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Abstract

In this thesis I address the problem of proving the equivalence of two recursive

programs. Specifically we use abstract interpretation to strengthen the premise

of our proof rules and tackle recursive functions which have different base cases

and/or are not in lock-step.

We show a proof rule for the case of different base cases, based on separating

the proof into two parts—inputs which result in the base case in at least one

of the two compared functions, and all the rest. We also show how unbalanced

unrolling of the functions can solve the case in which the functions are not in

lock-step. In itself this type of unrolling may again introduce the problem of the

different base cases, and we show a new proof rule for solving it. None of the

existing software equivalence checkers (like rêve , rvt , Symdiff), or general

unbounded software model-checkers (like Seahorn, HSFC, Automizer) can

prove such equivalences.

In addition we use abstract interpretation to help bound the possible outputs

of the uninterpreted functions return values thus improving the completeness

of the proof. We then study an option of using the intersection of the ranges

produced by abstract interpretation for refining the abstraction associated with

uninterpreted functions.
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Chapter 1

Introduction

1.1 Regression Verification

Given two similar programs P1, P2, a mapping mapf between their functions,

and a definition of equivalence, Regression Verification [GS08] is the problem of

identifying the pairs in mapf that are equivalent to one another. This undecidable

problem can be thought of as a special case of program equivalence. Program

equivalence has been discussed in the literature for over half a century (see,

e.g., [IGA64])—mostly in the ACL2 community—as a challenge and a use case for

theorem proving (e.g., proving that quick-sort has the same output as merge-sort),

but without exploiting the similarity between P1 and P2 that is assumed in the case

of regression verification. This assumed similarity provides many opportunities

for optimizations, and generally leads to a complexity which is dominated by the

magnitude of change rather than by the magnitude of P1 and P2 themselves.

The classic use-case for regression verification is one in which P1, P2 are two

consecutive versions of the same program, and the goal is to identify the impact of

change. It can be used for checking that refactoring or a performance optimization

has not changed the program in a nonintended way. It can also be used for

verifying that a bug-fix or an added feature affects only the part intended by the

programmer. In a somewhat different direction, it was recently used for proving

that the target code of two consecutive versions of a compiler are semantically

the same [HLP+13]. In all these applications the typical definition of equivalence

that is used is called partial equivalence[GS08]. It means that given the same

inputs, the two functions return equal outputs, unless at least one of them does

not terminate. By ‘inputs’ we mean the function parameters, global variables

that it reads, and the heap; by ‘outputs’ we mean global variables to which the

function writes, the heap and the return value.
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There are several methods and tools for regression verification that are available

in the public domain. MS-SymDiff [LHKR12] is a tool that reads two BPL

(Boogie programming language) [LLM11] files corresponding to P1 and P2, and

generates a verification condition in BPL for each pair of mapped functions.

It uses Boogies’s built-in access to Z3 [dMB08] and the invariant generator

Duality [McM14] to try and prove the equivalence of functions with loops

and recursive calls. SymDiff supports user-defined specifications, which means

that partial equivalence is just one possible equivalence criterion; the user can

alternatively define any predicate over the inputs and outputs of the two compared

functions as the proof obligation, e.g., that the output of f is always smaller or

equal to the output of f ′, for 〈f, f ′〉 ∈ mapf .

The tool Rêve attempts to prove the equivalence of recursive functions

(currently individual functions rather than whole programs), and is based on a

direct translation to Z3’s Horn-clause format. This gives the tool access to Z3’s

PDR engine [BGMR15], which attempts to prove the equivalence between the

two functions by gradually detecting invariants.

The third tool is rvt (Regression Verification Tool)[GS08][RVL]. Improving

the rvt proof method for partial equivalence is the focus of this thesis. rvt

begins by turning all loops into separate recursive functions, and building a map

mapf between the functions. This mapping does not have to be bijective.

Other than partial equivalence, rvt also implements methods to prove mutual

termination[EKS15] of two functions. The techniques presented here may also

improve completeness of these methods, however in this thesis we concentrate on

partial equivalence.

We will now explain how rvt attempts to prove the partial equivalence of

two recursive functions. We will then describe how this principle can be applied

given two programs (rather than just a pair of functions), with what we call the

decomposition algorithm. The goal of rvt is to prove equivalence of as many pairs

of functions as possible.

A proof rule for partial equivalence

To prove the equivalence of two recursive functions, rvt uses a proof rule that

essentially applies induction: assume that the two functions are partially equivalent

in the recursive calls, and try to prove that they are partially equivalent also in

the current call. This is summarized by the following proof rule, for two simple
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gcd1 ( i n t a , i n t b)
{ i n t g ;

i f ( ! b ) g = a ;
e l s e {

a = a%b ;
g = gcd1 (b , a ) ; }

r e turn g ;
}

gcd2 ( i n t x , i n t y )
{ i n t z ;

z = x ;

i f ( y > 0)
z = gcd2 (y , z%y ) ;

r e turn z ;
}

Figure 1.1: Two functions to calculate GCD of two nonnegative integers.

recursive functions f and f ′:

partial-equiv(callf, callf ′) ` partial-equiv(f body, f ′ body)

partial-equiv(f, f ′)
(part-eq)

(1.1)

The more general case of mutually recursive functions is discussed at length

in [GS08].

To check the premise, we need to replace the recursive calls in f and in f ′

with an over-approximation of f and f ′, respectively, that satisfies the predicate

‘partial-equiv(callf, callf ′)’. This is easy to do (albeit not necessarily the

best way in terms of the strength of the method) by replacing the recursive calls

with the same uninterpreted function: by definition, two instances of the same

uninterpreted function are partially equivalent. After the replacement we say that

f and f ′ are isolated. The following example, taken from [GS08], demonstrates

isolation.

