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Abstract

The Constraint Satisfaction Problem (CSP) is a known NP-hard problem in the field of
Artificial Intelligence. As part of this thesis, I developed a new CSP solver called HCSP,
that has several novel capabilities and a reasoning engine that is highly competitive and
on many benchmarks the fastest available. It is the first CSP solver capable of generating
machine-checkable proofs in case the formula is unsatisfiable (based on an inference system
called signed resolution), and also the first CSP solver that is able to generate a Craig
interpolant. Both of these capabilities were so far only available in SAT solvers, and
the main challenge in adapting them to CSP is the need to bridge between the general
constraints comprising the input problem, and an inference system that provides the
building blocks of a proof.

HCSP uses novel algorithms that work directly on CSP (i.e., not via translation to
CNF SAT like some other CSP solvers) and are able to learn stronger constraints than
a SAT solver. During conflict analysis, it is able to learn new non-clausal constraints.
For example, from z < y and y < z it may infer that x < z, although z < z is not
an existing predicate in the formula (in contrast to theory propagation in SMT solvers).
This capability is based on a new general inference rule, Combine, which can be seen as
a generalization of CNF resolution.

The thesis is comprised of a collection of new algorithms and of known algorithms
adapted from other domains (mostly SAT) to the realm of CSP.
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Chapter 1

Introduction

1.1 The Constraint Satisfaction Problem (CSP)

Many problems in engineering can be formulated as making choices that have to satisfy
a set of constraints. When scheduling flight crews, one needs to consider the constraint
that a passenger aircraft may fly only, e.g., with a pilot and 3 assistants on board and
that they are not scheduled at the same time on another flight. When choosing a route
for a car there are constraints on the possible routes and speed limit. Many times there
are complicated interactions between constraints. Consider for example the problem of
scheduling lectures in a university. Lectures schedule is constrained by personal prefer-
ences of lecturers, rooms that cannot accommodate more than one lecture simultaneously,
students that cannot attend more than one lecture at a time, curriculum requirements,
and many more. Other real-life examples of problems involving constraints are auto-
mated test generation for hardware circuits, nurse shift scheduling, container placement
on a ship, car configuration, software-application dependency and update analysis, and
many more.

The problem of finding a solution that satisfies all the constraints is called the Con-
straint Satisfaction Problem (CSP). CSP is a known NP-hard problem (we discuss com-
plexity in some detail in Sect. 1.1.1), and is difficult in practice for a computer because
the input of real problems is typically large.

Formally, a Constraint Satisfaction Problem (CSP) is defined by a triple (C,V,D)
where V is a set of variables, D is their domains, i.e., for each variable a set of its allowed
values, and C is a set of constraints over these variables. Effectively, a domain D, € D
can be viewed as the unary constraint v € D,. A feasible solution is an assignment to
the variables that satisfies all the constraints in C.

One may observe that special cases of CSP are SAT and Pseudo-Boolean (PB) prob-

lems, both of which are still NP-complete, but require a relatively simpler algorithm to



solve. In SAT all the variables are restricted to be Boolean. In PB the variables are
Boolean but their values are interpreted as 0 and 1 rather than false and true, respec-
tively, and linear constraints over these variables are allowed, e.g., 221 + 3x5 < 2, where
21,29 are Boolean. There are many use cases for both SAT and PB in the industry, and
there are many dedicated solvers for these special cases of CSP.

In this work, as most other works on CSP, domains are restricted to be finite sets
of integral values. For example, consider a graph coloring problem where we have
to color the nodes of Figure 1.1 in two colors such that no adjacent edges share the
same color. In this example we have four nodes numbered 1..4 and edges between them
{(1,2),(1,3),(2,4),(2,3),(3,4)}. The CSP is modeled by four variables representing the

colors of the four nodes, where 1 stands for red and 2 for green. The problem is then:

V1 # Vg AU F U3 AUg F Vg AN U3 F Uy

This can be solved, e.g., with vy <= 1, vy < 2, v3 ¢ 2,04 + 1.

A previously popular representation of CSP was a graph, where variables are repre-
sented as nodes and constraints as arcs. This view is consistent with older works such
as [Mac77| where a constraint may affect only two variables. The graph representation

of the example graph-coloring CSP is shown in Figure 1.1.

()4
olC
##

Figure 1.1: Example with a graph-coloring CSP

This limitation to binary constraints is unlike newer works, including this one, where
a constraint may affect any number of variables. Such a constraint is sometimes called
a global constraint or generalized constraint, and a CSP with global constraints is some-
times called a Generalized CSP. A graph model of a generalized CSP uses hyper-arcs to

represent the constraints, i.e., arcs that have more than two ends.

1.1.1 A few words about complexity

In [FV98| there is a proof that a CSP with n-ary constraints is NP-complete. This proof
has a hidden assumption, which may not hold, that the time complexity for checking

a constraint is polynomial. Although this is usually the case, there is nothing in our



definition of CSP! that guarantees this. In theory, it is possible to formulate a constraint

whose checking complexity is NP-complete, or worse.

For example, consider the following #P-complete global constraint, which cannot be
decomposed into a polynomial number of simpler constraints. Given a set of variables
v1,....,0, and a constant u, the constraint is satisfied if the assignment to vy,...., v,
corresponds to a CNF that has not more than u solutions. Clearly propagating this

constraint is in #P.

We now explain how an assignment to vy,...,v, can be interpreted as a particular
CNF. These variables represent the stream of literals of the formula reminiscent of the
DIMACS format. An assignment such as vy = 2 indicates that the fourth literal of the
CNF is z5. Similarly an assignment such as vg = —3 indicates that the sixth literal is
—zx3. Finally, 0 indicates the end of the clause, e.g., v5 = 0 indicates an end of a clause
at the fifth location.

Let us demonstrate this encoding with a particular example. Let vq,...,v; be the set

of variables in the constraint, and u = 5 be the bound. Then the following assignment:

Ul:2,1)2:—3,7)3:0,1}4:—2,7)5:3,7)6:1,1)7:0

is a solution, because it corresponds to the CNF

(xQ V —|x3) A (_LCL’Q VgV .7?1) 5

which has 5 satisfying assignments.

On one hand, answering the question whether the constraint is satisfied is in #P, not
in NP. On the other hand, there are too many valid and invalid assignments for pre-
computing an explicit relation. This means that a problem with this constraint is not in
NP and it is impossible to formulate it as an NP problem. This implies that although
CSP can represent NP-complete problems, its complexity may be outside of NP. In fact,
it has no upper bound on complexity. Despite this, to the best of my knowledge, all
constraints supported by CSP solvers in the public domain can be checked in polynomial

time leading to NP complexity for solving practical CSP.
The following subsections explain general concepts of CSP and CSP solving through

their relation to this research and their implementation in our solver HCSP.

1Our definition of constraints allows them to be formulated by any means, including by a Turing
machine. However, when constraints are defined as (pre-computed) relations then it is possible to
implement constraint-checking in O(n) where n is the number of columns in the relation.
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1.2 The CSP solver

The HaifaCSP constraint solver, or HCSP for short, was written during this research in
order to explore new solving techniques. It is able to solve complex CSPs with many
different types of constraints. HCSP was written afresh in C++ with no reliance on
external source code (the only exception being a toolkit for parsing the XCSP-1.2 input
format [RLO9| used for parsing CSP benchmarks used in [DLR09|). HCSP is comprised
of 60k lines of code, total, and only 25k if tests, comments, empty lines, braces and
semicolons are excluded.

HCSP supports four input formats:

e XCSP-2.1 input format [RL09| used in the 2009 CSP competition [DLR09].

e MiniZinc [MSKS10| format without sets or floating point arithmetic.

e A subset of the OPB input format [MR*06| used in pseudo-Boolean optimization.

e A C-like input format with most of the C-language’s expression language, without
side-effects. This input format has also support for minimization/maximization of

an objective function and setting of variable domains.

HCSP supports most of the satisfiability problems of the 2009 CSP competition [DLR09].
The only exception are problems with element and cumulative constraints which are
described in [BCRO5|. The optimization directive of the XCSP-2 format, unlike with
MiniZinc format, is not supported. Appendix A has a list of constraints which HCSP

supports.

1.3 The CSP solving algorithm

The core of HCSP’s algorithm is based on MAC-3 [Mac77] (Maintain Arc Consistency)
which is commonly used in CSP solvers. Although the original MAC-3 was defined
over binary constraints, i.e., constraining pairs of variables, it was extended to n-ary
constraints. Although many publications refer to this extension as Generalized-MAC-3
(GMAC-3)?, we will simply call it MAC from this point on.

A slightly different MAC algorithm was described in [SE97|. A non-recursive variant
of this algorithm is described in Algorithm 1.1 and serves as the basis for the HCSP
solving algorithm. MAC detects a conflict on line 4, which leads simple backtracking

without conflict analysis. The simple backtrack-search may lead to repetitions of the

2Some publications refer to Generalized-MAC as GAC and others as GMAC

8



same bad decisions (thrashing). This intuition has been reinforced by [Mit03] showing

how good conflict-analysis speeds up the solver.

Algorithm 1.1 The non-recursive MAC solving algorithm

1: function MAC(C,V, D)
2 while true do
3 D +PROPAGATE (C,V,D); > If ANY-EMPTY (D) then do nothing.
4: if ANY-EMPTY (D) then
5 backtrack level <— current level — 1;
6: if backtrack level > 0 then
7.1 (var, value) «<—decision at_level(current level);
7.2: D «+BACKTRACK-TO (backtrack level);
7.3: Dvar < Dvar \ {value}; > This may empty the domain.
8: else
9: return UNSAT;
10: end if
11: else if ALL-ASSIGNED (D) then
12: return The solution is in D;
13: else
14: D «+DECIDE (D);
15: end if
16: end while

17: end function

Unlike MAC, EFC [BK| and HCSP analyze conflicts and learn new constraints di-
rectly on the CSP. The solving algorithms of HCSP is depicted in Algorithm 1.2 and in
Figure 1.2.

The difference between MAC in Algorithm 1.1 and HCSP in Algorithm 1.2 lies in the
way conflicts are handled. At line 4 a conflict is detected, in both algorithms. At line 5
both algorithms calculate the backtracking level, i.e., the decision level to backtrack to®.
MAC simply backtracks one level, while HCSP generates a conflict constraint and uses

the constraint when deciding on the next backtrack level in line 5.

The HCSP backtracking process is simpler than the non-recursive MAC. In Algorithm 1.1
the additional lines 7.1, 7.3 are required to avoid repeating the same conflict, lines which
are unnecessary in Algorithm 1.2. In Algorithm 1.2 the same conflict is avoided by

learning a conflict constraint, instead of explicitly negating the decision.

3A decision level [ is a state at which there are [ decisions. When backtracking to level [ all domain
modifications done since, and including, decision [ 4 1, are reverted.



Algorithm 1.2 The HCSP solving algorithm
1: function SOLVE-CSP(C,V, D)
2 while true do
3 D +PROPAGATE (C,V,D);
4: if ANY-EMPTY (D) then
5: backtrack level < CSP-ANALYZE-CONFLICT (C,V,D);
6
7
8
9

if backtrack level > 0 then
D «+BACKTRACK-TO (backtrack level);

else
: return UNSAT;
10: end if
11: else if ALL-ASSIGNED (D) then
12: return The solution is in D;
13: else
14: D <-DECIDE (D);
15: end if
16: end while

17: end function

Start No free variables >@

Propagate conflict Analyze target _level< 0
constraints conflict (No solution)

> UNSAT

Y

Has free variables

v target level> 0

Decide

Figure 1.2: The solving loop in HCSP

1.3.1 Propagating constraints

Constraint Propagation is the part of MAC that examines constraints and reduces vari-
able domains according to the constraints. In SAT this phase is called BCP (Boolean
Constraint Propagation). During this phase the solver examines constraints, one at a
time, and removes values from the domains that cannot satisfy the constraint.

Consider, for example, the CSP
Dml = {27374}7 DwQ = {L 273}7 1 < X9

In this case neither z; = 4 nor 2 = 1 can participate in a satisfying assignment. We say

that neither x; = 4 nor o = 1 are supported by z; < x5 in D,, and D,,. When the solver

10



propagates* x; < x5 it removes the unsupported values from the domains, producing new

domains:

D;cl ={2,3}, D;‘Q = {2,3}

With D/ and D/ the constraint z; < x, becomes arc-consistent’. A constraint
is arc-consistent if it supports all values in the current domains. Formally, constraint

c(xy,...,x,) is arc-consistent if:

Vie{1,2,...,n}Va! € D,, (32} € Dy, 3wy € D,y -+ 3z, € Dy, [, = 2! Ne(ah, ..., x))]] .

n

The CSP is said to be arc-consistent if all its constraints are arc-consistent. When the CSP
is arc-consistent then it is no longer possible to deduce domain reductions by examining
one constraint at a time.

The algorithm that propagates a given constraint is the propagator for that constraint.
If a propagator always removes all values which are unsupported by the constraint then it
is called precise. An imprecise propagator performs an over-approximated propagation,
potentially leaving some unsupported values in the domains. An imprecise propagator
never under-approximates, i.e., it never removes a possible solution to the problem.

A propagator may be imprecise for several reasons:

e Algorithmic complexity of precise propagation may be too high to be practical.
For example, the constraint catalog [BCRO5| contains two_layer_edge_crossing,
global_cardinality, and weighted_partial_alldiff whose precise propagation
algorithms are NP-hard.

e Memory complexity of precise propagation may be too high. For example, for
domain D,, = D,, = D,, = {2,3,...,10°} and constraint z; = z, * x3 precise

propagation should reduce the domain of z; to
D! = {2’ € N]2 <2’ <10° A —15_PRIME(2')}
It is every difficult to define a set representation that can hold this domain efficiently.

e Overall efficiency may be better if the propagator is approximated. For example,
the imprecise propagation given by bounds consistency [Dec03] has a simple and

fast implementation since it has to deal only with domain bounds.

MAC propagates constraints until no propagator reduces any domain. If all propaga-

tors are precise then the propagation stops when the CSP is arc-consistent. Even though

4In some publications, such as [Mac77], the term Revise is used instead of Propagate to denote the
propagation step that makes a single constraint arc-consistent.
5The term arc comes from the graph representation of CSP, which was mentioned in Section 1.1.
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the solver will possibly not reach arc-consistency with imprecise propagators, it is still
guaranteed to stop. The guarantee comes from the domains being finite and allowing a
finite number of reductions, and since the propagation algorithm stops when nothing is

propagated.

1.3.2 Decision Making

After MAC reaches arc-consistency, the solver selects a variable according to some variable-
ordering heuristics and assigns it a value from its domain according to some value-ordering
heuristics. This assignment operation is called a decision. Note that it is possible that
this decision leads to a dead-end, i.e., there is no solution to the CSP constrained by the
decision.

In the following example the CSP is arc-consistent:
D$1:{17273}7 D12:D$3:{172}7 xl#x2/\x13’éx3/\x27§x3

Assume that the solver decides x; < 1, which makes z; # x5 reduce the domain to
D, = {2} and z; # w3 reduce the domain to D, = {2}. Then x; # x5 detects a
conflict, i.e., no solution is possible with these domains. The solver backtracks, undoing
the decision, concludes that x; = 1 cannot participate in any solution, and removes it

from the domain. This produces a reduced CSP:
D:m :{2,3}, D:m :Dmg :{172}, xl#xz/\xl #I3/\$2#$3

With this newly reduced problem, if the solver decides z < 2 then it also reaches a
conflict. While undoing the decision it concludes that D,, = {3}. Next it decides x5 < 1
which leads to the solution z; = 3, xo =1, x3 = 2.

Notice that this example has two very similarly bad decisions with similar conflicts.
It would be good if the solver could detect the similarity and avoid taking the second bad
decision. In order for this to happen the solver has to perform conflict analysis, which is

discussed in Subsection 1.3.3.

1.3.3 Conflict Analysis

The CSP solution process involves making wrong decisions and backtracking from them.
Many CSP solving algorithms were proposed that avoid repeating similar wrong decisions.
Initial methods used a no-good to avoid a bad assignment, which works well in solvers
that do not have constraint propagation such as BT-search [Dec03]. There were several
failed attempts to have conflict analysis in solvers that propagate constraints such as
MAC-CBJ [Pro95|, which looks for the decision combination that causes a conflict.

12



It has been shown in [BR96| that MAC-CBJ is not competitive with plain MAC. In
order to overcome these issues works such as [JDB00| learned no-goods to avoid repeating
bad decisions efficiently. For example, a nogood (x; <— 1,29 < 5, x4 < 8) means that an
assignment with x1 =1 A xy =5 A x4 = 8 is impossible and has to be avoided.

Nogoods did not catch on and the reason, as explained in [KB05, Mit03|, was that
no-goods are too weak to efficiently represent causes for a conflict. Instead of restricting
conflict analysis to detecting bad assignments, [KBO05| proposes to extend nogoods into
generalized-nogoods, or g-nogoods for short. A g-nogood adds an anti-assignment operator
x ¢ n to indicate that there would be a conflict only if x # n. For example, a g-nogood
(x1 ¢~ 1,21 ¢ 2,79 < 5) means that an assignment with x; # 1 Az # 2 Az =5 is
impossible and has to be avoided. This can be expressed as constraint (z; € {1,2} Vs #
5). The EFC |BK] solver would explain every reduced domain in terms of g-nogoods,
eagerly, and resolve these g-nogoods during conflict analysis to get the cause of the conflict
in terms of a g-nogood.

Another competing technique is called C-Res, i.e., Constraint-Resolution, (introduced
in [Mit03]). Each time a constraint is propagated and values are removed, a Boolean
clause® is created to represent this propagation. When performing conflict analysis, the
clauses representing the constraints are resolved using the standard propositional resolu-
tion. It is unspecified whether the clauses are generated during constraint propagation
or only during conflict analysis.

A later technique named Lazy © Clause Generation [0SC09]|, combines CSP solving
techniques with SAT. This technique represents all domains and CSP variables as Boolean
indicator variables and perform solving on them. It examines a constraint and if it is
inconsistent with the domains then the solver generates an explanation of the inconsis-
tency, i.e., a Boolean-CNF clause which is added to the CNF. The propagation is then
performed via BCP [MMZ*01b| and so is conflict analysis and learning are performed on
the SAT side. The effects of this approach should be similar to the eager generation of
g-nogoods in EFC with the difference that SAT solvers manage propagation and learning
more efficiently.

Both lazy clause generation [OSC09| and EFC [BK]| produce explanations eagerly.
This creates a big collection of clauses (or g-nogoods) which may be never required for
conflict analysis or for the solution. Another possible disadvantage of [OSCO09]| is its
relatively inefficient domain representation. Each value of variable’s domain requires a

Boolean variable, which makes it impractical to represent big domains. In order to be

6In later works, such as [OSC09], this Boolean clause is named an explanation clause

7 Lazy refers to the fact that the CNF encoding for the whole CSP is not created up-front. The CNF
encoding is created one bit at a time, i.e, lazily, when the constraints are examined in the context of the
current partial assignment.

13



able to maintain big domains it is possible to represent them using a log, representation,
which requires auxiliary variables. This idea was introduced, to an extent, in [AS12].
HCSP extends on these notions and overcomes the inherent limitations of lazy clause
generation and EFC’s g-nogoods. It uses many valued SAT [BHMOOb] to efficiently repre-
sent big domains and to learn clauses that affect them. Unlike the competing techniques
it generates explanations during conflict analysis and not during propagation. This lets
HCSP take less memory and to learn not only clauses and g-nogoods but also compli-
cated constraints. The description of the HCSP conflict analysis is given in the next

chapter.

