend on that number, our estimation is of a lower quality than the results
obtained with other methods.
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Appendix A

How Many Solutions Does
Croura(n, k) Remove?

This appendix describes how one can effectively calculate the ratio of dropped
solutions p as a result of adding general normalized cardinality constraint
Ceara(n, k), where k < n/2.

To calculate the expected ratio we use the approximation of a Binomial
distribution by Normal distribution. More formally, by the de Moivre-Laplace
[18] theorem, a random variable Y ~ Bin(n,p) can be approximated by
X ~ N (np,np(1 —p)).

Section 3.2 shows that if Vv € 9, R4 (¢, v) = 0.5, then the probability to
satisfy a random normalized cardinality constraint of size n can be modeled
by a random variable Y ~ Bin(n,0.5). It can thus be approximated by a
random variable X ~ A (n/2,n/4). With this in hand, we can approximate
the probability Pr(Y < k) ,k < n by Pr(X < k). Because X is a normally
distributed variable, the following is true:

X—MX)<k—Emj>

P““’“““(WVW

:PT<X—n/2<k¢—n/2>
VRN

_ % (k: — n/2> '
n/4
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®(...) denotes the cumulative probability function of the a standard normal
distribution. Therefore, the probability of a solution to satisfy Ceqrq(n, k)

o (k - n/2) '
n/4

The ratio of dropped solutions is thus the following:

1@ <k—n/2> '
n/4

is the following:
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