Example 1.1.1. Consider the two functions in Fig. 1.1. Let U be the uninter-

preted function such that calls to U replace the recursive calls to gcd1 and gcd2.

Figure 1.2 presents the isolated functions. These are now ‘flat’ functions, i.e.,

without loops and recursion, and hence their partial equivalence is decidable. If

they are indeed partially equivalent, then (1.1) implies that the original functions

are partially equivalent as well.

rvt proves the equivalence of a pair of isolated functions f, f ′ by generating a

program of the form appearing in Fig. 1.3, and invoking CBMC, a bounded model

checker for C programs, to attempt to formally verify it. If it is successful, then

5



gcd1 ( i n t a , i n t b)
{ i n t g ;

i f ( ! b ) g = a ;
e l s e {

a = a%b ;
g = U(b , a ) ; }

r e turn g ;
}

gcd2 ( i n t x , i n t y )
{ i n t z ;

z = x ;

i f ( y > 0)
z = U(y , z%y ) ;

r e turn z ;
}

Figure 1.2: After isolation of the functions, i.e., replacing their function calls
with calls to the same uninterpreted function U . By definition of uninterpreted

functions U enforces partial equivalence of the recursive calls.

i n t main ( ){
i n t n = non det ( ) ;
i n t ret1 , r e t 2 ;
r e t 1 = f (n ) ;
r e t 2 = f ’ ( n ) ;
a s s e r t ( r e t1 = re t2 ) ;

}

Figure 1.3: rvt generates such a main function for each pair of isolated functions
f, f ′ ∈ mapf that it attempts to prove partially-equivalent. If f, f ′ access global

variables and the heap, then the construction is more involved.

f, f ′ are declared equivalent. The schema shown in the figure is for the simple case

in which the two compared functions do not access the heap and global variables.

Program decomposition in RVT

We will now describe the program decomposition algorithm which is implemented

in rvt . The full description can be found in [BG12].

rvt receives two C programs P1, P2 as input, builds a (possibly partial) map

mapf between its functions and global variables, and attempts to prove iteratively

the partial equivalence of each 〈f1, f2〉 ∈ mapf . We prove the partial equivalence

of 〈f1, f2〉 ∈ mapf by proving the premise of (part-eq) using cbmc as the

underlying decision procedure.

Before creating mapf rvt converts all loops into recursive functions. Therefor

6



Figure 1.4: Call graphs of two programs. Grey nodes represent syntactically
equivalent functions

the inputs of the main algorithm of rvt are two loop-free programs and mapf .

Once the previous initial actions are complete rvt constructs two MSCC (Maximal

Strongly Connected Component) DAGs (Directed Acyclic Graphs) based on the

call graph. An MSCC DAG is a transformation performed on the call graph in

which every MSCC in the call graph is collapsed into a single node. Given the two

MSCC DAGs which represent the two programs under test and a map between

the functions and global variables - mapf rvt attempts to map MSCCs on both

sides. If the construction is successful rvt then traverses the DAGs bottom up

and attempts to prove the partial equivalence of each pair of functions in every

MSCC. For each MSCC rvt iterates over the functions comprising it and for each

one it converts all function calls to uninterpreted functions and then proceeds to

prove equivalence by proving the premise of (part-eq). In the following sections

we will address function calls to functions which are outside the DAG (functions

which were already proven to be equal) and function calls inside the recursive

MSCC (functions which were not yet proven to be equal) differently.

In Fig. 1.4 we present two call graphs which represent two versions of a

program. Each vertex in the graph represents a function in the program and

an edge between to nodes represents a function call. When two functions are

syntactically equivalent their matching nodes are colored grey. Also note that

function f ′
7 does not exist in the left program. rvt handles this by inlining the

code of f ′
7 to f ′

2. For simplicity we assume that all partial equivalence checks are

successful. In table 1.1 we illustrate the order of decomposition of the call graph.

7



It. Pair Description
1. 〈f3, f ′

3〉 These functions are chosen first and marked as equal
due to their syntactic equivalence.

2. 〈f4, f ′
4〉 These functions are chosen second and marked as equal

due to their syntactic equivalence.
3. 〈f6, f ′

6〉 We assume the partial equivalence proof of f6 and f ′
6 is

successful
4. 〈f2, f ′

2〉 Function pairs 〈f3, f ′
3〉 and 〈f4, f ′

4〉 are proven to be
equal and so are converted to uninterpreted functions.
Functionf ′

7 is inlined. We assume the proof is successful.
5. 〈f5, f ′

5〉 Function pairs 〈f6, f ′
6〉 are proven to be equal so both

functions are converted to uninterpreted functions. Fol-
lowing along the premise of (part-eq) we convert the
recursive call to an uninterpreted function call. We
assume the proof is successful.

6. 〈f1, f ′
1〉 Finally assuming we proved all the predecessor pairs

of functions we may convert all calls to uninterpreted
functions and prove the equality of 〈f1, f ′

1〉.

Table 1.1: This table illustrates the process of call graph decomposition.

1.2 Abstract Interpretation

Abstract interpretation is the theory of sound approximation of the semantics of a

computer program. It was first formalized in [CC79]. It is defined as the theory of

describing a program as a computation in another domain of abstract objects so

that the results can be used to infer useful information on the original program. In

this thesis we address specifically abstract interpretation with numerical interval

domain as the abstract domain. We call this method value analysis. For example

we may use value analysis to compute that the interval domain of the return

value of function f in Fig. 1.5 is [−1..5]. We will use these intervals to refine the

abstraction associated with the uninterpreted functions, and hence to strengthen

our proof rules.