1.4 Research contribution

The thesis is structured as a collection of (extended-versions of) an article [VS10a| pub-
lished in AAAT’10, an article currently under submission [VS14], and a proof supplement
that was published as a technical report [VS10b]. Chapter 4 includes additional material
that is not included in these publications. The main contributions of this research are

summarized in the following list:

e A fast CSP solver. HCSP is a new solver written as part of this research. It is
the fastest® solver running the benchmarks of the 2009 CSP competition [DLR09],
the last one held using the original format of this solver. Transition to the CSP
input language of MiniZinc also shows promising results when comparing them to

other solvers supporting the MiniZinc language.

e Lazy explanation generation. In Chap. 2 we explain how HCSP refines the basic
concept of EFC [BK, KB05| and Lazy Clause Generation [OSC09], i.e., explaining
a propagation via a clause, and performs it only during conflict analysis. The lazy
generation has a lower memory cost. Lazy clause generation makes it possible to
choose the best possible explanation for a given propagation, when there is more
than one possibility. Moreover, it allows to generate an augmented explanation, as
explained in Subsection B.4.2. An augmented explanations does not explain the

propagation, but rather explains why propagating a constraint leads to a conflict.

e Combine. Algorithm 3.1 in Subsection 3.2.2 introduces the notion of constraint
combination which generalizes binary resolution of many-valued SAT (which is a

generalization of binary resolution of Boolean SAT). Introduced in Subsection 3.4.1

8HCSP is the fastest if benchmarks with table constraints are excluded. The current implementation
of table constraints is inefficient and has to be rewritten.
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the combine rule for ¢; and ¢y and pivot z is defined as:

a(@,y) o,y
r g XV I e X[ (a, ) Aca(a, )]

( combine(x) )

Where ¢ is a collection of variables which are constrained by either ¢;, ¢o, or both

and Dy is their domain. Also:

X = {LU/ S ZW@] € Dg'[_'cl(xlagl) \ _'62(‘%‘/73/)]}

The research shows that combine possess properties which make it work well in
conflict analysis. Also, several strong rules are derived using the general combine

rule.

e Non-clausal conflict analysis. Using the combine rule HCSP employs a novel
conflict-analysis algorithm which learns complicated constraints. It is able, for
example, to combine z1+2x5+7x3 > 0 with x14+329 > 5 and get 221 +529+7Tx3 > 5,
and then to combine the result with 2z, + 5xy + 723 < 4 and detect that these
constraints contradict with no need for further backtracking. Other conflict analysis
methods such as [BK, KB05, VS10a] require conflicts of explanation clauses to reach

the same conclusion.

By having specialized combination rules only for some pairs of constraints, HCSP
slightly resembles SMT.? The SMT solver groups constraints into separate theories,
processed independently. Much of the inference between constraints is performed
independently in each theory, similarly to the combination rules that work only on
specific pairs of constraints. But unlike HCSP, SMT inference is mostly visible by
asserting existing constraints through conflict analysis and theory propagation, and

not by introducing new constraints during conflict analysis.

Other major differences between SM'T and HCSP are the decision procedure and
propagation. In SMT decisions are made on Boolean variables that encode more
complicated constraints: should an atom, i.e., constraint, be satisfied or falsified in
order to satisfy the overall formula. In HCSP the decisions are on all variables. In
SMT, theory propagation may learn a new Boolean constraint that affects existing
constraints (atoms). In HCSP, propagation reduces the domains of variables and
only conflict analysis may introduce new constraints, including Boolean constraints

that affect exiting constraints.

9SMT and CSP traditionally do not focus on the same set of problems, although there are some
problems that are dealt with by both. Whereas CSP is typically focused on finite discrete domains, SMT
can accommodate any decidable theory, including those over variables of type Real.
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e Proofs. Section 2.4 describes how HCSP generates machine-checkable proofs for
unsatisfiability using basic inference rules. It uses explanation rules to generate
signed-clauses out of constraints, and a binary signed-resolution to create new
clauses. HCSP is the only CSP solver known to us that generates proofs, a feature

that was so far only available in SAT solvers.

e Interpolants. HCSP can generate interpolants, and is the only CSP solver known
to us that has this capability. In Section 4.5 we prove the correctness of Algorithm 4.4,
which finds Craig’s Interpolant for a CSP. The algorithm is based on a similar algo-
rithm that is used by some SAT solvers for the case of propositional formulas and

binary resolution.
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Chapter 2

A Proof-Producing CSP Solver!

Abstract

HCSP is a CSP solver that can produce a machine-checkable deductive proof in case
it decides that the input problem is unsatisfiable. The roots of the proof may be nonclausal
constraints, whereas the rest of the proof is based on resolution of signed clauses, ending
with the empty clause. HCSP wuses parameterized, constraint-specific inference rules in
order to bridge between the nonclausal and the clausal parts of the proof. The consequent
of each such rule is a signed clause that is 1) logically implied by the nonclausal premise,
and 2) strong enough to be the premise of the consecutive proof steps. The resolution
process itself is integrated in the learning mechanism, and can be seen as a generalization

to CSP of a similar solution that is adopted by competitive SAT solvers.

2.1 Introduction

Many problems in planning, scheduling, automatic test-generation, configuration and
more, can be naturally modeled as Constraint Satisfaction Problems (CSP) [Dec03], and
solved with one of the many publicly available CSP solvers. The common definition of
this problem refers to a set of variables over finite and discrete domains, and arbitrary
constraints over these variables. The goal is to decide whether there is an assignment
to the variables from their respective domains, which satisfies all the constraints. If the
answer is positive the assignment that is emitted by the CSP solver can be verified easily.
On the other hand a negative answer is harder to verify, since current CSP solvers do not

produce a deductive proof of unsatisfiability.

IPublished in AAAI-10
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In contrast, most modern CNF-based SAT solvers accompany an unsatisfiability result
with a deductive proof that can be checked automatically. Specifically, they produce a
resolution proof, which is a sequence of application of a single inference rule, namely the
binary resolution rule. In the case of SAT the proof has uses other than just the ability
to independently validate an unsatisfiability result. For example, there is a successful
SAT-based model-checking algorithm which is based on deriving interpolants from the
resolution proof [HIMMO4].

Unlike SAT solvers, CSP solvers do not have the luxury of handling clausal constraints.
They need to handle constraints such as a < b+ 5, allDifferent(z,y, z), a # b, and so on.
However, we argue that the effect of a constraint in a given state can always be replicated
with a signed clause, which can then be part of a resolution proof. A signed clause is a
disjunction between signed literals. A signed literal is a unary constraint, constraining a
variable to a domain of values. For example, the signed clause (x; € {1,2} V 25 & {3})
constrains® x; to be in the range [1,2] or x5 to be anything but 3. A conjunction of
signed clauses is called signed CNF, and the problem of solving signed CNF is called
signed SAT?3, a problem which attracted extensive theoretical research and development
of tools [LKM03, BHMOOb].

In this article we describe how our arc-consistency-based CSP solver HCSP (for a
“Proof-producing Constraint Solver”) produces deductive proofs when the formula is un-
satisfiable. In order to account for propagations by general constraints it uses constraint-
specific parametric inference rules. Each such rule has a constraint as a premise and
a signed clause as a consequent. These consequents, which are generated during con-
flict analysis, are called explanation clauses. These clauses are logically implied by the
premise, but are also strong enough to imply the same literal that the premise implies
at the current state. The emitted proof is a sequence of inferences of such clauses and

application of special resolution rules that are tailored for signed clauses.

Like in the case of SAT, the signed clauses that are learned as a result of analyzing
conflicts serve as ‘milestone’ atoms in the proof, although they are not the only ones.
They are generated by a repeated application of the resolution rule. The intermediate
clauses that are generated in this process are discarded and hence have no effect on the
solving process itself. In case the learned clause eventually participates in the proof
HCSP reconstructs them, by using information that it saves during the learning process.
We will describe this conflict-analysis mechanism in detail in Section 2.3 and 2.4, and
compare it to alternatives such as 1-UIP [ZMMMO1], MVS [LKMO03| and EFC [KBO05|

2 Alternative notations such as {1,2}:z; and x{m} are used in the literature to denote a signed literal

xr1 € {1, 2}
3Signed SAT is also called MV-SAT (i.e. Many Valued SAT).
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in Section 2.5. We begin, however, by describing several preliminaries such as CSP and

signed SAT, and by introducing our running example.

2.2 Preliminaries

2.2.1 The Constraint Satisfaction Problem (CSP)

A CSP is a triplet ¢ = (V,D,C), where V = (vy,...,v,) is the set of problem variables,
D = (Dy,...,D,) is the set of their respective domains and C is the set of constraints
over these variables. An assignment « satisfies a CSP ¢ if it satisfies all the constraints in
C and Yv; € V.a(v;) € D;. A CSP is unsatisfiable if there is no assignment that satisfies
it.

We will use the example below as our running example.

Example 2.2.1 Consider three intervals of length 4 starting at a, b and c. The CSP
requires that these intervals do not overlap and fit a section of length 11. This is clearly
unsatisfiable as the sum of their lengths is 12. The domains of a,b and c is defined to be
[1,8]. It is clear that in this case the domains do not impose an additional constraint,
since none of these variables can be assigned a value larger than 8 without violating the
upper-bound of 11.

In addition our problem contains three Boolean variables x1, xs, x3 that are constrained
by 1 V xe, 11 V 3, (x2 A x3) — a = 1. Although the problem is unsatisfiable even
without the constraints over these wvartables, we add them since the related constraints
will be helpful later on for demonstrating the learning process and showing a proof of
unsatisfiability that refers only to a subset of the constraints.

We use NoOQwerlap(a, Lo, b, Ly) to denote the constraint a + L, < bV b+ L, < a.
Qwverall, then, the formal definition of the CSP is:

V:{aa b7 ¢, xl,l'g,l’g};

D, =D, =D, =[1,8],
:{ Dy, = Dy, = Dy, = {0,1};
c1 1 NoOverlap(a,4,b,4) ¢4 : 21V o
C =9 ¢ : NoOverlap(a,4,c,4) c5: 21V a3
cs : NoOverlap(b,4,c,4) c¢s: (zaANw3) »a=1.

2.2.2 Signed clauses

A signed literal is a unary constraint, which means that it is a restriction on the domain

of a single variable. A positive signed literal, e.g., a € {1,2}, indicates an allowed range
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of values, whereas a negative one, e.g., a € [1,2] indicates a forbidden range of values.
When the domain of values referred to by a literal is a singleton, we use the equality and
disequality signs instead, e.g., b = 3 stands for b € {3} and b # 3 stands for b ¢ {3}.
A signed clause is a disjunction of signed literals. For brevity we will occasionally write

literal instead of signed literal and clause instead of signed clause.

Propagation of signed clauses

Signed clauses are learned at run-time and may also appear in the original formulation
of the problem. Our solver HCSP has a propagator for signed clauses, which is naturally
based on the unit clause rule. A clause with n literals such that n — 1 of them are false
and one is unresolved is called a unit clause. The unit clause rule simply says that the
one literal which is unresolved must be asserted. After asserting this literal other clauses
may become unit, which means that a chain of propagations can occur.

A clause is ignored if it contains at least one satisfied literal. If all the literals in a
clause are false then propagation stops and the process of conflict analysis and learning

begins. We will consider this mechanism in Section 2.3.

Resolution rules for signed clauses

HCSP uses Beckert et al.’s generalization of binary resolution to signed clauses in order
to generate resolution-style proofs [BHMO00a|. They defined the signed binary resolution
and simplification rules, and implicitly relied on a third rule which we call join literals.
In the exposition of these rules below, X and Y consist of a disjunction of zero or more

literals, whereas A and B are sets of values.

signed binary resolution simplification
(ve AV X) (veB\/Y)[R] (veﬁvZ)[S]
we(ANB)VXVY) "7 (Z) ’

join literals
(ViveAi)v2)

(ve U A)V2)
Resolution over signed clauses gives different results for a different selection of the

(/0]

pivot variable. For example:
(ae{1,2}vbe{l,2}) (a=3Vb=3)
(ae®vbe{l,2} Vb=23)
(aedvbe{l,2} vb=23)
(be{1,2} vb=3)

gives a different result if the pivot is b instead of a:

[Ra]

(be{1,2Vb=3)
(be{1,2,3))

[Sa] [a]
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1 e
w2 =101 1 bes8al
e e g c
x; = 0Ql | “a=1a1 j\X
s 2 o 27
| z3 = 1Q1 I c € [5,8]Ql
[ €2 _L>
2-UIP! c € [1,8]@0 li-vrp

Figure 2.1: An implication graph corresponding to the running example.

(a € {1,2} vbe{l,2}) (a=3Vb=3)
(a € {1,2,3})

In practice HCSP does not list applications of the ‘join-literals’ and ‘simplification’

[Rb + 5, + Jb] .

rules, simply because they are applied very frequently and it is possible to check the proof
without them, assuming this knowledge is built into the proof checker. Such a checker
should apply these rules until convergence after each resolution, in order to create the

premise of the next step.

2.3 Learning

In this section we explain the learning mechanism in HCSP, and how it is used for
deriving proofs of unsatisfiability based, among other things, on the resolution rules
that were defined in the previous section. We begin with implication graphs, which are
standard representation of the propagation process. In Section 2.3.2 we will show the

conflict analysis algorithm.

2.3.1 Implication graphs and conflict clauses

A propagation process is commonly described with an implication graph. Figure 2.1
shows such a graph for our running example, beginning from the decision x; = 0. In this
graph vertices describe domain updates. For example the vertex labeled with b € [5, 8]@1
means that the domain of b was updated to [5,8] at decision level 1. A special case is
a vertex labeled with an initial domain, which may only occur at decision level 0, e.g.,
b € [1,8]@Q0. A conflict between clauses is signified by X. Directed edges show logical
implications, and are annotated with the implying constraint. The incoming edges of
each node are always labeled with the same constraint.

A constraint is called conflicting if it is evaluated to false by the current assignment. In

our example the constraint ¢ = NoOwverlap(b, 4, c,4) is conflicting under the assignment
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21 = 0. When such a constraint is detected the solver has to analyze the conflict and infer
its cause. Traditionally this process has two roles: to apply learning by producing a new
constraint and to select a decision level that the solver should backtrack to. The learned
constraint has to be logically implied by the formula, and to forbid, as a minimum, the
assignment that caused the conflict. In practice the goal is to produce a more general
constraint, such that a larger portion of the search space is pruned. In competitive SAT
solvers and CSP solvers such as EFC, the constraint is built such that it necessarily leads
to further propagation right after backtracking (this constraint is called an asserting
clause in SAT).

A standard technique for performing conflict analysis in SAT, which can also be used
in CSP is called 1-UIP (for ‘first Unique Implication Point’) [ZMMMO1]|. The dashed line
marked as 1-UIP in Figure 2.1 marks a cut in the graph that separates the conflict node
from the decision and assignments in previous decision levels. There is only one vertex
immediately to the left of the line — namely the node labeled with a = 1@1 — which is
both on the current decision level and has edges crossing this line to the right-hand side.
Nodes with this property are called UIPs. UIPs, in graph-theory terms, are dominators
of the conflicting node with respect to the decision. In other words, all paths from the
decision to the conflicting node must go through each UIP. A UIP is called 1-UIP if it is
the rightmost UIP. 2-UIP marks the second UIP from the right, etc.

Asserting all the literals immediately on the left of a cut necessarily leads to a conflict.
For example, collecting the literals on the left of the 1-UIP cut in Figure 2.1 shows that
(a =1Ab € [1,8]Ac € [1,8]) imply a conflict. To avoid the conflict the solver can generate
a conflict clause that forbids this combination, namely (a # 1V b & [1,8] V¢ & [1,8])
in this case. HCSP produces stronger clauses than those that can be inferred by 1-UIP,
by using resolution combined with a simplification step. This is the subject of the next

subsection.

2.3.2 Conflict analysis and learning

Algorithm 2.1 describes the conflict analysis function in HCSP, which is inspired by the
corresponding function in SAT [ZM03]. This algorithm traverses the implication graph
from right to left, following backwards the propagation order.

We will use the following notation in the description of the algorithm. For a node u,
let lit(u) denote the literal associated with u. For a literal [, let var(l) denote the variable
corresponding to [. For a set of nodes U, let vars(U) = {var(lit(u)) | u € U}, and for a

clause? cl, let vars(cl) = {var(l) | | € cl}.

4Here we use the standard convention by which a clause can also be seen as a set of literals.
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’ ‘ Constraint ‘ Explanation clause ‘

c1 | NoOverlap(a,4,b,4) | wy = (a € [1,4] Vb & [1,4])

co | NoOverlap(a,4,c,4) |ws = (a € [1,4] V¢ & [1,4])

¢3 | NoOverlap(b,4,c,4) | w3 = (b & [5,8] Vc & [5,8])

Cq | 1V Xo w4:(x17é0\/x2750)

cs | 1V X3 w5:(x17é0\/x3750)

co | (o Nx3) va=1 |wg=(r2#1Vaz#1Va=1)

Table 2.1: Constraints and explanation clauses for the running example. The
explanation clauses refer to the inferences depicted in the implication graph in
Figure 2.1.

A key notion in the algorithm is that of an explanation clause:

Definition 2.3.1 (Explanation clause) Let u be a node in the implication graph such
that lit(u) = 1. Let (I3,1)...(l,,1) be the incoming edges of u, all of which are labeled

with a constraint r. A signed clause c is an explanation clause of a node u if it satisfies:
1. r —c,
2. (LN NlyNe) = 1.

We can see from the definition that an explanation clause is strong enough to make
the same propagation of the target literal given the same input literals. Note that if the
constraint » happens to be a clause, then the notions of explanation clause and antecedent

clause that is used in SAT, coincide.

Example 2.3.1 Ezplanation clauses for our running example appear in the third column
in Table 2.1. These clauses are built with respect to the nodes in the implication graph in

Figure 2.1. We will explain how they are generated in Section 2.3.35.

The algorithm begins by computing cl, an explanation clause for the conflicting node
conflict-node. In line 3 it computes the predecessor nodes of conflict-node and stores
them in pred. The function RELEVANT ((nodes), (clause)) that is invoked in line 4
returns a subset IV of the nodes in (nodes) that are relevant for the clause (clause), i.e.,
vars(N) = vars({clause)).

Let dl be the latest decision level in front. The loop beginning in line 5 is guarded by
STOP-CRITERION-MET (front), which is true in one of the following two cases:

e There is a single node in level dl in front, or

e dl = 0, and none of the nodes in front has an incoming edge.
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At each iteration of the loop, CSP-ANALYZE-CONFLICT updates ¢l which, in the end of
this process, will become the conflict clause. The set front maintains the following invari-
ant just before line 6: The clause cl is inconsistent with the labels in front. Specifically,
in each iteration of the loop, CSP-ANALYZE-CONFLICT :

assigns the latest node in front in the propagation order to curr-node, and removes

it from front,
e finds an explanation expl clause to curr-node,

e resolve the previous clause ¢l with expl, where var(lit(curr-node)) is the resolution

variable (the resolution process in line 9 is as was explained in Section 2.2.2), and

e adds the predecessors of curr-node to front and removes redundant nodes as ex-

plained below.

The input to the function DISTINCT is a set of nodes (nodes). It outputs a maximal
subset N of those such that no two nodes are labeled with the same variable. More
specifically, for each variable v € vars({(nodes)), let U(v) be the maximal subset of nodes
in (nodes) that are labeled with v, i.e., for each u € U(v) it holds that var(lit(u)) = v.
Then N contains only the right-most node on the implication graph that is in U(v).
The invariance above and other properties of Algorithm 2.1 are proved in [VS10b].

Algorithm 2.1 Conflict analysis
1: function CSP-ANALYZE-CONFLICT
2 cl:= EXPLAIN (conflict-node);
3 pred:= PREDECESSORS (conflict-node);
4: front:= RELEVANT (pred, cl);
5: while (-STOP-CRITERION-MET (front)) do
6
7
8
9

curr-node:= LAST-NODE (front);

front:= front\ curr-node;

expl:= EXPLAIN (curr-node);

cl:= RESOLVE (cl, expl, var(lit(curr-node)));

10: pred:= PREDECESSORS (curr-node);

11: front:= DISTINCT (RELEVANT (front U pred, cl));
12: end while

13: add-clause-to-database(cl);

14: return clause-asserting-level(cl);

15: end function

Example 2.3.2 Tuble 2.2 demonstrates a run of Algorithm 2.1 on our running example.
Observe that it computes the conflict clause by resolving ws with wo, and the result of

this resolution with wy. The intermediate result, namely the result of the first of these
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resolutions, is discarded. The resulting conflict clause (a & [1,4] Vb & [1,8] V¢ & [1,8])
is stronger than what the clause would be had we used the 1-UIP method, namely (a #

Lvbeg 1,8 Vedll,8]).