1.3 Thesis Outline

In this thesis I introduce and discuss causes of incompleteness of the proof rules

used by rvt and suggest methods which tackle them and improve its overall

completeness.

In chapter 2 we address two causes of incompleteness of (part-eq):

8



i n t f ( i n t n){
i f (n < 0) re turn 5 ;
i f (n > 100) re turn 4 ;
i f ( f (n−2) < 0) re turn −1;
i f ( f (n+1) > 4) re turn 4 ;
r e turn 0 ;

}

Figure 1.5: A simple mock recursive function to illustrate value analysis.

1. Different base cases

2. Functions not in lock step

We will begin by describing and demonstrating the two problems in detail. We

will then offer a solution to the different base-case problem. We will then show

that a simple unbalanced unrolling for solving the second problem does not work

since it inherently creates the different base-case problem, and hence needs a

similar solution to the one we suggest for the first problem. Finally, we discuss

the merits and shortcomings of this solution by comparing it to other approaches

and existing tools.

In chapter 3 we discuss another contribution to the completeness of our

proof rules which uses of value analysis as a mechanism to strengthen our proof

rule (part-eq). We start by describing the method that we utilize to calculate

over-approximated intervals of output values of recursive functions. We then show

how we embed this method in (part-eq) and rvt . Finally, we show how the

intersection of the over-approximated intervals which we compute using value

analysis, can be used in certain cases to improve the completeness of rvt .

9
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Chapter 2

Unbalanced recursion

The (part-eq) rule (1.1) is not, and cannot be, complete, owing to the undecid-

ability of the problem. In this chapter we will focus on two specific reasons for the

incompleteness of this rule: different base-cases, and unbalanced recursion. The

former corresponds to a case in which for the same input, one of the functions

returns on a base-case, and the other does not. The latter corresponds to a case

in which the two recursive functions are not in lock-step. We will also consider

the case in which both cases occur at the same time. The work presented in

this chapter has been published in [SV16]. The examples below demonstrate the

weakness of (1.1) when it comes to such cases.

Example 2.0.1. The two programs in Fig. 2.1 are partially equivalent, but (1.1)

fails to prove it. The reason is the different base cases. After isolating these

two functions, namely replacing their recursive calls with the same uninterpreted

function, say U , they may return different values when n = 1: fact1 returns 1,

whereas fact2 returns 1 ∗ U(0).

Now consider the two partially-equivalent functions in Fig. 2.2. Their base

i n t f a c t 1 ( i n t n){
i f (n <= 1) re turn 1 ;
r e turn n ∗ f a c t 1 (n−1);

}

i n t f a c t 2 ( i n t n){
i f (n <= 0) re turn 1 ;
r e turn n ∗ f a c t 2 (n−1);

}

Figure 2.1: The different base cases prevent (1.1) from proving the equivalence of
these two functions. After isolation, when n = 1, fact1 returns 1, whereas fact2

returns 1 ∗ U(0), namely a nondeterministic value.

11



i n t sum1( i n t n){
i f (n <= 1) re turn n ;
re turn n + n−1 + sum1(n−2);

}

i n t sum2( i n t n){
i f (n <= 1) re turn n ;
re turn n + sum2(n−1);

}

Figure 2.2: These two functions are not in lock-step, which prevents (1.1) from
proving their partial equivalence. After isolation, for e.g., n = 3, sum1 returns
3 + 2 + U(1) whereas sum2 returns 3 + U(2), which are not necessarily equal

terms.

cases are in sync, but they are not in lock-step: sum1 computes Σi=1..ni in half the

number of iterations compared to sum2. After isolation, for equal input n such

that n > 1, the uninterpreted functions are called with different values, which

may lead these two functions to return different values. For example, for n = 3

sum1 returns 3 + 2 + U(1), whereas sum2 returns 3 + U(2).

In the next section we will describe our solution strategy.

2.1 Four types of unrolling

Given a recursive function f and a natural unrolling factor i > 0, we define four

types of unrolling of f i times. Fig. 2.3 illustrates the different unrolling types.

1. Syntactic unrolling: Create i copies of the original function: f1, f2, .., fi,

rename them, and rename accordingly their recursive calls. Replace the

recursive call in the j-th copy, for 1 ≤ j < i with a call to the j+1 copy. The

recursive call in the i-th copy remains unchanged. Let unroll(f, i) denote

the syntactically unrolled program.

2. Unroll and block: The same as syntactic unrolling, but replace the body

of the i-th copy fi with a single call to assume(false)1. The assume(exp)

statement restricts program traces to those that satisfy the boolean pa-

rameter exp. Hence adding assume(false) to our program ‘blocks’ traces

that reach the location of that assertion. Let unroll&block(f, i) denote this

variant of unrolling.

1Most software model checkers support assume statements.
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i n t f a c t 1 ( i n t n){
i f (n <= 0) re turn 1 ;
r e turn n ∗ f a c t 1 (n−1);

}

i n t f a c t ( i n t n){
i f (n <= 0) re turn 1 ;
r e turn n ∗ f a c t 1 (n−1);

}

i n t f a c t 1 ( i n t n){
assume ( f a l s e ) ;

}

i n t f a c t ( i n t n){
i f (n <= 0) re turn 1 ;
r e turn n ∗ f a c t 1 (n−1);

}
Unroll(fact,1) Unroll&Block(fact,1)

i n t f a c t 1 ( i n t n){
a s s e r t ( f a l s e ) ;

}

i n t f a c t ( i n t n){
i f (n <= 0) re turn 1 ;
r e turn n ∗ f a c t 1 (n−1);

}

i n t f a c t 1 ( i n t n){
r e turn u f f a c t 1 (n−1);

}

i n t f a c t ( i n t n){
i f (n <= 0) re turn 1 ;
r e turn n ∗ f a c t 1 (n−1);

}
Unroll&check(fact,1) Unroll&UF (fact,1)

Figure 2.3: Four types of unrollings.

13



3. Unroll and check: The same as syntactic unrolling, but replace the body

of the i-th copy fi with a single call to assert(false). This causes the model

checker to fail the proof if there exists a program trace that reaches depth i

in the recursion. Let unroll&check(f, i) denote this variant of unrolling.

4. Unroll and UF: The same as syntactic unrolling, but replace the body of

the i-th copy of f with a single call statement to an uninterpreted function

Uf that is associated with f . We denote this action by unroll&uf(f, i).

Only the first of these four variants preserves the semantics of the original function

f . unroll&block(f, i) underapproximates f , and unroll&uf(f, i) overapproxi-

mates it. unroll&check(f, i) is simply a way to check that i is high enough to

capture all the traces of f .

We will use these unrolling variants in our proof rules below.

2.2 A proof rule based on domain partitioning

Recall that when the base cases in recursive functions are not in sync, the proof

rule (part-eq) (1.1) is not strong enough to prove partial equivalence. We suggest

a new proof rule for this purpose, in which we break the premise into two separate

parts:
base-equiv(f, f ′) step-equiv(f, f ′)

partial-equiv(f, f ′)
(sep-part-eq) (2.1)

Intuitively base-equiv(f, f ′) is true if f, f ′ are partially equivalent for any input

that invokes the base case in at least one of f, f ′, and step-equiv(f, f ′) is true if

f, f ′ are partially equivalent for all the other inputs.

More formally, let inB(f) denote the set of all inputs for which the resulting

program traces do not reach a recursive call in function f , and inS(f) is the

complement of inB(f). We note that for any f, f ′ with the same signature,

inB(f) ∪ inB(f ′) and inS(f) ∩ inS(f ′) form a partition of the input domain.

We denote by partial-equiv(f, f ′)|s that f and f ′ are partially equivalent

on the set of inputs s. Using this notation, we now define base-case equivalence:

base-equiv(f, f ′)
.
= partial-equiv(f, f ′)|inB(f)∪inB(f ′) (2.2)

and similarly step-case equivalence:

step-equiv(f, f ′)
.
= partial-equiv(f, f ′)|inS(f)∩inS(f ′) (2.3)

14



f o r i = 1 . . . {
in=non det ( ) ;
r e t 1=u n r o l l&block ( f , 1 ) ( in ) ;
r e t 2=u n r o l l&check ( f ’ , i ) ( in ) ;
a s s e r t ( r e t1 = re t2 ) ;

}

f o r i = 1 . . . {
in=non det ( ) ;
r e t 1=u n r o l l&block ( f ’ , 1 ) ( in ) ;
r e t 2=u n r o l l&check ( f , i ) ( in ) ;
a s s e r t ( r e t1 = re t2 ) ;

}
Phase 1 Phase 2

Figure 2.4: Pseudocode of the first and second step of the base-case proof. i is
increased until there is no assertion failure in unroll&check.

In the next section we will show how we use the various types of unrolling

from Sect. 2.1 to prove the premise of (2.1) based on (2.2) and (2.3).

2.2.1 Proving base-case equivalence

According to (2.2), to prove the premise base-equiv(f, f ′), we can create a check

program, similar to the one in Fig. 1.3, but while limiting the inputs to those that

invoke the base case in either one of f or f ′. To that end, we divide our proof

into two phases:

1. Prove equivalence for inputs that result in a base case in f .

2. Prove equivalence for inputs that result in a base case in f ′.

The pseudocode in Fig. 2.4 exhibits the programs that we generate for these

two phases. By performing unroll&block on f , we limit any program trace in the

proof that may lead to a recursive call. Because input which results in a base

case in function f may result in an unknown number of recursive iterations in

function f ′, we must create a bound for the amount of possible recursive iterations

in function f ′. We do this by applying unroll&check on f ′, where the unrolling

bound is increased up to the point that f ′ does not make another recursive call,

or a time-out is reached.

2.2.2 Proving step-case equivalence

To prove step-case equivalence we must limit our proof to program traces that

result in a recursive call on both sides. To that end, we have to limit the inputs

to inS(f) ∩ inS(f ′). Again, we use a program similar to the one in Fig. 1.3.

However, we add a global variable cnt (initialized to 0), and increment it just
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in = non det ( ) ;
r e t 1 = u n r o l l&uf ( f , 1 ) ( in ) ;
r e t 2 = u n r o l l&uf ( f ’ , 1 ) ( in ) ;
a s s e r t ( cnt < 2 | | r e t 1 = re t2 ) ;

Figure 2.5: Pseudocode of the check program used to prove the step case.

before the call statement to the uninterpreted function (see fact1 in unroll&UF

in Fig. 2.3). It is worth to note that due to ease of implementation we chose to

move the incrementation of cnt to the start of the uninterpreted function. This

manipulation keeps the soundness of our technique. We then change our assertion

to assert(cnt < 2 || ret1 = ret2), where as before ret1 and ret2 are the return

values of the two functions. This way, we check equivalence only for inputs that

invoked a recursive call both in f and in f ′. Fig. 2.5 illustrates the check program

created for the step case.

2.3 A generalization to mutually recursive func-

tions

We now generalize our proof rule to mutually recursive functions. Mutually

recursive functions appear in the call graph as SCCs of a size larger than one,

and our focus is on maximal SCCs—MSCCs. For simplicity, we consider the case

in which the two non-trivial MCSS’s m,m′ do not have edges outside the MSCC

(i.e., functions in m,m′ do not call functions outside of m,m′) and that there is a

bijective mapping between the functions in m,m′, which we denote here by mapf .