U
Line| Operation
2 cl = (b & 5,8 Vedgls,8]) (=ws)
3 pred ={b € [5,8]@l1,c € [5 8]al}
4 | front ={b € [5,8]@Ql,c € [5,8]@l}
6 curr-node 1= ¢ € [5,8]@Q1
7 | front ={be [5,8]al}
8 expl = ( [1’ ]\/C%[ ) ]) ( WQ)
9 |d —(ag[LAVbE 8 Ved (L)
10 | pred —{a =1@l,c € [1, ]@0}
11 | front ={a= 1@1,b € [5,8]@l, ¢ € [1, 8]@0}
6 curr-node :=b € [5,8]@1
7 front :={a =1Q1,c € [1, 8]@0}
8 | expl = (a & [1,4] Vb ¢[1,4]) (= w)
9 cl =(ag[1,4 Vb [1,8 Vedgll8])
10 | pred ={a=1Q1,b € [1, ]@O}
11 | front :={a =1Q1,b € [1,8]Q0, c € [1,8]@Q0}
13 |add((a € [1,4 VD& [1,8 Ved&]l,8]))
14 | return 0

Table 2.2: A trace of Algorithm 2.1 on the running example. The horizontal lines
separate iterations.

Saving proof data

The resolution steps are saved in a list s1,...,$,, in case they will be needed for the
proof. Each step s; can be defined by a clause ¢; and a resolution variable v;. The
first step s; has an undefined resolution variable. The sequence of resolutions is well-
defined by this list: the first clause is ¢;, and the i-th resolution step for i € [2,n] is
the resolution of ¢; with the clause computed in step ¢ — 1, using v; as the resolution
variable. In practice HCSP refrains from saving explanation clauses owing to space
considerations, and instead it infers them again when printing the proof. It represents
each proof step with a tuple (Constraint, Rule, Pivot), where Constraint is a pointer
to a constraint in the constraints database, Rule is the parameterized inference rule by

which an explanation clause can be inferred (if Constraint happens to be a clause then
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Rule is simply NULL), and Pivot is a pointer to the resolution variable. The EXPLAIN

function saves this information.

2.3.3 Inferring explanation clauses

We now describe how explanation clauses are generated with the EXPLAIN function.

Every constraint has a propagator, which is an algorithm that deduces new facts.
Every such propagator can also be written formally as an inference rule, possibly param-
eterized. For example, the propagator for a constraint of the form a < b when used for in-
ferring a new domain for a, is implemented by computing {z | z € D(a)Ax < max(D(b))},
i.e., by finding the maximal value in the domain of b, and removing values larger than this
maximum from D(a). The same deduction can be made by instantiating the inference
rule LE(m) below with m = max(D(b)).

a<b
(a € (—oo,m|]Vbe[m+1,00))

(LE(m)) .

If, for example, the current state is @ € [1,10] and b € [2,6], then the propagator will
infer a € [1,6]. The consequent of LE(6) implies the same literal at the current state,
which means that it is an explanation clause. Table 2.3 contains several such inference
rules that we implemented in HCSP. In a proof supplement of this article [VS10b] we
provide a soundness proof for these rules, and also prove that such an inference rule exists
for any constraint.

One way to infer the explanation clauses, then, is to record the inference rule, and its
parameter if relevant, by which the literal is inferred during propagation (when progress-
ing to the right on the implication graph). An alternative solution, which is implemented
in HCSP, is to derive the inference rules only during conflict analysis, namely when
traversing the implication graph from right to left. The reason that this is more efficient
is that propagation by instantiation of inference rules is typically more time consuming
than direct implementation of the propagator. Hence performance is improved by finding
these rules lazily, i.e, only when they participate in the learning process and are therefor

potentially needed for the proof.

2.4 Deriving a proof of unsatisfiability

If the formula is unsatisfiable, HCSP builds a proof of unsatisfiability, beginning from the
empty clause and going backwards recursively. The proof itself is printed in the correct

order, i.e., from roots to the empty clause.
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Constraint Parameters Inf. rule
Al11Diff t
AllDifferent( | Domain D, and a 1oeren (7111,) U (AD(D,V))
Vi, ee s Ug) set V. C {vy,..., 0} Voevv & D)
such that 1+ |D| =
V] -
a
b Val N
a # alue m G Zm Vb Zm) (Ne(m))
a=>
=b D in D Eq(D
¢ omati wéDvieDp PP
<D
a<b+c Values m, n a=bte (LE,(m,n))
(a € (—oo,m+mn] V
bem+1,00) V
cent+loo) )
a=b+c
=b+ Val U, up, e, ue EQ Iy, up, le, ue
a c alues Iy, up, [, u Celtlomtu] (EQ% (ly, up, lc, ue))
b Q/ [lb,ub] \V/
¢ & [le, uc] )

Table 2.3: Inference rules for some popular constraints, which HCSP uses for generating
explanation clauses. The last rule is a bound consistency propagation targeted at a.

Recall that with each conflict clause, HCSP saves the series of proof steps si,..., s
that led to it, each of which is a tuple (Constraint, Rule, Pivot). We denote by s;.Cons,

s;.Rule, and s;.Pivot these three elements of s;, respectively.

Algorithm 2.2 receives a conflict clause as an argument — initially the empty clause
— and prints its proof. It begins by traversing the proof steps sq, ..., s; of the conflict-
clause. Each such step leads to a recursive call if it corresponds to a conflict-clause that
its proof was not yet printed. Next, it checks whether the constraint of each proof step
is a clause; if it is not, then it computes its explanation with APPLYRULE. This function
returns the explanation clause corresponding to the constraint, based on the rule s;. Rule.
After obtaining a clause, in lines 18-20 it resolves it with ¢/, the clause from the previous
iteration, and prints this resolution step. Note that the clauses resolved in line 19 can
be intermediate clauses that were not made into conflict clauses by the conflict analysis

process.

Hence, Algorithm 2.2 prints a signed resolution proof, while adding an inference rule
that relates each non-clausal constraint to a clausal consequent, namely the explanation

clause.

Example 2.4.1 First, we need an inference rule for NoOQwverlap:
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Algorithm 2.2 Printing the proof

1: function PRINTPROOF (conflict-clause)

2 Printed < Printed U conflict-clause

3 (s1,...,8k) < PROOFSTEPS (conflict-clause)
4: for i + 1,k do

5: if s;.C is a clause and s;.C' € Printed then
6 PRINTPROOF (s;.C)

7 end if

8 end for

9: for 1 < 1,k do

10: if 5;.C is a clause then expl <+ s;.C

11: else

12: expl < APPLYRULE (s;.C, s;.Rule)

13: Print(“Rule:”, s;.Rule)

14: Print(“Premise:”, s;.C, “Consequent:”, expl)
15: end if

16: if i =1 then cl < expl

17: else

18: Print(“Resolve”, cl, expl, “on”, s;. Pivot)
19: cl < Resolve(cl, expl, s;. Pivot)
20: Print(“Consequent:”, cl))
21: end if
22: end for

23: end function
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1. NoOverlap(b, 4, c,4) premise
2. (b&1[5,8Vedls,8]) 1INO(5,5)]
3. NoOverlap(a,4,c,4) premise
4. (a gL, 4 Ved[1,4]) 3INO(1,1)]
5 (a1, 4 Vb [58 Vedll8]) 2,4|Resolve(c)]
6. NoOverlap(a,4,b,4) premise
7. (aé[1,4VDb¢EI1,4]) 6[NO(1,1)]
8. (a1, 4Vb&[L,8 Vedg[l,8])  57Resolve(b)]
9. (a&1[5,8Vecd&ls38]) 3INO(5,5)]
10. (a € [1,8] Vb & [1,8] Ve ¢]L,8]) 8,9|Resolve(a)]
11. (c € [1,8]) premise
12. (a ¢ [1,8/ Vb ¢&][1,8]) 10,11|Resolve(c)]
13. (b€ [1,8)]) premise
14. (a € [1,8]) 12,13|Resolve(b)]
15. (a € [1,8]) premise
16. () 14,15[Resolve(a)|

Table 2.4: A deductive proof of the unsatisfiability of the CSP.

NoOwerlap(a,l,, b, 1)
(ag[mn+l—1Vbég[nm+l1,—1))
where m,n are values such that 1 — I, <n—m <[, — 1.
Table 2.4 shows a proof of unsatisfiability of this CSP. This presentation is a beautifica-
tion of the output of Algorithm 2.2. Note that the length of the proof does not change if in-

terval sizes increase or decrease. For example, a,b,c € [1,80] and NoOverlap(a, 40, b, 40),

(NO(m,n)) ,

NoOQuverlap(a, 40, ¢,40), NoOverlap(b, 40, c,40), will require the same number of steps.
Also note that the proof does not refer to the variables x1,xs and xs3, since HCSP found

an unsatisfiable core which does not refer to constraints over these variables.

2.5 Alternative learning mechanisms

While our focus is on extracting proofs, it is also worth while to compare CSP-ANALYZE-
CONFLICT to alternatives in terms of the conflict clause that it generates, as it affects
both the size of the proof and the performance of the solver.

An alternative to CSP-ANALYZE-CONFLICT , recall, is collecting the literals of the
1-UIP. In Example 2.3.2 we saw that 1-UIP results in the weaker conflict clause (a #
1vb & [1,8 Ve & [1,8]). After learning this clause the solver backtracks to decision
level 0, in which the last two literals are false. At this point the first literal is implied,
which removes the value 1 from D(a), giving D'(a) = [2,8]. In contrast, Algorithm 2.1
produces the clause (a & [1,4] Vb & [1,8] V¢ & [1,8]) (see line 13 in Table 2.2). This
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clause also causes a backtrack to level 0, and the first literal is implied. But this time
the range of values [1, 4] is removed from D(a), giving the smaller domain D"(a) = [5, §].
This example demonstrates the benefit of resolution-based conflict analysis over 1-UIP,
and is consistent with the observation made in [LKMO03|.

Another alternative is the MVS algorithm, which was described in [LKMO03| in terms
of traversing the assignment stack rather than the implication graph. MVS essentially
produces the same conflict clause as Algorithm 2.1, but it assumes that the input formula
consists of signed clauses only, and hence does not need explanation clauses. We find
Algorithm 2.1 clearer than MVS as its description is much shorter and relies on the
implication graph rather than on the assignment stack. Further, it facilitates adoption
of well-known SAT techniques and relatively easy development of further optimizations.
In [VS10b| we present several such optimizations that allow CSP-ANALYZE-CONFLICT
to trim more irrelevant graph nodes and learn stronger clauses.

A third alternative is the generalized-nogoods algorithm of EFC [KB05|. There are

two main differences between the learning mechanisms:

o EFC generates a separate explanation of each removed value. HCSP generates an
explanation for each propagation, and hence can remove sets of values. This affects
not only performance: HCSP’s conflict analysis algorithm, unlike EFC’s; will work

in some cases with infinite domains, e.g., intervals over real numbers.

e EFC generates an explanation eagerly, after each constraint propagation. In con-
trast HCSP generates an explanation only in response to a conflict, and hence only

for constraints that are relevant for generating the conflict clause.

Performance

HCSP performs reasonably well in comparison with state of the art solvers. In the
CSC09 competition [DLR09|, in the m-ary constraints categories, an early version of
HCSP achieved the following results, out of 14 solvers. In the ‘extension’ subcategory:
6-th in UNSAT, 9-th in SAT, 9-th in total. In the ‘intension’ subcategory: 1-st in UNSAT,
4-th in SAT, 4-th in total. We intend to publish separately detailed experimental results

together with a description of the various optimizations in HCSP.
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Chapter 3

Learning general constraints in CSP

(long version)

Abstract

We present a new learning scheme for CSP solvers, which is based on learning (gen-
eral) constraints rather than generalized no-goods or signed-clauses that were used in the
past. The new scheme is integrated in a conflict-analysis algorithm reminiscent of a mod-
ern systematic SAT solver: it traverses backwards the conflict graph and gradually builds
an asserting conflict constraint. This construction is based on new inference rules that
are tailored for various pairs of constraints types, e.qg., x < y1 + k1 and x > yo + ko, or
y1 < x and [x,ys] € la,b]. The learned constraint is stronger than what can be learned
via signed resolution. Our experiments show clear advantage over the state-of-the-art
solver MISTRAL in most types of constraints, averaging 25% reduction in fails (time-out
or memory-out), 29% reduction in run-time of instances that both engines solved, and
95.9% average reduction in the number of backtracks, when measured on the last CSP
competition (2009) benchmarks that include inequality constraints (a total of 2162 bench-

marks).

3.1 Introduction

The ability of CSP solvers to learn new constraints during the solving process possibly
shortens run-time by an exponential factor (see, e.g., [KB05|). Despite this fact, and
in contrast to SAT solvers, only few CSP solvers use learning, owing to the difficulty of
making it cost-effective. Learning in a limited form was present in early CSP solvers,

where it was called nogood learning [Dec90]. Nogoods are defined as partial assignments
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that cannot be extended to a full solution. Later generalized nogoods [KB05| (g-nogoods
for short) were proposed, which allow non-assignments as well, e.g., a g-nogood (z <
1,y < 1) means that an assignment in which = is assigned anything but 1 and y is
assigned 1 cannot be extended to a solution. This formalism is convenient for representing
knowledge obtained by propagators. The g-nogood above, for example, can result from
removing 1 from the domain of z, which leads by propagation to removing 1 from the
domain of y. G-nogoods may be exponentially stronger than nogoods, as shown in [KB05|.

A more general and succinct representation of learned knowledge is in the form of
signed clauses. Such clauses are disjunctions of signed literals, where a signed literal has
the form v € D or v € D (called positive and negative signed literals, respectively),
where v is a variable and D is a domain of values. Beckert et al. [BHMOOb| studied the
satisfiability problem of signed CNF, i.e., satisfiability of a conjunction of signed clauses.
They proposed an inference system, based on simplification rules and a rule for binary

resolution of signed clauses:

(veAVX) (veBVY)
(ve(ANB)VXVY)

[Signed Resolution(v)] (3.1)

where X and Y consist of a disjunction of zero or more literals, A and B are sets of
values, and v is called the pivot variable. Note that in case v is Boolean and A, B are
complementary Boolean domains (e.g., A = {0}, B = {1}) then this rule simplifies to
the standard resolution rule for propositional clauses that is used in SAT, namely the
consequent becomes (X VY).

As we showed in an earlier publication [VS10a|, we used this rule in our CSP solver
HCSP [VS10a] (short for HaifaCSP)!, as part of a general learning scheme based on
signed clauses. Using a special inference rule for each type of non-clausal constraint,
HCSP inferred a signed clause e that explains a propagation by that constraint. This
means that e is implied by the constraint, but at the same time is strong enough to
make the same propagation as the constraint, at the same state. Using such explanations
for propagations by non-clausal constraints, and rule (3.1) for resolving signed clauses,
HCSP can generate a signed conflict clause via conflict analysis. By construction this
clause is asserting (i.e., it necessarily leads to additional propagation after backtracking).
In contrast to the CSP solver EFC [KB05], which generates a g-nogood eagerly for each
removed value, HCSP generates a signed explanation clause lazily, only as part of conflict
analysis. Lazy learning of g-nogoods was also implemented on top of MINION [GMM10].

In this article we study a different learning scheme, which is based on inference

rules with non-clausal consequents. Our main goal in introducing this scheme is to

IThe early version of our solver that was introduced in [VS10a] was called PCS, for Proof-producing
Constraint Solver.
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learn a conflict constraint that is logically stronger and easier to compute than its
clausal counterpart. The emphasis is on the first of these goals as it may improve
the search itself. To that end, we propose a generic inference rule called Combine
that for many popular (pairs of) constraints indeed fulfills these two goals. For ex-
ample, suppose that in a state in which the domains of three variables are defined by
x € {2,6,10,14,...,30},y; € {8,12,16,20},y2 € {1,2,3,...,9}, the constraint ¢; =
y1 < x propagates x € {10,14,...,30}, which leads to a contradiction with a constraint
co = x < 1yo. During conflict-analysis, HCSP now infers from this propagation the

constraint

€ [8,9]V [y, 2] £ [8,9],

based on Combine (square brackets denote a range). This constraint is both implied by
c1, co, and has the form of a disjunction of two constraints, each of which has less variables
than the set of input variables. The latter property potentially makes it easier to solve.
Instantiations of Combine always have this property. For some combinations of rules we
do not use Combine since the result is too complicated to derive or too computationally

expensive to support. In such cases we offer simpler alternatives.

Our experimental results prove that indeed the new scheme is better than clausal
explanation. For reference, we also compared HCSP to the state-of-the-art CSP solver
MISTRAL [Heb08]. Our experiments with thousands of benchmarks from the latest com-
petition (in 2009), as we describe in Sec. 3.5, show that comparing to MISTRAL, HCSP
achieves an overall 25% reduction in fails (time-out or memory-out), 29% reduction in
run-time of instances that both engines solved, and 95.9% average reduction in the num-
ber of backtracks. Perhaps this drastic reduction in backtracks indicates that the cost
of learning strong constraints is mitigated by a better search (MISTRAL itself does not

learn constraints).

The rest of the article is structured as follows. The next section covers background
material, including the learning framework that we use and clausal explanations [VS10a].
Sections 3.3 and 3.4 describe the new set of inference rules, the requirements from them
and the proofs that they fulfill these requirements. In Sec. 3.3 we also explain how we
use clausal explanations as a fallback solution when we are unable to infer a general
constraint that satisfies the required properties. We conclude in Sec. 3.5 with empirical

evaluation and some proposals for future research.
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3.2 Background

3.2.1 Essentials of HCSP

The engine of HCSP adopts classical ideas from the CSP and SAT literature. We assume
the reader is somewhat familiar with those, and only mention several highlights briefly.

HCSP makes a decision (variable ordering) by selecting a variable with the highest
ratio of score to domain-size, where score is calculated similarly to Chaft’s VSIDS tech-
nique [MMZ*01a].? The value is initially chosen to be the minimal value in the domain,
and after that according to the last assigned value, a technique that is typically referred to
by the name phase saving is SAT [Sht00]. It includes restarts, learning (to be described),
and deletion of learnt-constraints with low activity.

HCSP supports all the constraint types used in the 2009 CSP competition. It has
precise propagators for the following types of constraints (where z; denote variables, b;
Boolean variables, a; constants, and ¢ € {=,<,>}): zg = x1,290 = —x1, Tg © abs(xy),
xooxy +x2+ ... (with wrap on overflow), zog < 1% x9, Tg > X1 * X9, To = min(zy, xe, .. .),
xo = max(xy, Ta,...), To = (bg?ws : x3),x # 0 <>y = 2, 19 € Set <> x1 < x9, To—T1 > o,
(ko +ag < 1 Vxy + a1 > xg), xg # o1, AllDifferent(zg, z1, . ..), [0, 21 + ao] C [a1, az),
[0, x1 + ag] € [a1,as], ap * xo + a1 * 1 + .... > ay, signed-clauses, and a disjunction of
any of the above when there are no shared variables. It has imprecise propagators for
T = Ty * To, Tg = T1/Te, g = 11%Ta, Ty = pow(z1,xs), and table constraints.

Complex constraints modeled by a language such as XCSP [C0909| are rewritten into
more basic ones.

The rest of this section is focused on the learning mechanism.

3.2.2 Conflict analysis

An implication graph G(N, E) is a directed acyclic graph in which each node n € N repre-
sents a literal (a variable domain) and each edge ¢ € E represents a constraint. Incoming
edges to a node n can only be labeled with the same constraint. Let (ny,n),..., (ng,n)
be the incoming edges of n, all of which are labeled with a constraint c¢. This represents
the fact that starting with domains nq, ..., n; the propagator of ¢ inferred the domain in
n. The constraint c is called the antecedent of n. Each node is also associated with the
deciston level in which the domain reduction occurred.

When an implication graph ends with a conflict (a node labeled with L), it is called
a conflict graph. We will follow a convention by which this graph is depicted with the

roots at the left and the sink at the right, and the horizontal position of a node indicates

2This can be seen as a variant of the dom/wdeg strategy [BHLS04].
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z € {2,4} z e {2}
oO——» 0 ——» n
c1 c3

—

Figure 3.1: Part of a conflict graph, based on the constraints ¢; =y > x, co = x > v,
and c3 = = > y + u. Empty circles represent nodes in the set F. Drawing (a) is before
relaxation, and drawing (b) is right after it. Relaxation discovers that the domain
reduction by ¢ is not necessary for conflicting the constraint curr (cz in this case).

the time it occurred. Examples of conflict graphs can be seen in Fig. 3.1 (the reader is
advised to ignore at this stage the distinction between filled and empty nodes in that
figure).