A proof rule for this case was given in [GS08] and repeated here:

∀(f, f ′) ∈ mapf .

((∀(g, g′) ∈ mapf .p-equiv(callg, callg′)) ` p-equiv(f body, f ′ body))

∀(f, f ′) ∈ mapf .p-equiv(f, f ′)
(proc-p-eq)

(2.4)
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f2f1 f ′
2f ′
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f ′
2U1

U2f1 U2f ′
1

f2U1

Side 0 Side 1

Figure 2.6: To prove equivalence of mutually recursive functions (top) with (2.6),
we check separately the equivalence of each pair of functions, while replacing the

calls to other functions with calls to UFs (bottom).

This rule is more intuitive after seeing how its premise can be checked. For

this, [GS08] defines

fUF .
= f [g ← UF (g) | g is called in f ] , (2.5)

or in words, fUF replaces each function call to g in f , with a corresponding call

to an uninterpreted function. Now (2.4) becomes

∀(f, f ′) ∈ mapf . partial-equiv(fUF , f ′UF )

∀(f, f ′) ∈ mapf . partial-equiv(f, f ′)
(2.6)

In words, the premise we need to prove is that every pair in mapf has to be proven

equivalent, while replacing the calls to other functions in m,m′ with uninterpreted

functions. We emphasize that the calls to mapped functions in mapf are replaced

with the same uninterpreted function. A sample pair of size-2-MSCCs and the

proof obligations according to (2.6) appear in Fig. 2.6.

Our generalization of (2.1) to mutual recursion, can be thought of as splitting

the input domain in (2.4) to the base-case and step-case, similarly to what we

have shown in Sect. 2.2:

∀(f, f ′) ∈ mapf .base-equiv(f, f ′) ∀(f, f ′) ∈ mapf .step-equiv(f, f ′)

∀(f, f ′) ∈ mapf .partial-equiv(f, f ′)
(2.7)

We now adjust the premise of (2.7) to support mutually recursive functions.

First we generalize the definitions of inB(f) and inS(f). Let inB(f) denote the
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i n t sum2 1 ( i n t n){
i f (n <= 1){
r e turn n ;
}
r e turn n + sum2 1 (n−1);
}

i n t sum2( i n t n){
i f (n <= 1){
r e turn n ;
}
r e turn n + sum2 1 (n−1);
}

i n t sum1( i n t n){
i f (n <= 1){
r e turn n ;
}
r e turn n + n − 1 + sum1(n−1);
}

Figure 2.7: The function sum2 after being unrolled syntactically once.

set of all inputs for which the resulting program traces do not reach a call to

another function in the MSCC, and let inS(f) denote the complement of inB(f).

To prove the base we use the inference rule:

∀(f, f ′) ∈ mapf .partial-equiv(f, f ′)|inB(f)∪inB(f ′)

∀(f, f ′) ∈ mapf .base-equiv(f, f ′)
, (2.8)

and to prove the step, we use the rule:

∀(f, f ′) ∈ mapf .partial-equiv(f, f ′)|inS(f)∩inS(f ′)

∀(f, f ′) ∈ mapf .step-equiv(f, f ′)
. (2.9)

Since we are only partitioning the input domain in (2.6), whose correctness was

already proven in [GS08], then correctness is implied.

2.4 Proving equivalence of functions not in lock-

step

Recall the two versions of the sum function in Fig. 2.2 which are not in lock-step

and therefore cannot be proven partially equivalent by the rule (part-eq). To

solve this, we unwind sum2: the result is shown in Fig. 2.7. We can now see that

for n = 3 both sum1 and sum2 return 3 + 2 + U(1).

Now let us look at another example. For n = 2, sum1 returns 2+1+U(0) while
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the unrolled function sum2 returns 2 + 1. By performing un-balanced syntactic

unrolling we created base cases that are not in sync. We solve this similarly by

separating the premise of our proof rule into two parts, the base-case proof and

the step-case proof as before. Our proof rule for functions f and f ′ with the

respective unrolling factors of n and m is:

base-equivn,m(f, f ′) step-equivn,m(f, f ′)

partial-equiv(f, f ′)
(sep-part-eq) (2.10)

The predicate base-equivn,m(f, f ′) is true when f and f ′ are equivalent for each

input that does not involve a recursive call in unroll(f, n) or unroll(f ′,m)). More

formally:

base-equivn,m(f, f ′)
.
=

partial-equiv(unroll(f, n), unroll(f ′,m))|inB(unroll(f,n))∪inB(unroll(f ′,m)) (2.11)

The predicate step-equivn,m(f, f ′) is true when f and f ′ are partially equiv-

alent for all other inputs: those that involve a recursive call on both unroll(f, n),

and unroll(f ′,m) sides, or, more formally:

step-equivn,m(f, f ′)
.
=

partial-equiv(unroll(f, n), unroll(f ′,m))|inS(unroll(f,n))∩inS(unroll(f ′,m)) (2.12)

Next, we show how we verify that these predicates hold true, and thus prove the

premise of 2.10.