HCSP analyzes the conflict graph in order to learn a new constraint, called accordingly
a conflict constraint (or a conflict clause in SAT). A conflict constraint is called asserting
if there exists a backtrack level in which this constraint necessarily leads to additional
propagation. The conflict-analysis function, ANALYZECONFLICT , indeed computes this
level and returns it to the solver, which backtracks accordingly. Alg. 3.1 shows pseudo-
code of ANALYZECONFLICT as implemented in HCSP. It maintains a set of nodes F,
which is initialized to the set of nodes that contradict the input constraint cc. In line 4
it performs a relazation of F. Relaxation means that each node in F' is ‘pushed’ to the
left as long as the constraint C'ons remains conflicting. Generally this is possible when

domain reductions are redundant, as demonstrated in the following example.
Example 3.2.1 Consider the constraints
CQ=Yy=>x C=x2>2Yy c3=x>Yy+u.

and the conflict graph in Fig. 3.1(a). In Alg. 3.1, initially Cons = c3, and hence after
line 2 F = {x € {2},y € {2}, u € {0}} (those are marked with empty circles). Relaxation
in line 4 replaces in F the node y € {2} with the node y € {2,3}, because the new F
also contradicts the current constraint Cons. Fig. 3.1(b) shows this. The reason that this
1s possible is that the domain reduction by cy is redundant in the current state, because
when u = 0, c3 is capable of removing this value by itself. Such cases appear frequently,

because the order in which constraints are processed is not optimal. U

Relaxation is necessary for several reasons:
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e Preventing a situation in which the learned clause is still conflicting immediately

after backtracking, instead of being asserting,
e In Sec. 3.4.3 we rely on relaxation in the development of some of the rules.

e Our experiments show that without it many more cases fall back to clausal expla-

nations, because relaxation enables to circumvent them.

Relaxation is a contribution of the current article, although not its focus.

Let us return to the description of Alg. 3.1. In lines 5-9 ANALYZECONFLICT gradually
updates the constraint Cons. It does so by traversing the conflict graph backwards (i.e.,
going left, from the conflict node towards the decision node) while updating F' and the

constraint C'ons such that the following loop invariants are maintained:

Invarl. curr contradicts the domains defined by F', and is able to detect it via propagation
(detection is not a given, because not all constraints have a precise propagator, i.e.,
they are all sound but not all are complete. Bounds consistency is an example of

such imprecise propagation).
Invar2. No two nodes in F' refer to the same variable.

It should be clear that these invariants are maintained at the entry to the loop, because
of the definition of F'; Cons, and relaxation. COMBINE and GETNEWSET are targeted
towards maintaining it as will be evident later. The traversal stops in line 5 once the
function STOP detects that C'ons is asserting, or that it conflicts the domains at decision
level 0. In the latter case the function ASSERTINGLEVEL returns -1 to the solver, which
accordingly declares the CSP to be unsatisfiable. In line 8 the current constraint C'ons is
replaced with a constraint that is inferred from Cons itself and the antecedent constraint
of a node in F. The function COMBINE is the main contribution of this article and will
be discussed in length in later sections.

Let us now shift our focus to GETNEWSET, which updates the set F'. Initially it
replaces pivot with its parents. In case there is more than one node in F' representing
the same variable, in line 18 the function DISTINCT leaves only the right-most one. The
reason that there may be multiple entries of a variable in F' is that a parent of pivot
may represent a variable that already labels a different node in F' because of relaxation

(line 11) in a previous iteration.

3.2.3 Clausal Explanations

Generic explanations were used in the past (e.g., [KB05, GMM10|) for learning of g-

nogoods. The scheme we describe here uses inference rules specialized for each constraint
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Algorithm 3.1 ANALYZECONFLICT receives as input the currently conflicting con-
straint, learns a new constraint C'ons which is asserting (i.e., necessarily leads to further
propagation), and returns the backtrack level. COMBINE, the subject of Sect. 3.3-3.4,
infers a new constraint. GETNEWSET computes the new set of nodes F', as explained in
the text.

1: function ANALYZECONFLICT (constraint cc) > cc = conflicting constraint
2: F' <+ the set of nodes contradicting cc;

3: Cons + cc;

4: F <RELAX (F,Cons);

5: while IsTop (F,Cons) do > stop if Cons is asserting or UNSAT detected
6: pivot < node of F' that was propagated last;

7 antecedent < incoming constraint of pivot;

8: Cons < COMBINE (Cons, antecedent, pivot, F);

9: F + GetNewSet(F, Cons, pivot);
10: Remove from F' nodes referring to variables not in Cons.
11: F < RELAX (F,Cons); > Go left as long as F' contradicts Cons
12: end while

13: Add Cons to the constraints database;
14: return ASSERTINGLEVEL (Cons,F'); > the backtracking level, or -1 if UNSAT
15: end function

16: function GETNEWSET(node-set F', node pivot)

17: F « (F \ {pivot}) U parents of pivot;

18: F + DISTINCT (F); > Chooses right-most node of each variable in F’
19: Return F'

20: end function
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type, resulting in signed clauses. Such clausal explanations are important in our context
both for understanding the alternative mechanism that we used in [VS10a| (we use it as
one of the points of reference for comparing the results), and because we still use it as a
fallback solution when, e.g., we reach pairs of constraints that we do not directly support
in COMBINE. This technique is also based on ANALYZECONFLICT , with a difference
only in the implementation of COMBINE.

Let us begin by formally defining the notion of explanation.

Definition 3.2.1 (Clausal explanation) Let ly,... 1, be signed literals at the current
state (each literal represents the current domain of a variable), and let ¢ be a constraint
that propagates the new signed literal [, i.e., (I1 A... ANl, Ac) — 1. Then a clause e is an

explanation of this propagation if the following two conditions hold:
c—e (3.2)
(LA NlpyNe)— 1. (3.3)

Eq. (3.2) guarantees that the new clause e is logically implied by an existing constraint,
hence we do not lose soundness. Eq. (3.3) guarantees that it is still strong enough to
imply the same literal. It is always possible to derive an explanation from a constraint,

regardless of the constraint type [VS10al.

Example 3.2.2 The following rule from [VS10a] provides a clausal explanation for an
inequality constraint:
T <y
zr € (—oo,m|Vy € [m+1,00)

(LE(m)) (3.4)

where m is a parameter instantiating it (the rule is sound for any m). Note that the

consequent 1s a signed clause. Now consider two literals:
h=(rell,3]),lr=(y€[0,2])

and the constraint

c=w<y,

which implies in the context of ly,ls the literal
l=zell,2].
Using (3.4) with m = max(y) = 2 we obtain the explanation
e=(re(=00,2]Vy € [3,00)),

and indeed (3.2) and (3.3) hold, since ¢ — e and (ly Nla Ne) — 1. In [VS10a] alternatives

to choosing m = max(y) are discussed. O
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In [VS10a] we showed how HCSP generates a signed conflict clause with an inference
system based on signed resolution (3.1), that is reminiscent of how SAT solvers use
binary resolution. Explanations are used for bridging between non-clausal constraints
and a signed clause (as in the example above), and (3.1) is used for resolving signed

clauses.

Example 3.2.3 The following demonstrates conflict analysis with clausal explanations.

In addition to (3.4), we will use a variant of this rule for strict inequality:

T <y
r € (—oo,m—1]Vye[m+1,00)

(L(m)) (3.5)

We will also use the observation that if ¢ — e, then (IVc¢) — (IVe), to handle constraints
with disjunctions. Let D, = {0,1}, D, = {0,1}, D, = {0..100}, and

a=(E=9Vr<y) cu=(=10Vve>y).

The conflict graph on the right shows the decision
(D. = {0}), and then that ¢, propagates D, = {0},
D, = {1} in this order, and finally that ¢y detects a
conflict. Now F = {z € {0},2 € {0},y € {1}} and
pivot = {y € {1}}. At this point co generates the

explanation
(ze {10} Vze[l,00)Vy € (—00,0])

based on LE(0) (Eq. (3.4)), and ¢, generates the explanation

(ze{9}Vyell,oo)Vae (—oo,—1])
based on L(0) (Eq. (3.5)). Resolving the two explanations on y yields
(z €4{9,10} va ¢ {0}). (3.6)

Now pivot = x € {0}. ¢, explains the propagation of x with the clause (z € {9} Vy €
[2,00) V2 € (—00,0]), based on L(1). Resolving it with (3.6) on x yields

(2 €{9,10} Va € (00,—1]Vy € [2,00)) . (3.7)

Now F is equal to the three nodes on the left. (3.7) is now asserting, since e.g., at

the previous decision level z € {9,10} is implied. 4

39



3.3 Non-clausal inference: requirements

In Alg. 3.1 COMBINE is given the constraints Cons(z, y) and antecedent(z,y) with a joint
variable x that appears at the node pivot, and some set of variables 7, which may or may
not be common to both?. It outputs a new constraint over z, i that is assigned back into
Cons. In the presentation that follows we will use ¢;(z,y) to denote Cons(z,y), ca(z,y)

to denote antecedent(z,y), and ¢*(x, ) to denote the output constraint. We also define

ci2(x,7) = c1(x,7) A a2, 7).

Typically we will discard the parameters and write ¢y, co, ¢*, 12 instead.

Our first requirement from c¢* is that it preserves soundness:
C1o — . (38)

This guarantees that the constraint eventually learned in line 13 is inferred via sound
derivations, and hence is guaranteed to be implied by the original CSP.

Let D7, D denote the domains of z,y right before the propagation of ¢;. Also, let
cp denote the provability relation by constraints propagation, i.e., ¢ I, ¥ denotes that
starting with a set of constraints and domains ¢, the set of literals ¢ is derivable through
constraint propagation. Then to preserve Invarl (see Sec. 3.2), our second requirement
from c¢* is:

¢ Dl Dl by L (3.9)

Finally, we aspire to find the strongest ¢* that satisfies the above requirements, and which

is easy to propagate.

3.4 Non-clausal inference: rules and their proofs

Rules R1-R6 in Table 3.1 are triples (¢, co, ¢*) that satisfy the two requirements (3.8)
and (3.9). Rules R7 and R8 satisfy (3.8) but not necessarily (3.9). We use them to infer
constraints, and then test whether they happen to satisfy (3.9). In addition, we use the

following meta-rule for handling disjunctions:

(A\/Cl) (B\/CQ)

1
AV BV c* (3.10)

If (¢, o, c*) satisfies (3.8) and (3.9), then so does (3.10).

3Tt is of course not necessarily the case that they share all the variables, but the description is simplified
if we do not consider the shared and unshared variables separately, without sacrificing correctness.
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Proof

(AVer) AN (BV c)
= (AABVAAG Ve ABVeAc)

Clearly
ANBVANc, - A
and
aNB—B
and
c1 N\Ncyg — c*
Hence

(ANBVANc)V (et ANB)V (et ANeg) > AV BV
O O

Example 3.4.1 We now show two examples in which the rules lead to stronger learning

than explanation-based learning

o Recall example 3.2.3, which yielded the conflict clause (3.7). Given the same conflict

graph but using the meta rule (3.10) with pivoty, we learn instead z € {9,10}, which

18 clearly stronger.

Consider a variant of the erxample that was described in the introduction: x €
{2,6,10,14,...,30},y1 € {8,12,16,20},y> € {1,2,3,...,9}, and constraints

a=e{l}vyi<z) ca=(ze{l}Vve<y).

Suppose we make a decision z € {0}. Then ¢, propagates x € {10,14,...,30} and
co detects a conflict. Using rule R2 with k1 = k2 =0, and the meta rule (3.10) we

obtain:
(ze{l} Vo e[89VIy,y] Z[89). (3.11)

On the other hand if we use explanations, cs’s explanation via LE(9) is (z € {1}V
x € (—00,9] Vys € [10,00)), ¢1’s explanation via LE(7) is

(z e {1} Vy € (—00,7| Ve (8 0)]),
and resolving these explanations on the pivot x yields
(ze{l}Vzel[89]Vy € (—o0,7]Vys € [10,00)) .
This constraint is strictly weaker than (3.11) because the right disjunct of (3.11)

implies y; < 1.
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Most of the entries in the table were developed by instantiating a general inference

rule called Combine (see below), which satisfies these requirements. In some other cases

instantiating it turned out to be too complicated and we found ¢* without it. Sec. 3.4.3

includes proofs for some of these other rules.

c1 Co c*

Rl |ze XiVA(Y) |z€XoV A (Y) re(XinNXy) VvV A(y) vV A(¥)

R2 Y1 S Xr — kl e S Yo — kz (.CL’ € [li]l + Hlil’l(D;l), maX(D;Q) — k2:|) V
([y1, 92 — ko2 — k1] € [min(D,, ), max(D,,) —
ko — k1])

a>x>min(D! )) V

R3 |y <= [z, y2] & [a, b] ( B (Dy)

([yh yQ] g [mln(DqlJl)v b])
max(D’ V-ki > x > bt+ky) V

R |z <y — Kk [y, w — ko] £ a, 1] ( (Dy)-h 2 2)

[y2, Y1-Fk1-ke] € [a, max(b, max(D;, -k1-k2))]

RS [Z/1>37] A [alabl] [95,92] <z [a2,b2] (GQ >x>b) V ([ybyz] <z [@17b2])

(z € (Dy \ ([a1,b1] U [az, bo]))V
R6 | [z,y] € [a1,01] | [y, 2] £ [az,bo] Y
Y& (D; U fay, bi] U [ag, ba]))
ki <z—y<ky ifki+ky>0
R7 |y <o+ k v <y+k t=tTy =R R =
1 otherwise
ax—+ —ax+
RS Yoig(ai + b))z > ke + ks
Yo aiy; >k Yo by > ke

Table 3.1: Triples (¢, ¢o, ¢*) that we use for deriving conflict constraints. The top part
include rules that satisfy both (3.8) and (3.9), whereas the others are only guaranteed
to satisfy (3.8). When using them we test if they satisfy (3.9). Combinations of a pair
of linear constraints can be brought to the form expected by R8 if the coefficients of z
have opposite signs, via multiplication by a positive constant. Note that the coefficients
a;, b; may be 0 in RS8.

Since not all combinations of rule types are supported, not all propagators are pre-

cise (i.e., logically complete) and not all rules are precise (see R7, R8 in the table),

then COMBINE uses explanation-based inference (see Sec. 3.2.3) as a fallback solution.

Pseudocode of COMBINE, which is rather self-explanatory, appears in Alg. 3.2.




Algorithm 3.2 COMBINE infers a new constraint ¢* from ¢y, ¢o, which satisfies (3.8) and
(3.9), the requirements listed in Sec. 3.3.

1-1: function COMBINE(constraint ¢, constraint ¢z, node pivot, node-set F')
2.-1: F’ = GETNEWSET (F, pivot);

3.-1: if the combination of ¢y, ¢y is supported then

4.-1: con = infer(cy,cy, pivot); > One of the rules in Table 3.1.
5.-1: if ', con ., L then return con; > con satisfies Invarl
6.-1: end if

7-1: end if

8.-1: e < explain(cy, parents(pivot), pivot); > Fallback: use explanations.
9.-1: eg < explain(cy, F, L);

10.-1: return resolve(eq,es,pivot); > Signed resolution

11.-1: end function

3.4.1 A generic inference rule: Combine

Let S be some set of values. Then it is not hard to see that the following is a contradiction

for any constraint c(z,7):
c(r,y) Nz € SAVx € S. —c(2,7) , (3.12)
or, equivalently, that the following implication is valid:
c(r,y) = (x € SV e S. (2, 7)) . (3.13)
Let & denote the set of values of x which have no support in Dj:
X ={a"|Vy € Dy . —cra(2,y/)} . (3.14)

Instantiating (3.13) with ¢ for ¢ and with X' for S yields the inference rule that we call

Combine:

012(%@)
(x € X VI eX.crao(2,7))

(Combine) (3.15)

Since (3.15) is just an instantiation of (3.13), then (3.15) is clearly sound, and hence (3.8)
is satisfied. To satisfy (3.9) we first prove logical entailment (}=), which is weaker than
the requirement of (3.9) for provability (k).

Lemma 3.4.1 ¢, D, Dy |= L.
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Proof Inourcasec* = (x ¢ XVIz'€ X.ci1o(2',7)). Falsely assume that ¢* is satisfied for
an assignment of values a € Db € Dy to z,7, respectively. Consider the two disjuncts

of ¢*:

e Suppose = ¢ X is satisfied. Considering the definition of X’ in (3.14), this implies

that a is supported in ¢, or formally
E'y < Dlg clz(a,g7) . (316)

Based on Invar! we know that cio(7,7), Dy, Dy = L, and hence Vx € D,—3y €
Dy. cia(,y), and particularly for * = a, =3y € Dj. ci2(a,¥), which contradicts
(3.16).

e Now suppose dz' € X. c1o(2/,7) is satisfied. Expanding X and substituting 7 with

its assignment b yields

3z’ V? S D/g ﬁclg(ﬂf/,y) A 612(1'/,5> :
Since b € Dy and —epp (2, y') is satisfied for all 3/ € Dy, then it is satisfied for Y =b.

This implies a contradiction: Jz’. =cya(a’,b) A cra(2’,b) .

Hence, x € D,y € Dy falsifies ¢*, which completes our proof. O [ It is trivial
to see that this lemma implies (3.9) when F., is precise constraint propagation. When
imprecise propagation is involved, e.g., I, is defined by bounds consistency [CHLSO06,
HCSP checks whether the constraint happens to be conflicting, and if not it falls back

to clausal explanation.

The relative strength of Combine.

Two observations about the strength of Combine that we prove below are:

e There is no alternative to X for replacing S in (3.13) that makes the resulting

constraint stronger, and

e The signed clause that we obtain through the explanation mechanism—see Sec. 3.2.3—

cannot yield a stronger consequent.

Lemma 3.4.2 Consider all possible formulas of the form ¢(x,7) = (x € PV ¢(3)), for
a given set P. The strongest possible p(y), which meets all the requirements is Iz’ €
P.cio(2', 7). In other words, for any ¢(y) which makes 1(x,y) meet the requirements, the
following is satisfied:

Jz’ € P.eia(2',7) F ¢(7)
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Proof By negation, assume that there is and assignment b to § which satisfies 32’ €
P.ci5(2',b) but not ¢(b). This means that there is an a € P which satisfies ¢15(a, b) when
—¢(b). Because ci(a,b) is satisfied, (3.8) mandate that 1)(a,b) should also be satisfied.

According to the definition of ¥ we conclude that either a € P or ¢(b) have to be satisfied.
But since —(b) and, as defined, a € P we conclude that ¢ is unsatisfied with a,b. This
conflict the initial assumption. This leads to the conclusion that if 32" € P.cja(2’,7) is
satisfied, then ¢(7) must also be satisfied. U Note that this lemma refers to P,
and not X'. This means that it does not rule out the possibility where 3z’ € P.cya(2,7)
is stronger than 32’ € X.ci2(2’, 7). It is quite possible that the smaller the set P is and
the weaker the literal x ¢ P is, the stronger 32’ € P.ci5(2’,7) becomes.

Lemma 3.4.3 Consider all possible ¥(x,7) = (x & PV 3z’ € P.c12(y)) which satisfy the

requirements. P must satisfy

D CP.

r =

Proof By negation assume that D! Z P, i.e., there is a value a such that a € D! and
a ¢ P. Consider how this affects (3.9). According to (3.9),

¢ PV3x' € Pey(2,y), Dy, Dybe L.
Since a € D!, then we can replace « with a in the above formula, and get
ag PV 3r' e Pcp(x,y), D/g Fep L.
But since a was defined such that a € P then the above formula becomes
trueV 3z’ € P.cia(2, ), Dy ep L

This basically says true -, L, which is impossible. It implies that the assumption that
D! ¢ P is incorrect. O O

Lemma 3.4.4 Consider all possible ¥(x,7) = (x & PV 3z’ € P.c12(y)) which satisfy the

requirements. P must satisfy

PCX.

Where X was defined above as
X = {a'|Vy € Dy. [~cn(2,y)]}
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Proof According to the definition of X', the lemma can be reformulated as
Va € P\V/? S Dl@ [ﬁclg(a,?)} .

Assume, by negation, that this is not correct. In other words there are a € P and b € Dy
such that cjo(a,b). We will show that this conflicts (3.9).
Due to (3.9) we know that

x ¢ PV 3r' € Pep(dy),D,, DyFey L.
Since b € Dy, the formula above implies
x ¢ PV 3r € Pep(r,b),D) L.

Assuming -, is precise this implies

Vo € D~ [z ¢ PV 3d' € Peps(a,b)] .

We now push the negation down, and get
Vo € D). [x € P AV € Pmeys(2/,b)] .

First, we see that this implies D/, C P. Since z is independent in the formula we conclude
that
Va' € P—cyp(2,b) .

Now we go back to a € P and b € Dy which guarantee c12(a, 5), and combine it with the
formula above. This means that we can assign 2’ = a, which leads to —¢;a(a, b), which
conflicts with the guarantee of ¢5(a,b). This means that our assumption that the lemma
is incorrect was wrong, hence P C X. U [] This lemma implies that
the literal x ¢ X is the strongest possible. This does not imply anything regarding the
strength of the second part of the formula, i.e., 32" € X. [c12(2',7)] may be weakened by
strengthening « ¢ P.
Also note that the previous lemmas bound P to D!, C P C X.

Theorem 3.4.1 There is no alternative ¥(x,7y), different than ¢*, which is stronger than

c® with X. In other words
U(r,y) # [x & XV Iz € X.cp(2',7)]

¥
(W(z,7) [z € XV Iz' € Xoca(2',7)]) -
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Proof Recall that we require that ¢ (z,7) to be of the form x ¢ PV ¢(7). Lemma 3.4.2
shows that for a given P, the strongest possible ¢ () is 32’ € P.cia(2’, 7). This leaves us

to prove that
x ¢ PV 3z € Pep(a)7)

is not stronger than
r g XV I € X.ep(a7) .

According to Lemma 3.4.4 because P complies with the given requirements then P C X.
If P = X the two formulas are equivalent and neither are stronger, otherwise P C X.
Assume that P C X, this means that there is a such that a € X and a ¢P. As a
result, for x = a the literal x ¢ P is true and the literal x ¢ X is false. In this situation
the P based formula, i.e., z ¢ PV 32’ € P.cjo(2',7y) is true, but the X based formula
depends solely on
Ja’ € X.cp2(2,7) .

We look for a case where this formula is falsified when = = a. It can be falsified, i.e.,
not a tautology, since otherwise this would conflict (3.9). This means that there is an
assignment b to 7 such that the formula is falsified. We have found z = @ and y = b for
which the P based formula is satisfied and the X based formula is falsified. This means
that the P based formula is not stronger than the X based formula.

Because the P based formula is the strongest possible form of = € PV ¢(¥y), this

implies that any ¢ (z,7) that satisfies the requirements is not stronger than
x g XV e Xep(r,y) .

[0 [J Note that this theorem does not say that, with X', the resulting constraint is
stronger than any other possibility; it says that no other constraint is stronger. In other

words, there need not be a strict ordering of constraints.

3.4.2 Selected rules based on instantiating Combine

We now instantiate Combine (3.15) with several specific constraints of interest.  The
derivations rely on various properties of the domains before propagation D;, Dy and right
after it D7, Dy. By definition

c¢1,D,, Dty (x € Dy Ny € DY) . (3.17)
We make the following observations about these domains:

1. The domain of x, and possibly domains of variables in g, are reduced by c;:

Dl c D, DrcCD. (3.18)
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2. Owing to Invarl, in the context of D Dg, co detects a conflict:

ca(2,9), Dy, Dy Fep L (3.19)

3. ¢ cannot detect a conflict on its own in the context of D!, D’y:

c1, Dy, Dy ey L (3.20)
We now use these observations when instantiating Combine.

Rule R1: Clil’EXl\/Al(y) CQiIEXQ\/AQ(y)
Aj and A, are disjunctions of zero or more literals over the variables of 3. Expanding ¢y
in (3.14) yields

X={a"|Vy eDy (' € X0 AN=AL(@)) V (2" & Xo A —As(7))}

From (3.17) and (3.18) we know that ¢(z,y), D.,, Dy k¢, @ € Dy and D), # D, which

x)

implies that A,(7), Dy = L , and consequently simplifies the above to
X ={a"|Vy e Dy o' & X1V (2 & Xoa N—As(7))} -

Note that the propagation of ¢, in the context of Dy, D} results in D} = X; N D), and
Dy = Dy

Since Dy = Dgind, according to (3.19), cz(,7), Dy, Dy ep L, then Ay(y), Dy = L.
This means that Vy' € Dj.—Ay(y), which simplifies the above formula to

X={a"|VyeDy ' XV &Xo}.
Since the inner part does not depend on ¥ the formula is further simplified to
X={|2¢Xiva & X5}
Using this definition of X we examine c*:
c*(z, Dy) = (z € (X1 N Xp) VI & (X1 N Xa). ez, 7)) -
Let A" =32 & (X1 N X3). c12(2’, 7). This simplifies the above to
(z,Dy) = (x € (X1NXy) VA . (3.21)
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We split the quantifier in A’ into three cases:
A= (3 € (X1\ Xs). el 7)
Ja’ € (X2 \ X1). cr2(2',7)
32’ & (X, U X)) cro(2,7))

After taking the definitions of c¢1s, ¢1, and ¢y into account:

A= (3 € (X1\ Xa). As(y)
3z’ € (X5 \ X1). A1(D)
32’ & (X, U X1). A1(7) A As(7))

V
V

Next, we eliminate the 3 quantifier and get

A= (X1 \ Xo # DA A7)
(Xo\ X1 # 0N A7)
(XoUX) #ADNA(G) A As(F )))

We simplify this further by showing that X; \ X5 # () and X, \ X; # (), which leads to
A= (A(y) V Ax(Y)).

According to (3.17),(3.18), (z € X1V A1(¥)), D, Dy = « € D}, where D} C Dy,
which implies that A,(y), Dy = L. Similarly (v € X, V A1(y)), Dy, Dy |= L implies that
Aa(y), Dy = L. These facts show that A; and A, are falsified in this context, meaning
that we can focus only on z € X; and x € X, parts of ¢; and ¢, there.

For the following we assume that t, for signed-clauses is precise, i.e., ¢ = ¢ iff

Ve .

e X5\ X; # 0. Because co(,Y), D)y, Dy Wep L and b, is assumed to be precise
then there is an assignment a € D), b € Dy such that cy(a,b) is satisfied. Since
Ay(y), Dy = L and b € D we know that Ag( ) = L, which implies that a €
X. Further, since (ci(z,7) A c2(2,7)), D, Dy = L and cx(a,b) is satisfied then
ci(a,b) = L, ie., (a € X1V AL(b)), Dy = L. This leads to a ¢ X;, which together
with ¢ € X, implies X5 \ X; # ().

e X1\ Xy # 0. Because ¢i(x,%), D, Dy = L and since A,(7), Dy = L we know that
there is at least one element a € D! such that a € X;. Again, since (¢i(a,7) A
co(a,y)), Dy = L and c1(a,y), Dy = L then we know that cy(a,¥), Dy = L. This
implies that a € X5 = L, ie., a € X5. Since a € X, and a € X; then it follows
that X7 \ Xy # 0.
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These two facts simplify A’ to
A" = (Ax(y) v A(m)
and correspondingly, according to (3.21),
(x,y) =(x e (XiNXs)VA(Y)V A(Y)) . (3.22)

Note the equivalence of (3.22) and the result of signed resolution in (3.1).

Rule R2: C1=1Yo— T > ko Co=x—1Yy > k1

Expanding ci5 in (3.14) yields
X = {:13'|V?€D’g. [yo — 2 < ky V x—1 <k‘1]}

= {2/ |max(D,)) —x < ky V x—min(D] ) <k}

Y2

= {2/ |max(D))) —ky <z V x <k +min(D] )} .
The complement of X can be written as
X¢ = [k 4+ min(D], ), max(D;, ) — k| . (3.23)
Recall (3.14): x ¢ X V 32’ € X. ¢15(2’, 7). The right disjunct is equal to:

W' ' e XN [ya — 2" > ko N2' — 1y > K]
= 333'/.iL'/EX/\[yg—kgz.’Elzyl—'—k'l]
= 31’/. 513'/ € X/\.%/ € [y1 —|—k1,y2 — k’g] . (324)

We use (3.23) to rewrite (3.24):
3o’ @' & [k +min(D), ), max(D),)) — ks] Aa' € [y + k1, y2 — ko
which implies

[yl + /{1, Yo — kg] Z |:k1 + min(Dgﬂ), maX(D' ) — /{2]

Y2

= [yl, Yo — kg — kl] g [mln(D;I), maX(D;Q) — ]{32 — k1:| .

Hence, the rule is

Yo —x > ko T =1y >k

(3.25)
(z € [k + min(D), ), max(D,,) — ks V

Y1

(Y1, yo — ko — k1] € [min(Dgl,l)7 max(D,, ) — ky — k1))
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Rule RA4: C1 = Yy — Z k?l Co = [yg, r — kJQ] Z [CLQ, bg]

Note that R2 is implied by ¢j,co. If 33 — 2 > ky and = — yo > ko conflict D!,
and Dy then we can simply use R2. This allows us to concentrate on the case where
propagating[ys, ¥ — ko] Z [az, bo] D}, and Dj; removes at least one value from the domain

x more than z — ys > ky. The extra value removed, depicted ~, should satisfy
(E|y2 € D;g.'y — Yy > kg) AV, € D’yg. (Y2, 7 — k2] C [ag, ba] .
This is simplified to
vy —min(D,,) > ky A [min(Dy, ),y — ka] C [az, bo]
From this we conclude, according to the definition of interval inclusion, that

min(D;,) <y —ky A (min(D;],) >~ —ky V (a2 < min(D),)) <y —ky < by)) .

Y2

Since min(D,,) < v — kg and min(D;,) > v — k contradict it is possible to eliminate the
disjunct min(D;,) > v — ky and get

min(D;,) <y —ky Aag <min(D,,) <y —ky < by .
In which we have two copies of min(D,,) <~ — ky which one of them can be eliminated
as < min(D;H) <y —ky<by.

Subsequently
ay < min(D,,) < b. (3.26)

The next step is to find the value of X.

X = {33'|Vy € D,g.ﬂclz(l’/,y)} .
we get
X = {$/|\V/y S D/ﬂ [yl - < k’l V [yg,l‘ — k’Q] - [CLQ,bQH} .

Considering the properties of C and of < we replace y, with max(D, ) and and y, with
min(Dy,):
X = {z|max(D; ) — 2 < k1 V [min(D},),z — ka] C [as, bs]} .
When we expand according to the definition of C we get:
X ={z|max(D} ) — 2 < k1 V (min(D,,)) >z — ky V (min(D),) > ag Az — ky < by)) } .
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We apply min(D;,) > ag, from Eq.(3.26), on the above equation
X = {z|max(D) —x <k V (min(D,)) >z —ky Vo —ky < b))} .

We also apply by > min(D,,) , from Eq.(3.26), on the above equation

X ={zlmax(D) ) —2x <k Va—ky <by} .
Normalizing x gives

X ={zlmax(D, ) — ki <aVax<by+k} .
In terms of intervals, this can be written as

X = (by + ko, max(D), ) — k]9

and if we assume that all values are integers then

X = [by+ ka + 1,max(D, ) — k1] .

=g XV eX (1 — 2" > ki Nys, 7' — ko] € [as, bs]) .

We explore the right disjunct
A’ € X.(y1 — k1 > 2" Ay, ' — ko] & [ag, ba]) -
Applying X we get
3z, [max(D;u) —ky <2 ANyp—a2' > ki ANya, 2’ — ko] & [a2,b2H V
A [ <by+ ke Ayp — 2’ > ki Alya, @' — ko] € [ag, bo]] .
Expanding the definition of ¢ gives
J2’. [max(D?’Jl) —ki<d Ny —2 >k ANy < —ko ANy < ag] Vv
32’ [maX(Dgﬂ) —ki <Ny —2 >k ANy <2 —kg AN’ —ky > bﬂ Vv
[ <by+ ke Ay —2 >k ANy <2/ — ko Ays < ag] V
o [ <by+ ke Ayp —a' >k ANys </ — ko AN — kg > by .

Now, 2’ < by + ko conflicts 2’ — ko > by in the last disjunct, which implies:

J2’. [maX(Dél)—kl <x’/\y1—x’2k1/\y2S:L"—kQ/\y2<a2]\/
32, [maX(D;H)—k:l<x’/\y1—x’2k1/\y2§x’—k2/\x/—k2>b2}\/

A [ <by+ ke Ay —2 >k ANys <2/ — ko ANya < as) .
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We move 2’ and replace < with < as a preparation to eliminate z’:

3. [maX(Dél)—kl—i-le’/\yl—klZm’Ay2+k2§x’/\y2<aQ]\/
3. [max(Dél)—kl—l—lgx'/\yl—kl2x’/\y2+k2§x’/\x’2b2+k2+l]v

Jz’. [x’§b2+k2/\y1—k1 Zac’/\y2+k2§x'/\y2<a2] )
We eliminate 2’ in:
[maX(Dgﬂ)—lﬁ%—l gyl—kl/\y2+k2 Syl_kl/\yQ <CL2}\/

[maX(Dlyl)—kl—i‘lSyl—kl/\yg—i-kggyl—kl/\yl—klZbg+k2+1}\/
[y2+k2§b2+k2/\y1—k12y2+k2/\y2<a2] .
After some normalization:
[max(D] ) +1<y1 Ays+ ko <yr — ki Ayz < ag] V
[max(D’yl)—i—lSyl/\yg—l—k‘zSyl—kl/\yl—kl ZbQ‘i‘kQ‘l‘l}\/

[yo <bo Ay — k1 > yo+ka Aya < ag] .

In the last disjunct, since yo < ay and we know that as < by then y, < b is redundant

and the last disjunct becomes
Y1 — k1 > Yo+ ke Aya < as.
This subsumes the first disjunct:
max(Dy ) +1 <y Aya+ ke <y — k1 Aya < ag
So we are left with

[maX(Dg/l)+1§y1/\y2+/€2§y1—/€1/\y1—/€1Zb2+/€2+1}\/

[y — k1 > o+ ks Ay2 < ag] -

We now define ky + ko = £* which leaves us with:

[maX(D;1)+1Syl/\yg—l-k:*gyl/\ylZbg+k*+1}\/

1 >+ k Ays < as
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Combining conjunctions:

[y2 + Kk <y Ayr > max(by + £* + 1, max(D], ) + 1)] Vv
[ >y +k Ays < as

This can be written as a interval constraint:

ly2 + K", 31] € [az + k*, max(by + k7, maX(Dll/l))]

We can subtract £* from all sides and get:

(Yo, y1 — k1 — ko] € [ag, max(by, maX(Dgﬂ) — Kk — kg)}

The rule then becomes

y—v >k (Y2, x — ko] € [ag, b

by + ko < 2 <max(D}, ) — k1V

2, 41 — k1 — ko] € [ag, max(by, max(D}, ) — ki — ky)]

Rule R5: ¢, = [y1, 7] € [ay,bi] Ca = [1,y2] € [ag, by]

We demand that at the point of conflict, replacing either one of the constraints with a
plain < will not detect a conflict. If replacing with < detects the conflict then we simply
employ R2. This means that [y;,x] € [a1,b1] removes at least one value from D! more

than y; < x. The extra value removed ~ should satisfy

min(D;, ) <y AVy, € Dy [y1,7] C [a1,b1] -

This means that

min(D;, ) < A [min(D,,),~] € [ay, bi] .
From this we conclude that
a < min(D'yl) <~y <.
Similarly from the second constraint we conclude that
as < maX(DLQ) < by .
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We require that neither constraints detect a conflict by themselves with D?’J17 D?’J27 and

D!, but when propagated consecutively they reach a conflict. This means that there is

at least one value v € D! such that

1 € Dy, [y1,7] & [ar, bi]A
Vys € Dy, .[7,y2] C [as, bo]
This can be simplified to
[min(Dy,),7] & las, bi] A [y, max(D,,)] C [as, bo] -
If such ~ exists then it can be equal to max(D’,) such that
(min(D;, ), max(D;)] € [ar, bi] A [max(D;), max(D,,)]  [az, b] -

To summarize, we have concluded that

a; < min(D;, ) < by A [min(Dy, ), max(D},)] € [a1, bi]A

[max(D},), max(D,,)] C [az, bo] A az < max(D;,) < b, .

The interval expressions can be expanded such that
a; < min(D;, ) < by Amin(D; ) < max(D;)A
(min(D;, ) < ay Vmax(D}) > b1) A (max(D;,) > max(D,),)
V (max(Dy}) > ag Amax(D;,) < ba)) A az < max(D,,) < by .
This is simplified to
a; < min(D;ﬂ) < by < max(D.) Amax(D.,) > as Aay < maX(D;ﬂ) < by .
We will depict this as
¥ £ (ap < min(D)))) < by < max(D,,) Amax(D) > ag A az < max(D,,) < by) . (3.27)
We require that the resulting constraint be of the form

r € XV [y, ) L [a*,b7]

and meet the soundness and completeness requirements. First we look for X'which is
defined by

X = {a'Vy1 € D, Vys € D, [[y1,2'] C [ar, 0] V [2', 0] C [ag, ba]]} -
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We expand the interval operators to
X ={2'|Vy, € D, ,Vys € D, ,.
yr>2'V(a Sy A <b)Va' >y V(e <Ay < b))}

Since ¥, is bounded only from below and y, only from above then we can safely rewrite

this expression for the worse cases of y; and y, which are min(D; ) and max(D,,):

X = {2'|min(D,,) > 2"V (ay <min(D,, ) A 2" < by)V

z' >max(D,,) V (ag < 7' Amax(D,,) < by)} .

From the initial assumptions, as expressed by Equation (3.27), we know that a; <
min(D;, ) and max(D;,) < by are true. From, this we conclude that that (a; < min(D], )A
2" < by) can be simplified to 2 < by and that (ap < 2’ Amax(D],) < by) can be simplified
to a < x’. This yields

X = {«'|min(D} ) > 2'vVa' <b Va' >max(D,,)Va <a'} .

Equation (3.27) also states that min(D’yl) < by and ay < maX(D’yz). This makes both

min(D;, ) > =" and ¥’ > max(D,

,,) redundant in the expression above. So the expression

becomes
X ={z|]2' <bVay <2} .

X = (—00,b1] U [ag, 00) .

We will look for the values of a* and b* which produce the strongest [y, o] Z [a*, b*]
part which meets our requirements. This can be achieved by finding the smallest a* and
the biggest possible b*. First we require that the constraint is sound, i.e., derivable from

the two original constraints:

VaVyVys. [w A ([yhﬂ?] ¢ [al,bl] A [%yz] < [az,bz]) — (55 g XV [y1>y2] < [a*,b*])] .

Where 1) is defined in Equation (3.27). At first glance it seems that ¢ does not effect
the expression. We will omit ¢ as it will, at most, strengthen the expression. Assume by

negation that this is not so, i.e., there are x,yy, y» that violate it. This means that
[y, @] € [ay, bi] A [z, 92] € [ag, bo] A (2 < by Vag <) Alfyr,ye] C [a®,b%] .

From [y1,x] € [a1,b1] A [, 2] € [az, bs] we conclude that y; < x < yo. This means that
[y1,y2] C [a*, b*] can be replaced with y; > a* A yo < b*:

[y1, 2] € a1, 1] A [z, y2] € lag,bo] A (x < by Vas <x) Ay >a" Ay < b*.
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The best case scenario is when y; = a* and y, = b* as they maximize the intervals [y;, z]

and [z, yo]. This gives
[a*, 2] € [ar,bi] A2, 0] € [ag, ba] A (x < by Vay <) .

Consider the two possibilities for x, as expressed in the above expression in x < b;Vay < z.
If x < by then [a*, x] € [a1,b1] implies a* < a; and if © > ay then [z, b*] € [as, bs] implies
b* > by. In order to violate this, i.e., there will be no x to satisfy this equation, we
require that a* > a; A by < b*. So it seems that the strongest constraint that matches

the requirements is

r & XV [y1,y2] € [a1,ba] .

When
X ={d|2' <byVay <2’} .

e Soundness: We need to check if

(al < min(D;ﬂ) <b ANas < maX(DLQ) < by Afy1, 2] € a1, b1] A [z, y2] € [as, bg])

=

(x € XV [y1,y2] € a1, D))

By negation assume that this is not so, i.e., there are x, vy, ys such that

a; <min(Dy, ) < by Aay <max(D,,) < by A[yr, z] € a1, 0] A2, y0] € [az,ba] A

r € XAy, 1) C la, by

We expand the definition of X and get

ap <min(D;, ) < by Aag <max(D;,) < by Alfyr,z] € [a1,bi] A2, 9] € [a, ba] A

(by > xVa>a) A,y Clar, bo

If © < by then [y1,2] € [a1,b] implies y; < a; which conflicts [y1,y2] C [a1, bs).
Otherwise, ay > x and [x,ys] € [ag, by] implies yo > by which conflicts [y, ya] C
la1, by]. This means that there exists no = that satisfies the above expression, which
conflicts our assumption that the new constraint is not derived from the original

two interval constraints.