Base case:

Since we limit our input to values in the union of inB(unroll(f, n)) and inB(unroll(f ′,m)),

we prove the base case by separating the proof into two phases, similarly to

Sect. 2.2.1. These phases are illustrated by Fig. 2.8. Note that now, in the first

step, we unroll and block f with an unrolling factor of n, in order to capture

inputs that result in a program trace that reaches one of the base cases in one of

the first n recursive iterations of f . Similarly, in the second phase we apply unroll

and block m times on f ′.
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f o r i = 1 . . . {
in=non det ( ) ;
r e t 1=u n r o l l&block ( f , n ) ( in ) ;
r e t 2=u n r o l l&check ( f ’ , i ) ( in ) ;
a s s e r t ( r e t1 = re t2 ) ;

}

f o r i = 1 . . . {
in=non det ( ) ;
r e t 1=u n r o l l&check ( f ’ ,m) ( in ) ;
r e t 2=u n r o l l&block ( f , i ) ( in ) ;
a s s e r t ( r e t1 = re t2 ) ;

}
Phase 1 Phase 2

Figure 2.8: Pseudocode of the two phases of the base-case proof, for unbalanced
recursive functions.

cnt = 0 ;
in = non det ( ) ;
r e t 1 = u n r o l l&uf ( f , n ) ( in ) ;
r e t 2 = u n r o l l&uf ( f ’ ,m) ( in ) ;
a s s e r t ( cnt < 2 | | r e t 1 = re t2 ) ;

Figure 2.9: Pseudocode of the check program used to prove the step case
equivalence for unrolled functions.

Step case:

According to (2.12), we need to limit the proof to program traces that result in

a recursive call on both sides after being unrolled n and m times, respectively.

Similar to the program in Fig. 2.5, we do this by utilizing the counter cnt. The

program is given in Fig. 2.9.

This entire process is now automated in rvt via a flag -unroll n m, where

the user only has to replace n and m with constants.

2.5 Related work and competing tools

We have compared several leading unbounded model checkers that have scored

high on recursive programs in the latest software verification competition. While

they are not designed for program equivalence, Fig. 1.3 shows us that we can

reduce this problem to a general verification problem over a single program. We

have tested Seahorn [GKKN15], HSF(C)[GGL+14] and Automizer [HHP13]

using the factorial and sum examples that we presented in previous sections.
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These model checkers were not able to prove equivalent the pair of functions in

these examples.

rêve [FGK+14] is a program equivalence verifier. Specifically for the case of

unbalanced base-cases, it uses a technique called counterexample-based refinement,

by which counterexamples are checked individually by simulation and then blocked

from the verification condition. For example, for our factorial example, the input

triggering the base case not in sync is n = 1. After the proof failure rêve runs

both programs with the given input to examine whether the counterexample in

fact indicates an in-equivalence between the two programs. If it discovers that

both outputs are equal for n = 1 then the program trace created by this input is

blocked in the next iteration. Once this program input is disregarded then the

proof succeeds. This process is unbounded, similarly to the iterative process in

our base-case proof seen in Fig. 2.4.

Both tools may perform favourably in different scenarios. For example in

programs where our inputs are from the integer domain and the expression applied

on the parameter of the recursive call results in a series of inputs {n1, n2, ..}
which advances at a pace larger than one (ni+1 − ni > 1) then our proof rule

(sep-part-eq) (2.1) may perform better. Generally speaking, (sep-part-eq)

may perform better when the expression applied on the parameters of the recursive

call causes the series of input values of the recursive calls to be non-sequential

over the input domain. Note how the recursion advances faster over the integer

domain in the two programs in Fig. 2.10. These are two implementations of the

factorial function, after applying loop unrolling. According to the proof method

in Equation 2.1 we prove equivalence for two domains of inputs:

1. For inputs that result in a base-case for fact1 (when n ∈ [1..4]), the proof

will be successful in the first iteration.

2. For inputs that result in a base for fact2 (when n ∈ [1..8]), the proof will

be successful in the second iteration.

On the other hand when using counterexample-based refinement, three counterex-

amples are created and blocked before the proof succeeds.

Counterexample-based refinement may perform better in other scenarios. In

Fig. 2.11 we used two identical implementations of the factorial function and added

a base condition for n = 10. In the second iteration, the program trace created by

the input n = 10 will be blocked after one iteration using counterexample-based

refinement and the proof succeeds. However if we try to prove this using our rule

in Equation 2.1, only after we apply unroll&check with a factor of 10 will the
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i n t f a c t 1 ( i n t n){
i f (n <= 1) re turn 1 ;
i f (n == 2) return 2 ;
i f (n == 3) return 6 ;
i f (n == 4) return 24 ;

r e turn n ∗ (n−1) ∗ (n−2)
∗ (n−3) ∗ f a c t 1 (n−4);

}

i n t f a c t 2 ( i n t n){
i f (n <= 1) re turn 1 ;
i f (n == 2) return 2 ;
i f (n == 3) return 6 ;
i f (n == 4) return 24 ;
. . . .
i f (n == 8) return 40320 ; //8 !
r e turn n ∗ (n−1) ∗ (n−2)

∗ (n−3) ∗ f a c t 1 (n−4);
}

Figure 2.10: Unrolled and optimized version of the factorial function.

i n t f a c t 1 ( i n t n){
i f (n <= 1) re turn 1 ;
r e turn n ∗ f a c t 1 (n−1);

}

i n t f a c t 2 ( i n t n){
i f (n <= 1) re turn 1 ;
i f (n == 10)

re turn 3628800; //10 !
r e turn n ∗ f a c t 1 (n−1);

}

Figure 2.11: fact2 contains a special condition.

proof succeed. In other words, the counterexample-refinement method requires

fewer iterations with programs that have base-case conditions that are sporadic

over the input domain.