57



e Completeness: We need to check that
P — (:E ¢ XV [y1,y2) € |an, 02, D, D, D, F (Z)) )
Where 9 is an expression defined by Equation (3.27). By negation we assume that

Y — v € D3y € Dy Fys € D, [v & XV [y1,y2] Z [an, bs]] -

The part of  can be simplified such that

Y — 3y € D;lEIyQ S D;2 [D; \ X 7& 0v [yl,yz] z [&1,[)2” .

But according to the construction of X we know that D/, \ X = (), so the expression

is further simplified to
Y — Ty € Dlylﬂyz € D:/yg-[ylqu] < lay, by .

We expand it according to the definition of interval constraints:
Y= I €D,y €D, [y1 <y Ayr <arVby <) .

Since y; is bounded only from above and ys is bounded from below then we can
replace y; with min(D}, ) and y, with max(D,, ):

¢ [min(D),) < max(D),) A (min(D},) < ar V by < max(D},)] -

From the definition of ¢ we know that min(D, ) < a; and by < max(D,,) are false,
so (min(D}, ) < a1 V by < max(D,,)) is false and the expression above is falsified.
This means that our assumption was wrong, i.e., our completeness requirement is

not violated.

To summarize this part, the Combination rule is

i, 2] lay,bi] (2,90 € ag,bo] W .

3.28
ag > > by V [y, 2] € [ay, bo] ( )

Rule R6: ¢, = [z,y] Z [a1, by ca = [y, ] € [ag, by

We have ¢; A cg — x = y, because otherwise, e.g., if x < y, then ¢, is trivially false. Since
x = y then their joint value cannot be contained in either of the ranges [ay, b1], [az, bs].

Hence,
ci2=(r=y) Nz &la,bi] ANz & |ag, byl , (3.29)
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which implies that

X = {d'[VyeD, x#yVarecla,bh]Varcla, b}
= D;CU[al,bl]U[ag,bg] .

The consequent of Combine is

*

¢ = (xgXVIreX. x=yANxdla,b| Nz &ag, bs])

= (g XV(yeXNyd&u,bi| ANy ¢ [az b))

= (€ XV ((yela,b]Vy€lag,bo] Vy & D)) ANy & [ar,bi] ANy & [az, ba]))
= (@ gXV (Y€ Dy Ny &lar,bi] Ny & [as, ba]))

= (z € (Dy\ (Ja1,b1] U az, bo])) Vy & (D, U[ar,bi] U [as, ba])) .

Hence, the resulting rule in this case is

[z,y] € lar, 0]  [y,2] € [ag, by
(z € (Dy \ ([a1,01] U [ag, bo])) Vy & (D, U lar, bi] U [ag, ba]))

(3.30)

3.4.3 Selected rules not based on Combine

Rule R3: a=1y3<x Co = [%yQ] Z [a, b]

We assume that at the point of conflict, replacing ¢o with x < y, makes ¢35 too weak to
detect the conflict. Otherwise we simply use rule R2. Based on this assumption, which
we denote by ¥, we now develop X. 1) means that [x,ys] Z [a,b] removes at least one

value from D! more than x < yo. The extra value removed « should satisfy
a <max(D,,) Ay, € D, .[a,ys] C [a,b] .

This means that
o < max(D,,) A [a,max(D,,)] C [a,D] .

From this we conclude that
a<a< maX(D’yQ) <b.

We require that neither constraints detect a conflict by themselves with D, , D, , and

D!, but when propagated consecutively they reach a conflict. This means that there is

at least one value a € D!, such that

Jy, € D;l.yl < aA

vy? € Dlyg'[aayQ] g [CLJ)]

99



This can be simplified to
min(D), ) < a A o, max(D,,)] € [a,b] .
If such « exists then it can be equal to max(D’,) such that
min(D), ) < max(D}) A [max(D,,), max(D,,)] C [a,b] .
To summarize, we have concluded that
a < max(D,,) <bAmin(D, ) < max(D,) A [max(D,), max(D,,)] C [a,b] .

The interval expression can be expanded such that

a <max(D;,) <bAmin(D, ) < max(D}) A (max(D;) > max(D,,)V
(a < max(D},) Amax(D;,) <b)) .
This is simplified to

a < max(D,,) <bAmin(D, ) < max(D,) A (max(D,,) > max(D,,) V a < max(D,,)) .

Since a < max(D,, ) then if max(D;,) > max(D,,) is satisfied then max(D},) > max(D,,) >
a, i.e., D) > a, is implied. This means that max(D;) > max(D,,) is redundant in the

above expression, generating:
a < max(D,,) <bAmin(D,, ) < max(D,) A a < max(D}) .
We will depict this as
¢ £ (a <max(D),) < bAmin(D] ) < max(D,) Aa < max(D,)) . (3.31)
We require that the resulting constraint be of the form

Y g XV [y17y2] Z [a’*vb*] )

and meet the soundness and completeness requirements. First we look for X which is
defined by
X = {a'\Vy1 € D, Vy> € D,,,. [y1 > 'V [2', 4] C [a, 0]} .

We expand the interval operator to
X={2d\Vy e D,Vys € Dl [y > 2’ Va' >y V(a<a' Ays <Db)]} .
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Since 1, is bounded only from below and y, only from above then we can safely rewrite

this expression for the worse cases of y; and y, which are min(D; ) and max(D,,):

X = {#'|min(D;} ) > 2’ Va' > max(D,,) V (a <z’ Amax(D, ) < b)} .

From the initial assumptions, as expressed by Equation (3.31), we know that max(D;,) <
b is true. From, this we conclude that that (a < 2’ A max(D,,) < b) can be simplified to
a < x’. This yields

X = {2/|min(D,) > 2’ V' >max(D,)Va<a'} .

Equation (3.31) also states that a < max(D;,) which makes ¥’ > max(D,,) redundant in

2" > max(D,,) Va < . So the expression becomes
X ={2"|2' <min(D,,)Va <z} . (3.32)
We propose the following consequent:

¢ = 2@ XV [y, € [min(D,)),b] (3.33)
= a>x>min(D; )V [y1,y2] € [min(Dy,), 0] . (3.34)

Note that ¢* still follows our general pattern, by which the pivot is separated and not
referred-to by the other disjunct. Since we cannot rely on the correctness of the general
rule, we now prove that (3.34) satisfies (3.8) and (3.9):

e Eq. (3.8): Falsely assume the contrary, i.e., there are x, y;, yo such that

a <max(D;,) <bAmin(D, ) < max(D}) Aa < max(D,) Ay, <z
/\[x>y2] g [(I, b] Nee XN [ylvyZ] g [Hlln(D;l),b] :

Expanding X yields

a <max(D;,) <bAmin(D, ) <max(D})Aa < max(D,) Ay <@
/\[l’,yg] g [a7b] A (513' < HlHl(D;l) Va < lL') A [y17y2] - [mlﬂ(D;l),b] :

If # < min(D, ) then y; < x implies y; < min(D,,) which conflicts [yi,ya] C
[min(D;, ),b]. Otherwise, x > a and [z,ya] € [a,b] implies y, > b which conflicts
[ylayQ] g [HHH(D/yl),b]

e Eq. (3.9):  We need to check that
W — (iIZ’ ¢ XV [ylayQ] g [m1n<D;/L/1)ab]7D;:7D;1Dly2 + ®) 9
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where 1)’ is an expression defined by Equation (3.31). Falsely assume that
V' —»3Ire D3y €D,y €D, x XV [y, y] € [min(Dy, ), 0] .
The part of x can be simplified such that
' — 3y € Dy, Fyp € D,,. DL\ X # DV [y1,9] € [min(D), ), 0] .

But according to the construction of X we know that D/, \ X = (), so the expression
is further simplified to

Y — 3y € D;ﬁyz € DLQ- [y1, 2] € [min(D;, ), 0],

Y1

or

V' =3y € D, Ty €Dy, 1 Sy A(yr <min(D), ) V<) .
Since y; is bounded only from above and s is bounded from below then we can
replace y; with min(D}, ) and y, with max(D,, ):

¢ — [min(Dy, ) < max(D,,) A (min(D,,) < min(D} )V b < max(D,,))] .

min(D] ) < min(D;,) is clearly false, and from the definition of ¢’ we know that
b < max(D,,) is false. This falsifies min(D;,) < min(D} )V b < max(D,,) from
the expression, hence the whole expression is also falsified. This means that our

assumption was wrong, i.e., (3.9) is not violated.

To summarize, the rule is

p < [z Lleb] Y
a>x >min(D] )V [y1,y2] € [min(D; ),b]

(3.35)

Rule R7: ¢ =(y<z+k) o= (x <y-+ko)

Isolating = — y on both sides yields cia(x,y) = —k;y <  —y < ko, which is false if
k14 ks < 0. Since it is simply a conjunction of the input constraints, then (3.8) and (3.9)

are satisfied trivially.

3.5 Experimental results

We compared three different settings: (1) HCSP with general constraints learning based
on Combine (from hereon—HCSP), (2) HCSP using only clause-based learning with
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Figure 3.2: Number of instances solved within the given time limit comparing HCSP,
EXPLAIN, and MISTRAL (a) Shows the time in linear scale; (b) A zoom-in of the left
figure showing the cross-over between MISTRAL and HCSP occurring after 1-2 seconds.

explanations, as described in Sec. 3.2 (from hereon—EXPLAIN)* (3) MISTRAL |[Heb0§]
latest version (1.550).

To evaluate the three alternatives we used a subset of benchmarks of the Fourth
International CSP Solver competition [C0909|. Specifically out of over 7000 in the com-
petition’s satisfiability benchmark-set, we focused on the 2162 benchmarks that have at
least one comparison operator from {<, <, > >} (the reason being that the rules in Ta-
ble 3.1 refer to combinations of constraints based on these operators and constraints that
are consequents of these rules).

All tools were compiled with gee-4.8.1 for 32-bit Intel architecture, and were run on a
4 core Intel® Xeon® 2.5GHz with 3GiB RAM. We have set a hard limit of 1GiB memory
usage and 1200 seconds of CPU-time. Out of memory and time-outs are called ‘fails’ in
the discussion below.

Fig. 3.2 compares the three engines. Number of fails in HCSP was 25% less than
MISTRAL. Number of fails when using Combine was 4.9% less than EXPLAIN. In
Fig.3.3(a) we see that the conflict analysis of HCSP is not beneficial for runs below
1.5 seconds, where MISTRAL ran faster.

Fig. 3.3 compares the number of backtracks considering only non-failing runs in all
solvers (log-scale). The average number of backtracks in HCSP is 2045, in EXPLAIN
4389, and in MISTRAL 49562. As noted in the introduction, this drastic difference in
the average backtrack-count indicates that the cost of learning is compensated-for by a

better search.

HCSP is written in C++-, contains 23k lines of non-comment code, and its architecture

4We emphasize that this is a far-improved engine in comparison to four years ago [VS10a] owing to
numerous optimizations that are beyond the scope of the current article, including an improved decision
heuristic, better choice of explanations, and common-sub-expression elimination.
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Figure 3.3: Comparing the number of backtracks for successful runs (log-scale).

enables the addition of new constraints and new rules without changing the core solver.
It is free software [Vek| under the GPL license.

Conclusion and future work

We have presented a new learning scheme based on inference of general constraints. We
presented the development of various inference rules that are necessary for this scheme,
but it is clear that there is still a lot of work in deriving such rules for additional popular
pairs of constraints which are currently not supported and force HCSP into a fallback so-
lution. In addition, currently learning general constraints is incompatible with producing
machine-checkable proofs in case the formula is unsatisfiable, in contrast to our earlier
explanation-based method [VS10a].
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Chapter 4

Architecture and Capabilities of HCSP

4.1 The solving algorithm of HCSP

4.2 Propagating constraints

AC3 [Mac77| maintains a queue of constraints which contains constraints that need to
be revised. Every iteration of the algorithm removes a constraint from the queue and
performs a revise operation over it, i.e., the algorithm propagates the constraint. Unlike

AC3, HCSP maintains two queues:

e A queue of variables that have not been checked since their domains have been
reduced. The algorithm removes a variable from the variable queue and revises the
constraints affecting this variable. As an optimization, not all affecting constraints
are revised, only those that meet the watch criterion. Watches are described in Sub-
section 4.3.4. This is the prime queue of the algorithm, i.e., in most cases this will

be the only queue used during propagation.

e A queue of constraints that should be activated. The constraints in this queue
are considered only when the variable queue is empty. A constraint may enter
this queue only after it was encountered by the variable queue, and only if the

constraint’s propagation algorithm requests to do so.

This mechanism resembles Minion which, as described in [GMN], also uses a variable
queue for all constraints except for A11Differentwhich goes into the constraint queue.
Many papers including [SS08] suggest using a priority constraint queue, where slow con-
straints get a lower priority. It would be interesting to attempt constraint priority queue
for propagating constraints in HCSP.

The propagation algorithm in HCSP is described in Algorithm 4.1.
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Algorithm 4.1 The HCSP constraint propagation algorithm

1: function PROPAGATE(C, V, D, Q,)

2: QC — 0

3: while Q, #0V Q. # 0 do

4: if ), # () then

5: (v,¢) < pop_ front(Q,) > If ¢ # L, then ¢ € C inserted v into Q,
6: for all r € Watched(v)\{c} do
7: result<—REVISE (r, D, Q,, Q.) > propagate r and update @, Q.
8: if Empty(result) then

9: return CONFLICT

10: end if

11: end for

12: else

13: r < pop_front(Q.)

14: result<—REVISE (r, D, Q,, Q.)
15: if Empty(result) then

16: return CONFLICT

17: end if

18: end if

19: end while

20: end function

21: function REVISE(r, D, Q,, Q.)

22: result«—propagate(r, D)

23: if result = CONFLICT then

24: return result

25: else if result = POSTPONE then
26: if r ¢ Q. then Q..push back(r)
27: end if

28: else

29: D < D apply changes from result.
30: for all v" modified by result do
31: push back(Q,,(v',))
32: end for

33: end if
34: end function

4.2.1 The decision heuristic of HCSP

The decision heuristic of HCSP is based on a mix of Chaff’s VSIDS [MMZ*01al, dom/wdeg
strategy |BHLS04|, and phase saving [Sht00] as follows. HCSP maintains a weight value
for each variable and makes decisions based on that value. The weights, which are at the
core of the decision heuristic, are floating-point values which are modified according to

the following strategy:
e The initial weight of a variable is set to the number of constraints that constrain it.
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e FEach constraint that participates in conflict analysis increases the weights of all

affected variables by a factor.

e After each backtrack the increase factor is increased by approximately 4%, effec-

tively lowering the weights by 4%.

For a variable v that participated in a recent conflict analysis HCSP calculates h(v) =
|D,|/weight(v), and for all other variables it calculates h(v) = 8 % | D, |/weight(v). Then
the decision heuristics selects the variable with the lowest value of h(v). Since a variable
that participated in the latest conflict analysis gets lower h(v) it has a bigger chance of
being selected. Measurements show that this difference in h(v) improves performance.

This is similar to the conclusions of [BS10] which showed that sometimes it is benef-
icent to retry the same variable after backtrack, and in other cases it is beneficent to
try a different variable. They showed that instead of a-priory choosing either one of the
methods it is better to combine both. They lean towards, without restricting to, re-
peating the same variable. Their experiments show that not only the combined method
never performs much worse than the alternatives, it sometimes performs better than the
alternatives.

The variable ordering policy of HCSP resembles dom/wdeg strategy of CSP, where
both weight(v) and wdeg increase with conflicts. The two main differences are that:
(1) wdeg counts only the conflicting constraints when weight(v) counts all constraint
participating in conflict analysis; (2) weight(v), unlike wdeg, does not depend on the
current domains of neighboring variables.

The decision is performed by Algorithm 4.2.

Algorithm 4.2 Value ordering heuristic in HCSP

1: function SELECTVALUE(D,)

2 if previously-assigned then

3 d < previous(v)

4: if d € D, then

5: return d

6 else if d > min(D,) A d < (min(D,) * 2 + max(D,))/3 then

7 return min(D,) > The first 1/3 of the domain
8 else if d < max(D,) A d > (max(D,) * 2+ min(D,))/3 then

9: return max(D,) > The third 1/3 of the domain
10: else if random(2) = 0 then
11: return max(D,)
12: end if
13: end if
14: return min(D,)

15: end function
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Once the variable, v, is decided HCSP has to choose which value to assign to it. If the
variable was previously assigned to value d and d € D, then the decision is set to v < d.
Otherwise, the range of values [min(D, ), max(D,)] is partitioned into three partitions. If
d is in the lower partition then the decision is v < min(D,), and if d is in the higher
partition then the decision is v < max(D,), otherwise the value is selected randomly
between min(D,) and max(D,). Lastly, if the variable was never assigned before then
HCSP chooses the smallest value, i.e., min(D,).

Experimentation with other heuristics showed that there is an advantage in selecting
min(D,) or max(D,) over other values. For example, if D, = [1,1000] and the decision
v < 500 leads to a conflict then conflict analysis may conclude that v # 500. This
conclusion will create a hole in the domain such that D, = [1,499] U [501, 1000]. Decision
that assign v values which are not on the boundaries of D, create more holes in D,.
Domains with holes take more memory, possibly exhausting memory, and take more time
to propagate. The added costs do not seem to be worth-while even in cases when the

number of backtracks is lowered.

4.3 HCSP architecture

4.3.1 HCSP Domains

Holding domains efficiently is not trivial. Using C++’s std: :set<int> will work rea-
sonably well for small domains, but will be impractical for domains with hundreds of
elements or more. There are many known alternatives for representing domains which
are out of scope of this document. Instead, I will outline the way HCSP represents
domains.

In HCSP there are two alternative representations for domains, hcsp: :big_iset and
hesp: :small_iset. Currently, it is decided at compilation time with which domain type
to build HCSP. The representations are:

e small_isetrepresents sets restricted to the range [0,31]. The set is implemented

as 32 bit values, where bit b; = 1 means that value 7 is in the set.

e big_isetis restricted to the range [—23!,23!). The set is implemented as a collec-
tion of non-overlapping intervals. For example, D = [1,6] U [10,100] U [102, 110].
Because this representation is inefficient for the common case of strides, such as
1,3,5,...,101, strides have a special representations. Every big_isetis restricted
to one stride, e.g., 1,3,5,...,101 is represented as [1, 101] with skip size=2. For con-
venience, HCSP uses the Matlab syntax 1:2101 to indicate the set {1,3,5,...,101}.
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Currently, there is no compact representation for sets such as 1:3:101 U 102:105:120
since it involves two different strides. This set is represented as an explicit list of
58 elements rather than two stride ranges. It will be a good project to rewrite
big_isetas a specialized implementation of a balanced search tree rather than the

current reliance on std: :map which is slow and inflexible.

For the future it is a good idea to either get rid of small_isetor to make it work in

combination with big_iset.

4.3.2 HCSP Constraints

Constraints are the most extensible interface of HCSP. New constraints can be written
by extending the hcsp: :constraint_propagator base-class without touching any other
part of HCSP. The interface of constraint_propagator has many aspects and parts,
most of which have reasonable defaults. There are only four methods that must be defined

for new constraints:

e propagate(constraint_runtime_info &info):
This method defines how the constraint should be propagated. The propagator uses
the info object to access and update variable domains. The only way propagator
can access CSP variables is through info. The propagator does not know if info

refers to CSP variables or to, e.g., mock variables used for testing the propagator.

Note that this method may maintain internal data structure and modify it during

propagation. For example, it may maintain two-watch literals [MMZT01b| as in
SAT.

e conflicts(const constraint_runtime_info &info) const:
This method detects if propagate would detect a conflict on the current domains,
and does this without modifying neither the domains nor the internal state of the

propagator.

e constraint_check(const constraint_runtime_info &info) const:
Assuming that info (there is a short description of info in propagate() above)
contains fully assigned domains, tell if this assignment satisfies the constraint. This

method is used mostly for the automated testing of propagate().

e clone() const:

Create an identical copy of the current propagator.

There are many other methods with reasonable defaults, which may be overridden.

There are two reasons to override the default methods: (1) to overcome the poorer
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complexity of the defaults; (2) to implement features such as combine() for conflict

analysis.

4.3.3 Decomposing the CSP into basic HCSP constraints

HCSP decomposes complex constraints into basic constraints through reification [COC97],
a process which is similar to Tseitin transformation in SAT. A reified constraint has the
form

c(y) x=1

Where 7 is a set of variables which x is not one of them, and ¢(7) is a constraint over
these variables.

In most cases HCSP prefers one-sided reification, akin to one-sided Tseitin, which has
proven to make HCSP work faster. This transformation has the form [V ¢(y), where [ is
a literal such as x = 0 or x = 1. The transformation decomposes the disjunction of two

constraints (x; > x5 V x3 < x4 + x5) into three individual constraints:

D,,.D,, € {0,1}

1=y =0Va >z
o= (Yo =0Vuw3 < x4+ x5)
ca=(p=1Vy=1)

Where D,, and D,, are the domains of the auxiliary variables y; and ys.
Besides reification, HCSP decomposes big arithmetic expressions into their basic op-

erations. Consider for example:
x1 < abs(zs) + max(x3, xy)

This constraint is broken up into three basic constraint while introducing auxiliary vari-

ables v, 1o, and ys3:
y1 < abs(xs) A

yo < max(x3, ry) A
Y3 < y1+ Yo A

ys —x1 >0

This decomposition is slightly wasteful since it could have used x5 instead of introducing
y3. This waste does not seem to impact HCSP performance due to the solving process,

and it simplifies common sub-expression elimination.
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This is unlike the standard conversion from MiniZinc to FlatZinc, which is to create
constraints with ‘=" over ‘<’. Also, the FlatZinc specification! has, among others, only
the equivalent of max(a, b) = ¢ and does not have max(a,b) > ¢. For the example above,
the FlatZinc model will look like:

21 = abs(z3) A
2o = max(xgz,x4) A
23 = 21+ %2 N

T < 23

The implication of the difference between FlatZinc and HCSP in this regard is that
HCSP decomposition seemingly enlarges the search space since the auxiliary variables
y; are less constrained. It turns out that tighter decomposition hurts performance more
than it helps due to: (1) processing ‘<’ is much faster than ‘=’ and (2) the way HCSP
analyzes conflicts. In effect, conflict analysis can get rid of many auxiliary variables

", such as y;, which are usually used as pivots in Combine or Resolve

constrained by ‘<
rules. On the other hand, with ‘=" it is more difficult for the conflict analysis to eliminate

the more constrained auxiliary variables z; .

4.3.4 Constraint watches

Constraint watches have a long history in SAT and CSP. The Chaff [MMZ*01b] SAT
solver used a 2-watched literals scheme to make a major advancement in SAT solv-
ing. Similarly, a variety of watches has been defined in [SS04| and later used in Minion
[GJMO6]| which had a significant performance improvement for constraint propagation.

A watch is an algorithmic and data-structure entity that connects a variable and a
constraint and waits for a specific event. Consider for example the constraint x # y. If
the domains are D, = {1,2,...,5}, D, = {1,2,...,5} then = # y is arc-consistent. It
will remain arc-consistent for D! = {1,2,3,4}, D7 = {2,3,4} , or even DY = {3,4}.
This constraint may stop being consistent only when |D,| = 1 or |D,| = 1 and not
before. It makes no sense to visit x # y before one of the variables is fully assigned. A
FINALIZATION_WATCH watch over x will visit x # y only when z is fully assigned, and
similarly for a watch over y.

This is not a big win for a single constraint like x # y, but if there are many #

constraints connected to x then none of them would be revised before x is fully assigned.

IThis example uses a more compact syntax than the verbose FlatZinc syntax, but the semantics is
similar.
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For that, HCSP groups similar watches together so that an event is tested only once.
This way if there are n constraints = # yi,  # ya, ..., T # Yp, then it costs only O(1) to
maintain them when |D,| > 1.

HCSP supports watches similar to Minion:

e FINALIZATION_WATCH, as discussed in the example, visits the constraint when the
variable is fully assigned. (e.g. in z # y)

e LOWER_BOUND_WATCH visits the constraint when domain reduction changed the lower
bound of the domain. (e.g. for z in x < y after the initial propagation only changes

to D, that increase min(D,) may cause x < y to reduce D,).

e UPPER_BOUND_WATCH visits the constraint when domain reduction changed the upper
bound of the domain. This is the opposite of LOWER_BOUND_WATCH. (e.g. for y in
z < y)

e MODIFICATION_WATCH visits the constraint every time the domain of the variable
is reduced. This is the equivalent of the default behavior for solvers that do not

support watches.

e VALUE_WATCH(t), for variable v, visits the constraint when value ¢ is removed from
domain D,. A Boolean clause in HCSP would implement 2-watch literals by setting
two value watches on two of its variables, waiting for either 0 or 1 to be removed
from the {0,1} domain.

4.4 Solving optimization problems

4.4.1 Introduction to optimization

HCSP supports both minimization and maximization problems, but for simplicity we
will describe only minimization. The solving algorithm for maximization is not much
different.

A minimization problem has, on top of the constraints, a requirement to find a so-
lution that minimizes an objective function O(vy,...,v,,). HCSP effectively minimizes
the solution by minimizing the objective variable o that contains the evaluation of the
objective variable o = O(vy, ..., Up).

Minimization (maximization) is done in two circles:
e The inner circle is the normal solving process with a specialized decision heuristic.

e The top-level circle reruns the solver with a smaller bound on the objective function.
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The solver selects the decision variable using the same heuristic for minimization as for
satisfiability. However, when it chooses the value to assign, it selects the smallest domain
value instead of the best performing heuristic. By doing so HCSP strives to return
a solution with a small value for the objective without much effort, and without any

optimality claims.

Algorithm 4.3 Optimizing an objective variable o in HCSP

1: function OpTIMIZE(C, V, D, 0)

2 best«—UNSAT

3 while true do

4: result «— solve(C,V, D, 0)

5: if result € {UNSAT, TIMEOUT} A best =UNSAT then
6: return (result,{})

7 end if

8 if result =UNSAT then

9: return (OPTIMAL,best)

10: end if

11: if result = TIMEOUT then

12: return (SUBOPTIMAL,best)

13: end if

14: value < result|o] > o is part of the result
15: best «— result

16: if minimizing then

17: D, + D, N (—o0, value — 1] > D was not affected by ‘solve’
18: else

19: D, < D, N [value + 1, 00)
20: end if
21: if D, = () then
22: return (OPTIMAL . best)
23: end if
24: end while

25: end function

The top level algorithm shown in Algorithm 4.3, optimizes o by repeatedly solving
the CSP with smaller domains of o until the problem is no longer satisfiable. The last
solution, before D, is too small to be satisfiable, is the optimal one. Because HCSP only
reduces the domain of 0 and does not assign a single value, some iterations will produce
an assignment which is significantly better than the previous assignment. This, combined
with the decision heuristic, lets HCSP make big steps towards the optimal value.

Successive iterations learn from the previous iterations:

e Conflict constraints are retained between iterations, helping to avoid repeating sim-

ilar conflicts.
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e Previous assignments to variables, i.e., phase saving [Sht00|, such that the next

iteration reaches a similar solution relatively fast.

e Counters used for decision heuristic are retained, so that previous conflicts affect

decision making.

Experiments have shown that it may be beneficial to tune the decision heuristic for
variables other than the optimization variable o. If the optimization function O(vy, ..., vy,)
is ascending? with respect to vy, . .., vy, then it is sometimes beneficial to prefer the small-
est values of vy,...,v,. Although promising, this direction has not been pursued and

should be investigated in the future.

4.5 Generating an interpolant

McMillan [McMO3] introduced an interpolating theorem prover. His technique made it
possible to prove many types of formulas by using a SAT solver. It may be beneficial
to extend this technique such that CSP would be used for instead of SAT. Consider
an unsatisfiable Boolean CNF which can be split into two conjuncts ¥ A ¢. According

to [Crab7| it is possible to find a formula, an interpolant, I such that:

e vars(I) C vars(y) Nvars(p)
o Y1
o INphk L

Algorithm 4.4, which is implemented in HCSP, can generate an interpolant for CSP
using a technique similar to McMillan’s. It is adopted from [McMO05| where it is presented
for Boolean-SAT, to the world of Signed-CNF SAT, without modifications. The algorithm
and all the proofs in [McMO5| are taken as is, where instead of Boolean-literals it uses
signed-literals.

Algorithm 4.4 accepts G for the unsatisfiability of the CSP. Currently, the algorithm
can work only on explanation-based proofs®. The proof G is a Directed Acyclic Graph
(DAG) whose roots are constraints in C and the leaf node is L. For an explanation-
based proof, if a root ¢; is a non-clausal constraint then every one of its outgoing edges
is connected to singed-clause explanation, e.g., co. Every such explanation has only one
incoming edge. Other than that, every inner node has two incoming edges which represent

the binary-resolution that derives this node.

2The notion of ascending objective function can be extended to monotone functions, but it was left
out because it complicates the description

3Future work: it would be interesting to lift this restriction and work with the more general Combine
bases proofs.
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Algorithm 4.4 The generation of an interpolant in HCSP
. function INTERPOLATE(), ¢, )
V=, @ g, and G’ + G.
for all » € G s.t. r is a non-clausal constraint do
X «{ei|(r,e;) € G'} > X gets the set of clauses adjacent to r
Q /\eiGX €i
' < 1) with r replaced by €.
¢+ ¢ with r replaced by €.
G G\ {r} \{(r e)(r, &) € G'}
end for
10: return INTERPOLATE-SIGNED-CLAUSE (¢, ¢, G")
11: end function

Theorem 4.5.1 (INTERPOLATE is correct) We assume that ¢ and ¢ are conjunctions
of non-overlapping sets of constraints.
Given G, an explanation-based proof of v N\ ¢ = L, Algorithm 4.4 produces a valid

interpolant for sub-problems ¢ and .

Lemma 4.5.1 Consider G, the explanation-based proof for ¥ A ¢ = L, a non-clausal
constraint in G depicted as r, and (r,e1), (r,e3), ..., (r,e,) the outgoing edges of r in G.
Define G' as a sub-graph of G resulting from the remowval of r and its outgoing edges.
Define ¢/, ¢’ as rewrites of 1, where the occurrences® of r, if any, are replaced with
ey Nes A== Ney. Then ' AN’ |E L and G' is a proof for this expression.

Proof To show that G’ is a valid proof for ¢/ A ¢’ = L we traverse the proof from L
backwards. With G this traversal would stop at a set of roots r1, 79, ..., 7, which are all

variables of ¥ A . Without loss of generality, assume that the root removed from G’

was r; = r. Traversing back on G’ from L would then give ry,...,r; and a subset of
€1,6a,...,6, instead of 1, because ey, ..., e, are the only successors to ry.
Because 79, . .., 1) are part of ¥ A ¢ and were not removed from 1’ A ¢’ then they are
Y 9

also part of ¢’ A ¢'. Since ¢’ A ¢ is created by replacing r; with e; A ey A -+ A e, then
€1,€a,...,6, are also in ' A ¢’

Since traversing the application of rules backwards from 1 to the roots stops at
variables of ¢/ A ¢’ then it means that applying the rules on the variables of ¢/ A ¢’ will
reach the leaf node L. This shows that G’ is a valid proof for ¥/ A ¢’ = L. O

Proof |[Proof of Theorem 4.5.1] By induction on the number of non-clausal constraints

in GG. Clearly if all constraints are clauses then this algorithm works correctly. Assuming

4Since 1,  are a partitioning of G, the constraint r is either in 1 or in .
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that it works correctly for n non-clausal constraints in G we need to show that it works
correctly also for n 4+ 1 non-clausal constraints.

Consider G with n + 1 non-clausal constraints. The first iteration of the loop takes
non-clausal constraint r, and removes it from G’ and replaces it with e; Aea A--- Aey in
¥ A . According to Lemma 4.5.1 we know that the resulting G’, ¢, and ¢’ maintain the
invariant that G’ is a proof for ¥/ A ¢’ = L.

According to the assumption that the algorithm works for n non-clausal constraints
in G we know that it will produce a valid interpolant I for ¢’ and ¢’ as set by the first
iteration. This means that ¢/ =1 and I A ¢’ = L. We are left to show that I is also an
interpolant for the original G, ¢, ¢.

If ¢ had r then it can be written as ¢ = (1) Ar) where 1) represents v with r removed.
In this case ¢ = (1 A Q). To check the relation between v and v, look at the relation
between r and €. Since all e; are explanations to r we know that Ve; € X.[r = ¢, i.e.,
r |= . This means that (¥ A7) = (¥ AQ), i.e., 1 =1 when 7 is in 9. If r is not in ¥
then ¢ =) and trivially ¢ = ¢'. It can be shown, similarly, that ¢ = ¢'.

The following shows that [ satisfies all three interpolation requirements for ¢) and ¢.
Since 1 = 9’ and, according to the induction assumption, ¢’ = I then ¢ = I. Since
v E ¢ then p AT = ¢’ AT and since, according to the induction assumption, ¢’ AT = L
it turns out that o A I = L.

According to the induction assumption we know that I refers to variables shared by
Y and ¢'. If ¢ = ¢ A Q then vars(y') = vars(y) Uvars(e;) U--- Uwvars(e,). Since e;
are explanations to r then vars(e;) C vars(r) and hence vars(y’) C vars(y) Uvars(r).
And since, according to the induction assumption, vars(I) C var(y’) then vars(l) C
vars(y) Uvars(r). According to the definition of v this simplifies to vars(I) C vars(v).
Using the same technique it is easy to show that vars(I) C vars(yp).

This means that I meets all three requirements for interpolants over n + 1 non-clausal
constraints in . This proves by induction that the algorithm generates the correct I for

any number of non-clausal constraints. U

76



Appendix

77



78



Chapter A

Constraints which HCSP supports

L Constraint propagation and the difference between precise and imprecise propagation is defined in
Sect. 1.3.1
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constraint comment

To =T

To = —T1

xo < abs(z)

To =11 +T2+ ... 2-s complement wrap on overflow

I0§JI1+ZL’2+...

$0<£L’1*ZI}2

To 2> X1 * T,

ro = min(xy, o, ...)

xo = max(xq, xa, .. .)

(bo A\ xg = 2) V (mby A g = x3) In C style this is g = (by?x2 : 3)

r#04y==z2

To € Set <> x1 < x4

To— T1 = Qg

(l’o—i‘aogﬂﬁl\/l’l—i‘alzmo)

xo#ﬂfl

AllDifferent(zg, x1, . . .)

[0, 21 + ao] C |ay, as]

(20, 21 + ao] € a1, az]

Qo * To+ ap * T + ... > ay, Also named weighted-sum in [BCRO5|
(r1 € Sety Vg € Sety V- ) Signed-clause

ci(zyy .. ) Vea(Tpg, .o, Tm) V- -+ | A disjunction of any of the above.

To = T * To Imprecise constraint propagation !

o = T1/%9 Imprecise constraint propagation.

o = 11%x9 Imprecise constraint propagation.

xo = x7?, i.e., Tg = pow(xy, ) Imprecise constraint propagation.

Table A.1: Constraints supported by HCSP, where x; denote variables, b; Boolean
variables, a; constants, and ¢ € {=, <, >}.
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Chapter B

A Proof-Producing CSP Solver
(A proof supplement)!

B.1 Introduction to the Proof Supplement

This report is meant to be a supplemental document to [VS10a]. It contains a mostly
unstructured collection of things that were omitted from [VS10a| mostly due to lack of
space. It includes proofs for inference rules and algorithms, introduces more inference
rules, and, finally, it presents missing algorithms and improvements to algorithms that

were presented in [VS10al.

B.2 Inference rules

In this section we prove the soundness of the inference rules that were introduced in
Table 3 of [VS10al, and prove that it is possible to match an inference rule for any possi-
ble constraint propagation. The latter established the completeness of CSP-ANALYZE-
CONFLICT .

B.2.1 Soundness proofs for the inference rules

Here we prove the soundness of the inference rules from Table 3 in [VS10a|. Throughout
this section we assume that all constraints and inference rules refer to integer variables.
This assumption is used only for convenience and is not a fundamental part of the work,

which can be easily extended to reals.

!Published as a technical report in [VS10b].
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Lemma B.2.1 For an integer constant m € Z and integer variables a,b € 7Z

a<b
(a € (—oo,m]Vbe[m+1,00))

(LE(m)) .

Proof Combining the premise a < b with the tautology a < m V a > m yields a <
m Vb > m. Converting this to a signed clause gives the consequent of the rule (a €
(—oo,m|Vbe[m+1,00)). O

Lemma B.2.2 Assuming V C {vy,...,v} such that |V| =1+ |D|

All—diﬁ(vl, c. ,’Uk)
(Vyey v € D)

(AD(D,V))

Proof Given the premise All-diff(v,...,v;), for |D| = 0, |V| = 1 the consequent is a
tautology. Otherwise, due to counting considerations, there is no feasible assignment of
|D| different values to |[V| = |D|+ 1 variables, or formally =(A,., v € D). After pushing
the negation into the expression, this gives (\/, o, v € D) O

Lemma B.2.3 For an integer constant m € Z and integer variables a,b € Z

a#b
(@£ mVb#m)

(Ne(m))

Proof Constraining the tautology a # m V a = m by the premise a # b results with
a# mV(a=mAa # b) which implies a # m V m # b. Converting this to a signed
clause gives the consequent of the rule (a # m Vv b # m). U

Lemma B.2.4 For an arbitrary set of values D

a=1>
(ag DVbe D)

(Eq(D))

Proof Constraining the tautology a € D V a € D by the premise a = b results with
a ¢ DV (a € DAa=b) which implies the consequent of the rule (e € DVbe D). O

Lemma B.2.5 For integer constants m,n € Z and integer variables a,b, c € Z

a<b+ec
(a € (—oco,m+n]Vbem+100)Vee[n+1,00))

(LEL(m,n))
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Proof Adding the premise a < b+ ¢ to the right hand side of the tautology
“b<mAc<n)V({b<mAc<n),

gives (b < mAc <n)Va < m+n. Pushing negation all the way to the literals
yields b > m V¢ > nVa < m + n, which is equivalent to the consequent clause (a €

(—oo,m+n]Vbe[m+1,00)VeceEn+1,00)). O
Lemma B.2.6 For integer constants ly, up, l., u. € Z and integer variables a,b,c € Z

a=b+c
E 4 l lC7 C
(a c [lb + l07ub + uc] V b g [lb7 ub] \VAs g [l67 uQ]) ( Q+( by Up, Uu ))

Proof The tautology =(l, < b < up Al <c<u)V(lp<b<u,ANl. <c<u.)can
be rewritten as (b € [lp,up] A c € [le,uc]) V (Ip < b < up Al < ¢ < u.), which, after
combining with the premise a = b + ¢, becomes
=(b € [ly,up) A € [le,ul) V(I + 1. <a<uy+ue) .
Writing comparisons as signed literals yields
=(b € [ly,up] Ac € [le,ue]) Va € [ly+ leyup + ue -

Pushing negation all the way to the literals, and rewriting as a clause yields the conse-
quent:
(b & [lp,up] Ve i [le,ur) Va € lly+ le,up + ue)

Lemma B.2.7 For integer constants l,,l,, m,n € Z and integer variables a,b € Z
NoOwerlap(a,l,,b, 1)
(agmn+l,—1Vbg[nm+1l,—1])

(NO(m,n))

Proof The semantics of the premise NoOverlap(a, l,,b, 1) is
p=(@>b+lL,Vb>a+l,),

which can be written as ¢ = (b+ 1, < aVa <b—1[,). Combining ¢ with the tautology
“m<a<n+l—1)V(m<a<n+l,—1]) yields

“m<a<n+lL-—1)Vb+h<n+lhL—-—1Vvm<b-—1,).
After simple rewriting this becomes
“-m<a<n+lL—-1)Vb<n—-1Vb>m+l,),

and then -(m <a <n+l,—1))V-(b>n—-1Ab< m+1,). Rewriting with literal

notation gives us the consequent of the rule:

(ag[mn+l—1Vb&[nm+Il,—1]).
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B.2.2 Completeness of inference rules

For CSP-ANALYZE-CONFLICT to be complete, it is mandatory to be able to create
an explanation for any type of constraint, including for explicit table relations. When
an unsatisfiability proof is printed, the proof derives each explanation from a constraint
using an inference rule. For the proof system to be complete, we must be able to match
an inference rule for any implication. Like in the proof, CSP-ANALYZE-CONFLICT may
also use inference rules to derive explanations.