2.6 Conclusions

We have presented techniques for proving the equivalence of two recursive functions

that have different base-cases and/or are not in lock-step. As we have shown

experimentally, none of the existing software equivalence checkers (like rêve , rvt ,

Symdiff), or general unbounded software model-checkers (like Seahorn, HSFC,

Automizer) can prove such equivalences. The proof rule that we presented

for the case of different base cases is based on separating the proof into two

parts—inputs which result in the base case in at least one of the two compared

functions, and all the rest. To prove recursive functions that are not in lock-step,

we showed that unbalanced unrolling does not solve in itself the problem, and
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requires a more elaborate solution that involves a variation of the first rule for

different base cases. We implemented these rules in our regression-verification

tool rvt , which now has a web-interface in [RVL] and is open-source.
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Chapter 3

Value anlysis

3.1 Value Analysis for recursive functions

Value analysis tools for C programs based on abstract interpretation have been

available for many years now. However we were not able to find a tool which

supports programs with recursive functions which are the main focus of this

work. To integrate value analysis in rvt we have decided to use an existing value

analysis tool and add support for recursive functions ourselves. In this work we

used FramaC [PCY12]. FramaC is a suite of tools dedicated to the analysis

of programs written in C. Specifically we will address the value analysis plugin

which computes domains of the variables in the programs including the return

value and any global variables.

To calculate value domains for recursive functions we offer Alg. 3.1. To simplify

our presentation this algorithm will relate to functions with a single recursive call

site and we will also address the return value only while the implementation itself

relates to all output variables. The algorithm starts in line 3 by replacing the

recursive function call site with a variable which represents the widest possible

interval: [−∞..∞] (in practice we use the built in minimum and maximum values

of the related domain in C). This is implemented using built in constructs which

FramaC’s value analysis plugin supplies and allow us to bound the possible

values of a variable. Now our function is flattened and contains no recursion. In

line 4 we run FramaC’s value analysis plugin and receive an interval int res. If

int = int res we stop because we have reached a fixed point. If a fixed point has

not been reached we continue by replacing the recursive call site with a variable

bound to the previously computed interval. The algorithm ends when it reaches

a fixed point or a timeout has occurred. We are able to use such variables by

utilizing domain bounding.
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Algorithm 3.1 Computing value analysis on recursive functions

INITIALIZE int = [−∞..∞]
while nottimeout do

Replace recursive call with a variable bounded to int
Run FramaC given f and store the resulted interval in int res
if int = int res then
break

else
int = int res

end if
end while

i n t f 1 ( i n t n){
i f (n <= 0) re turn 1 ;
i f ( f 1 (n−1) < 0) re turn 2 ;
e l s e re turn 5 ;

}

i n t f 2 ( i n t n){
i f (n <= 0) re turn 1 ;
i f ( f 2 (n−1) < 0) re turn 4 ;
e l s e re turn 5 ;

}

Figure 3.1: Two semantically equivalent functions with unreachable different
return statements.

3.2 Using value analysis to strengthen uninter-

preted functions

3.2.1 Strengthening uninterpreted functions

Consider the two functions given in Fig. 3.1. Although the two functions return

different values in line 3, it is clear that the guards of the if statements are

never evaluated to true. However rvt is not able to prove the equality of the two

functions, because when it creates the check program, both recursive calls are

converted to calls to uninterpreted functions, which return arbitrary values.

By utilizing the method in Sect. 3.1 we can calculate that the outputs out1, out2

of functions f1 and f2 respectively hold out1, out2 ∈[1,5] or more specifically out1 ∈
{1, 2, 5} and out2 ∈ {1, 4, 5}. We can now limit the output of the uf functions

to those calculated values. We limit the output of the uf using the assume()

statement which is provided by cbmc. This is illustrated in Fig. 3.2, although in

our implementation we add the assume() statement inside the implementation of

the uninterpreted function fuf , to limit its output to this range.

We can furthermore strengthen our proof by calculating the range of the
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i n t f 1 ( i n t n){
i f (n <= 0) re turn 1 ;
i n t tmp = f u f (n−1);
assume (tmp == 1 | | tmp == 5 ) ;
i f (tmp < 0) re turn 2 ;
e l s e re turn 5 ;

}

Figure 3.2: We limit the set of possible outputs of the uf .

i n t f 1 ( i n t n){
i f (n <= 0) re turn −1;
i f ( f 1 (n−1) < 0) re turn 2 ;
e l s e re turn 5 ;

}
i n t main ( i n t x ){

i f ( x > 1){
r e turn f1 ( x ) ;

}
}

i n t f 2 ( i n t n){
i f (n <= 0) re turn −1;
i f ( f 2 (n−1) < 0) re turn 4 ;
e l s e re turn 5 ;

}
i n t main ( i n t x ){

i f ( x > 1){
r e turn f2 ( x ) ;

}
}

Figure 3.3: Functions f1 and f2 are not semantically equivalent in a free context,
but they are indeed equivalent under the context of their calling function main.

output of each function in a context-based manner. In Fig. 3.3 it is easy to see

that functions f1 and f2 are not equal because the recursive calls may return a

negative value. Specifically for the input n = 1 the recursive calls in functions f1

and f2 will return −1 and the final results of the two functions will be different.

However under the context in which both functions may only be called when the

input satisfies n > 1 the functions are equal. By calculating the possible range

of outputs using value analysis under this specific context we can conclude that

outputs out1 and out2 of functions f1 and f2 respectivelly hold out1 ∈ [2..5] and

out2 ∈ [4..5]. With these values we can continue to prove the equality of both

functions.
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3.2.2 Intersection of return value ranges

In this section we will consider a method to further strengthen uninterpreted

functions by intersecting the value ranges calculated by value analysis. When

addressing this subject we will consider calls to uninterpreted functions which

replace calls to functions which were already proven to be equal and those which

are assumed to be equal by the algorithm.