In order to discuss inference rules and their consequent explanations, we need to
focus on valid implications first. The following definition summarizes what we refer to as
a propagator. These are weak requirement that are satisfied by any propagator that we

are aware of.

Definition B.2.1 (Constraint propagator assumption) FEvery constraint r € C is
associated with a propagator by the same name. We assume that the constraint propagator

r(vi, ..., vx) meets the following criteria:

e when a complete assignment to vy, ..., v violates the constraint r(vy,...,vy) the

propagator will recognize it;

e if it modifies a domain from D; to D! then D, C D, and the values in D;\ D. are not
supported by r (in other words, for every assignment v; <— x; such that x; € D;\ D},
there is no assignment to vy, ..., vy from their respective domains that satisfies the

constraint r); and

e it terminates in finite time.

Note that this assumption leaves the freedom to choose the strength of the propagator.
Some known strategies are arc consistency, which is the strongest, bounds consistency,
and pure backtrack-search algorithm, which is the weakest.

Recall that CSP-ANALYZE-CONFLICT requires an explanation of inferred literals,
and hence we need to show that such an explanation can always be given. For this

purpose we define a generic inference rule and then prove that it is applicable to all

constraints.

Definition B.2.2 (The generic inference rule) Consider r(vy,...,vx), an arbitrary
constraint, which when combined with literals vy € Dy, ... v € Dy implies literal v; € D..
The generic, parameterized, implication rule G, ;(Ay, ..., Ax), as defined below, generates

an explanation for this implication

r
(UleAl\/"'\/UkEAk)

(Gri(Ay, .. Ar))
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where for each j =1,...,i—1,1+1,...k, we define A, :Fj and where A; = D} U D;
We now show that Definition B.2.2 gives a valid inference rule for an arbitrary constraint.

Lemma B.2.8 (Existence of an inference rule) Let u be a node in an implication
graph that represents a literal that was implied by an arbitrary constraint r. There exists

an inference rule that its premise is r and its consequent is an explanation of u.

Proof For any constraint r(vy,...,vy), Definition B.2.2 provides the generic propaga-
tion rule G, ;(Ay, ..., A;), which generates the following explanation for an implication
of v; € D:

C:(Ul GD_l\/"'\/’Ui_lEDi_l\/Uz‘E(DgUE)\/’UH_lEDH_l\/'“\/UkGD_k),
which can also be written as:
c=(w €Dy V---Vu, € Dy Vu; € D).

To prove that the clause c¢ is indeed an explanation, recall, we have to show that, for

lh =(v1 € Dy),...,lr = (vx € Dy):
1. r —c,
2. (LA Nl Ne) — L.

To prove the first property we will show that every possible assignment zq, ..., x;
satisfies —c(zq,...,2x) = —r(x1,...,2x). The clause c is falsified only if all its literals
are false, i.e., vy € Dy A--- ANv, € D Av; ¢ D.. In other words, all values are taken
from their respective domains D; and x; € D; \ Dj, which is one of the values removed
by the propagator r. According to Definition B.2.1, r will not remove x; from D; if x| €
Dy A+ Ny € Dy, satisfies (x4, ..., xx), implying that —r(z1,...,x). The conclusion
is that —r(zq,...,z) whenever —c¢(z1, ..., xy).

For the second property we analyze all assignments vy = x1 A - - - v = x; which satisfy
the left side of the implication. Such an assignment has to satisfy 1 € DiA---Axy € Dy,
in which case all literals v; € D; of ¢ are falsified except for v; € Dj, i.e., [. This shows
that an assignment that satisfies the left-hand side of the implication also satisfies its
right-hand side 0
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B.3 Algorithms

B.3.1 (CSP-ANALYZE-CONFLICT algorithm, the proof

First, we repeat Algorithm 2.1 which appears in [VS10a]:

1. function CSP-ANALYZE-CONFLICT

2 cl:= EXPLAIN (conflict-node);

3 pred:= PREDECESSORS (conflict-node);

4 front:= RELEVANT (pred, cl);

5: while (=STOP-CRITERION-MET (front)) do

6 curr-node:= LAST-NODE (front);

7 front:= front\ curr-node;

8 expl:= EXPLAIN (curr-node);

9 cl:= RESOLVE (¢l, expl, var(lit(curr-node)));

10: pred:= PREDECESSORS (curr-node);
11: front:= DISTINCT (RELEVANT (front U pred, cl));
12: end while

13: add-clause-to-database(cl);
14: return clause-asserting-level(cl);

15: end function

To prove the correctness of Algorithm 2.1, we first prove the loop invariant that is
mentioned briefly in [VS10a).

Lemma B.3.1 (CSP-ANALYZE-CONFLICT loop invariant) The following invariant

holds just before line 6: The clause cl is inconsistent with the labels in front.

Proof Consider the conflicting constraint p, i.e., the constraint that labels the edges
leading to conflict-node. On the first iteration, the literals of pred conflict the constraint
p . Because cl is the explanation clause of p it also conflicts on the conjunction of pred.
Because RELEVANT at line 4 keeps the nodes which relevant to cl, i.e., share the same
variables, then the labels of front also conflict cl.

Assuming that the invariant holds on iteration n — 1, we will show that the invariant
holds at the n-th iteration, if executed. For this proof we denote by ¢l and ¢l’ the values
of ¢l before and after the update at line 9, respectively, and similarly we use front and
front’. Except for the literal with v = var(lit(curr-node)), according to the definition of
expl, all other literals are falsified by pred. cl’ has three types of literals: the first is from
expl and do not refer to v, the second is from ¢l and do not refer to v , and the third

refers to v and contains a conjunction of literals from the former two sources.
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1. The literals from ¢l are falsified by the conjunction of lits(front) and hence also by
the conjunction of lits(frontUpred).

2. For an implication going from literals {l1, ...,y } = lits(pred) to literal | = lit(curr-
node), recall, the second requirement from an explanation cis (I3 A+ Al Ac) — L.
In order for ¢ to be able to imply a literal [, as required, all literals of ¢/ must be
falsified by [y A - -+ Alg, except for the literal that constrains v. Because I3 A--- Al
is the conjunction of lits(pred), then literals cl that do not constrain v, which are of

the second type of literals, are also falsified by the conjunction of lits(frontUpred).

3. We want to prove that the literal of ¢’ labeled with v is falsified by the lits(front’).
First we introduce the following naming convention: w, is the disjunction of all liter-
als of clause w which affect v, and similarly N, is the conjunction /\lems( Nfvar(l)=v l.
We also reuse the notation used in the definition of explanations where [ is the

literal of curr-node and [y, ..., [, are the literals of pred.

The claim to be proven can now be reformulated as (cl), A lits(front’)) = false. To
prove this, first consider the invariant from iteration n—1 which gives (cl,Al) = false,
or as a clause:

(=l V=) .

The definition of explanations states that (I; A -+ Alp A ezpl) — [, or as a clause:
(2l VeVl V—expl V) .
Resolving the last two clauses with v as pivot results with:
(=l VeVl Vo mexpl Vo ocly)

which is the same as
(A AN expl A ely))

which shows that expl A cl, is falsified by lits(pred), and hence ¢l = expl, A cl, is
also falsified by lits(frontUpred).

The call to RELEVANT at line 11 removes only nodes which are irrelevant to the
falsification of cl’, hence, it is left to show that front, produced by DISTINCT at
line 11, also falsifies cl. For this part of the proof we need some formalism first.
We depict ny,...,n, as the nodes of lits(frontUpred) for which var(lit(n;)) = v
according to the propagation order that created them. Using this formalism we can
say that DISTINCT will remove n4,...,n,-1 and keep only n,, we need to show
that this node is sufficient to falsify cl!. Because how propagators are allowed to

work, literals of succeeding nodes must refer to decreasing domain sized, and hence
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ngy — n; for each j = 1,...,¢. This result means that all nodes ny,...,n,; are
redundant, such that if (lit(ny) A -+ Alit(ng) A cl)) = false then it is also true that
(lit(ng) Ncll)) = false. Because cl, was falsified by the literals of ny, ..., n,, as shown

above, then it must be falsified by n, which is entered into front’.

As we seen, all literals of the new clause ¢!’ are falsified by the literals of front’. This

shows that iteration n also satisfies the loop invariant. O

Theorem B.3.1 (Algorithm 2.1 correctness) CSP-ANALYZE-CONFLICT , i.e., Algorithm 2.1,

18 sound and complete:

e soundness — the returned clause cl is derived from the CSP ¢ such that ¢ — cl, and
it is either falsified at the target decision level or is an asserting clause that will

cause propagation at clause-asserting-level(cl).
e completeness — the algorithm terminates and returns cl.

Also, CSP-ANALYZE-CONFLICT returns a target level which forces backtrack of at least

one level.

Note that this theorem allows the resulting cl to be false even at the target of back-
track. This situation happens often in practice and can be easily eliminated by a small

modification to the algorithm, as described in Section B.4.

Proof Soundness — The requirement of ¢ — cl, is trivial because cl is created through a
set of proven inference rules from premises and through applications of the resolution rule.
The requirement of ¢l to be an asserting clause is met through the STOP-CRITERION-MET

which is true in two cases:

e front nodes have no predecessors, i.e., they refer to initial domains. According to
the loop invariant (Lemma B.3.1) all literals of ¢l are falsified by the conjunction

of the literals of front, meaning that cl is false even with the initial domains.

e The latest node of front is the only one from decision level d and the next latest
node is from decision level d’ < d, such that function clause-asserting-level(cl) will
return this d’. Backtracking will undo all decisions and implications done from d'+1
and later a target state at which, we need to show, ¢l will be an asserting clause.
At the target state all nodes of front, except for the latest one, are still present,
which according to Lemma B.3.1 must falsify all literals except for the latest one.
This means that ¢l is either falsified or an asserting clause at the end of decision

level d'.
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Completeness — First we show that the preconditions of all auxiliary functions are ful-
filled allowing them to successfully terminate. Assuming that CSP-ANALYZE-CONFLICT
is passed a conflict-node then the first PREDECESSORS must succeed. The first EXPLAIN
must succeed because it is possible to generate an explanation for the conflicting con-
straint (Lemma B.2.8). Inside the loop =STOP-CRITERION-MET makes sure that curr-
node has predecessors making PREDECESSORS succeed. Like with the first EXPLAIN the
one in the loop must also find an explanation. All other used algorithms do not have
special assumptions or preconditions.

The algorithm must terminate because each iteration removes the latest node, and
inserts earlier nodes of pred instead of it, coupled with the fact that the implication
graph is a DAG, each iteration is guaranteed to have curr-node which is earlier than
at the previous iteration. Because the implication graph is finite then the number of
iteration must be finite.

Backtrack level — as shown above, the target level is d’ which is smaller than d which
itself the current decision level, or earlier. This means that the caller will be instructed

to backtrack to at least one decision level back. O

B.4 Enhancements and optimizations

In this section we describe several enhancements to the definitions and to the algorithms
that may either improve performance or minimize proof size. At the present time we
do not have exact measurements of the effectiveness of these modifications. Nevertheless

these enhancements have interesting properties, making them worth mentioning.

B.4.1 CSP-ANALYZE-CONFLICT node rejuvenation

A problem that the proof of CSP-ANALYZE-CONFLICT (Theorem B.3.1) showed is that a
conflict clause may be conflicting immediately after backtrack, i.e., with no new decision.
This problem is solved in HCSP by the following, trivial, modification to the algorithm.
At lines 4 and 11 DISTINCT is called. After this call we add a call to a new function
REJUVENATE (cl,front), which finds the earliest nodes that still falsify ¢/. This modi-
fication preserves the invariant of the loop because it moves only to such earlier nodes
that still falsify c¢l. The proof of Theorem B.3.1 with the amended algorithm is mostly
unchanged since it relies on the invariant, which is not affected by the modification.
This rejuvenating can have a positive impact on conflict clause and proof sizes as it
allows CSP-ANALYZE-CONFLICT to ignore all implications done between the original

node and the rejuvenated node. However, it may also have a negative effect since by
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ignoring an implication we may lose a good candidate for clause resolution that would
erase the literal from ¢/ and reach a UIP. Instead, by ignoring a good candidate for

resolution, we will have to apply resolution many times before a UIP is reached.

B.4.2 Augmented explanations

Let (I4,1),...,(ln, 1) be the incoming edges of a node w such that lit(u) = [. If ¢ is an
explanation clause of u, recall, then (I A --- Al, Ac) — [. We now propose to weaken

this requirement.

Definition B.4.1 (augmented explanations) Letu be a node in the implication graph
such that lit(u) = 1. Let (I1,1)...(l,,1) be the incoming edges of u, all of which are la-
beled with a constraint r. Let I' be the literal in the clause cl just before the resolution
step in CSP-ANALYZE-CONFLICT |, such that var(l) = var(l'). A signed clause ¢’ is an

augmented explanation clause of a node u and a clause cl if it satisfies:
1. r— ¢,

2. (LN Nl NC) — 2.

This definition lets us find ¢ which is not an explanation clause according to the
original definition, but which is sufficient for our purpose, since while it is still implied

by the original constraint r, it also holds that
Resolve(cl, ¢, var(l)) — Resolve(cl, ¢, var(l)) .

In other words, we derive a stronger resolvent. This may lead to shorter proofs down the

line.

Example B.4.1 The literals [, = (b = 3), l» = (a € [1,5]) together with the constraint
r=(a <b) implyl = (a € [1,3]). This implication is depicted in the following small

diagram:

b=3 a<b
\
a € [1,3]
—7
ac 1,5 o

The only valid explanation clause is derived using LE(3):
c=(a€(—00,3|Vbe[4,00)).
Indeed (I Nl A c) — L.
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Now suppose that cl = (a =5V e =1) and hence l' = (a = 5). We need to find ¢’ such
that (I; Ny AN &) — =l'. Although ¢ is an explanation clause, we can get a stronger such
clause with LE(4):

d =(a€(—00,4Vbe[5wx0)),

which is sufficient. Resolution of cl with ¢’ results in (b € [5,00)Ve = 1) whereas resolving
with ¢ would result in the weaker clause (b € [4,00) Vc=1).

What happens in this example is that ¢ does not have to eliminate the value 4 from
the domain of a because it is allowed by —l'. As a result the other literal, referring to b,

becomes stronger. O

B.4.3 Lookahead explanations

The weaker definition of augmented explanations gives us more freedom to choose a
clause from a bigger set of possible clauses. Some freedom is also present in regular
explanation clauses, especially when explaining a conflicting constraint. For example,
the constraint a < b is conflicting for domains D, = [10,20] and D, = [0, 8], for which
both ¢ = (a € (—0,8 Vb € [9,00)) and ¢ = (a € (—00,9] Vb € [10,00)) are valid
explanations.

We have discovered that using this freedom wisely can considerably shorten both
proof size and run-time. If curr-node is associated with variable v, we simply prefer an
explanation which has a stronger literal associated with the rightmost node of predecessors

which is not associated with v. The effect of this preference is twofold:

1. At the next iteration of CSP-ANALYZE-CONFLICT , there is a bigger chance that
this literal I’ will be a pivot than any other literal of the explanation clause. Making
this literal smaller may strengthen the next augmented explanation because it will
weaken the right-hand side of the implication in the requirement of augmented
explanations:

(LN ANl AN — =l

which will give more freedom for constructing ¢’

2. By producing a stronger literal, there is a bigger chance that REJUVENATE will
rejuvenate the node of var(l’) to a previous decision level, saving the need for some

resolutions and, eventually, facilitate the creation of a smaller conflict clause.
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YINNo N¥Y HCSP mYT NPN0Y D000 2 = 2 IX D02 190 NPN0Y i oz = 1
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YD 202 D) NN YIS NIND PRY IMINY DIV T MIPY IR N HCSP-v 089
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n°non nin®y H.3.3

DNM ,NPNOY D22210Y ,0»NY NOVINN NNIND VNI D210 DIXIDNRD NPYA PNINS TONN
-2NN DY NRNN YINND DY DINTPINONRD MYSN 19010 PN 12yl (backtracking) OON
TDYT POV MOINN MY 271D DOWIN PN DPON TR, THPHON M X7 DY PNy Mo
-NIPINON WOND D) ININNRT W K 7PN MINIAN 3 DPOND IR NPNY MLINNY
YNNI MPPAD NPYA PIND NINNA VDY TIN MIPNON NN DNNIY [0SCO9) ©°

.(a SAT solver) D09

NN T OONIPIND MY DYyn MPY MPNON IR NN HCSP YN muw nnyvd
FINIAN 7PYAN IN NONTD NP2 DIMIT IPNY MOLSNN N2 YN WX YN

z=zr+yr=y,D,=D,=D,={0,1,---,6}

D, = D, =-9 DMNIN NN D¥DY 2 = 2 + y N 2 = 1 ,7PNYN ,NOINNN NY¥ann OX
NLONNN HNT PING PRY WD NNY DINNNN Y IYOVN PN NS = = y-9 {1,2,--- ,6}
PO NPNON INY 2 = 1 NODN NOVINN DXYNIN 1PY VNN

NPNDY ODY2AM WK D, >3y 99 DY MOINN YN¥IT TNN ¥ NPTID MM K99 1 XONTA
MMY 912 ORI PON 995 WY NNINA DINPNA YIdY TN ,NPN0N MDY YT
NI K9 2z = 1 PHURIN NOSNNN NN IMD WINN NN PO YaN 2 = 2 * 1-Y
Z = 2%z \IPND ,G0M 2 MY MOINN NI Y¥ID TNSN IR TOIN 199 2 H¢ MLHNNA

:DMINTIN NN DNNNN

D, =D, ={1,2,3},D. = {2,4,6}

2 =12V IPNPNN DPNYN NOSNND MMYP PN NINIOY NPNY MLONN YN Nt DINDN
2 9V DSDINDN DWW DN D201 0N = = 4 Ound

IND z = 2% TIN INPY PO 990 TN OFPINIRD DY DOXYTN TNNI NI NN 2 = 2 + y-) & = y 2DUN
AVNND TION M PRY Mo HCSP-1 p 1y wnmn
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Z=y*x2z2INNIIN =y \IDOND I PION = =y = z = 4 DVND)

-Y2ORD MO N3N 19N DINYNY DMWY DY DIXND) MDIY Y1 DINIDINN NN VIS IO
N N9 AN 2 = 45U NN DINWND THRD TIY N0 TPIMPIY NOVINN YNIND DN
SDAPNIN = y IR OAYI D, = D, = {1,2,4}-5 DIMNNN NN DNONND WN & = y* 2z
D, = {1}-5 PINNN VNN DINDN NN DNNIDY = = y * 2z IN O 2w D, = {4} ©
IR ORI NPNY 2 =4,y = 4,2 = 1-¥ T2 T TW D2PoN DMINNN DD Mt AOWA

L=y, r = y*x z DNIND NN DNMPN PN WNRD DWWV

NN IMac771-2 DOMNS DINWID DY MINIAY MLINM NN NN DY M 2V
v Algorithm 1.1-2 291 MAC 5¥ X510 2NN MAC (Maintain Arc Consistency) DWD
IMN2 TN YN PNINGD D221 X2 NIANNN NNIPOIN PON NPIAD DIXIIN TIYIY ¥VOITIY
PRY PAND >TD DIWN D3 IR MODIY TNY ¥ NP YYD NIPRI .ONY DY MO

PN PR NNAN MPYAD DIVD TAW PNIPY 29D SVUND Pyad NINd

x#y,y#z,z%x,Dgﬁ:Dy:Dz:{1’2}

=1 2802 DO 199 77932 \IKR D2 NN DOYAVII KDY DINWHNN NN 1 Pyaa
TNy # 2 Y030 D, = {2} IR = # 2 YN D, = {2} N VM = # y PN
ANND DNNX WIN DIPINVORN NSV z = 1 5Y TIPD NHYN NYNIY 5911 NPNON
DN D, DY IR TWN I DOM N D, = D, = D, = {1,2} »Mp ,navnn 290
I & DY IMIVARD T2 N DIV NI DPNDY 2 NP W M TW o = 2

PYAS NIND PRY PPOND

D,, = {1,2,...,n — D27y »NN DY ,DIMUN Y N9 n-Y 7Pyan NX DTNY 1)
IO MNIY IPINONINODPN 7PYAD VYT N 7PYA DINWN IR 99 PR IPNY-R N 1}
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