Intersecting output ranges of previously proven functions

rvt converts calls to functions which were already proven to be equal to calls to

the same uninterpreted function. It then bounds the output of these functions to

the over-approximated output range calculated by value analysis. The precision

of this range can be improved, as we now show, which in turn improves the

completeness of this proof technique.

Let outf denote the over-approximated set of return values of a function f , as

calculated by value analysis, and let outf denote the precise set of possible return

values of f . Note that

outf ⊆ outf . (3.1)

When two function f1 and f2 are partially equivalent, outf1 = outf2 and moreover

outf1 ⊆ outf1 ∩ outf2 . (3.2)

To see why, assume the contrary: this implies that there is a value x ∈ outf1 such

that x 6∈ outf1 (or, equivalently, x 6∈ outf2), but this contradicts (3.1). Hence

when we have already proved that f1, f2 are partially equivalent, we may limit the

bound we place on the return values of the uninterpreted functions that replace

them, to

outf1 ∩ outf2 . (3.3)

The example below demonstrates the value of this restriction.

Consider the two programs in Fig. 3.4. Functions r1 and r2 can be proven

equivalent. Value analysis will result in the ranges outr1 = [1..7] and outr2 = [1..5].

By replacing the calls to r1 and r2 in functions f1 and f2 with uninterpreted

functions and bounding the output range to these intervals we are unable to prove

the equality of r1 and r2 because the uf call in line 7 may return the value 7,

which causes f1 and f2 to return a different value. However, by using the range

specified in (3.3), we further minimize the bound of return values of r1 and r2 to

the interval outr1 ∩ outr2 = [1..5]. With this range the equivalence of functions f1

28



i n t r1 ( i n t n){
i f (n <= 0) re turn 1 ;
i f ( r1 (n−1) < 0) re turn 7 ;
e l s e re turn 5 ;

}
i n t f 1 ( i n t x ){

i f ( r1 ( x ) == 7) re turn −1;
e l s e re turn 5 ;

}

i n t r2 ( i n t n){
i f (n <= 0) re turn 1 ;
i f ( r2 (n−1) < 0) re turn 4 ;
e l s e re turn 5 ;

}
i n t f 2 ( i n t x ){

i f ( r2 ( x ) == 7) re turn −61;
e l s e re turn 5 ;

}

Figure 3.4: Functions f1 and f2 cannot be proven equal without using the
intersection of possible return value of r1 and r2.

and f2 can be proven.

Intersecting ranges of recursive functions

So far we considered the intersection of possible return values of functions which

were already proven to be equal. We will now discuss the case of recursive or

mutually-recursive functions. Applying the intersection bound on the output of the

uninterpreted functions means strengthening the premise of the proof. Soundness

is preserved with this addition as we will now see.

The following is the premise of the (part-eq) proof rule:

p-equiv(callf1, callf2) ` p-equiv(f1 body, f2 body) (3.4)

In previous paragraphs we concluded that for two functions f1 and f2 it holds

that outf1, outf2 ∈ outf1 ∩ outf2 when the two functions are partially equivalent.

Therefore by proving the following premise we may soundly conclude that both

functions are partially equivalent:

p-equiv(callf1, callf2) ∧ (outf1, outf2 ∈ outf1 ∩ outf2) `

p-equiv(f1 body, f2 body)
(3.5)

The two sample functions f1 and f2 in Fig. 3.5 illustrate the benefits of

intersection when attempting to prove partial equivalence of recursive functions. f1

and f2 may only be proved after we bound the results of the uninterpreted functions

to the intersection of the possible output values which is: outf1, outf2 ∈ {1, 5}.
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i n t f 1 ( i n t n){
i f (n <= 0) re turn 1 ;
i f ( f 1 (n−1) > 5) re turn 8 ;
e l s e re turn 5 ;

}

i n t f 2 ( i n t n){
i f (n <= 0) re turn 1 ;
i f ( f 2 (n−1) > 5) re turn 6 ;
e l s e re turn 5 ;

}

Figure 3.5: Functions f1 and f2 cannot be proven equal without using the
intersection of possible return value of their recursive call.
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Chapter 4

Future work and Conclusion

4.1 Future work

In chapter 3 we discussed strengthening the proof rule (part-eq) with over

approximated bounds on output variables from uninterpreted function calls. The

proof rule may be further improved by utilizing function summaries. Intuitively

a summary of function f is an over approximated relation between the inputs

and outputs of f . The function summary relation which describes function f

In Fig. 4.1 is {(a, b) | a < 5 and b = 4} ∪ {(a, b) | a ≥ 5 and b = 3} where a

represents the input and b represents the output.

The two programs in Fig. 4.2 illustrate the possible benefits of using function

summaries over abstract interpretation. Functions r1 and r2 are syntactically

equivalent in this sample. Let us assume that they turn into uninterpreted function

calls. The over approximated values set of the two functions is {1, 5}. Using this

bound function f1 might return the value −1 and function f2 may return −2 and

so (part-eq) will fail. Given a bound on the uninterpreted function calls based

on the function summaries of r1 and r2 we can conclude that the proof will be

i n t f ( i n t a ){
i f ( a < 5) re turn 4 ;
e l s e re turn 3 ;

}

Figure 4.1: Function summaries illustration.
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i n t r1 ( i n t x ){
i f ( x > 8) re turn −5;
r e turn 1 ;

}

i n t f 1 ( i n t x ){
i f ( x > 10 && r1 ( x ) > 0)

re turn −1;
e l s e re turn 1 ;

}

i n t r2 ( i n t x ){
i f ( x > 8) re turn −5;
r e turn 1 ;

}

i n t f 2 ( i n t x ){
i f ( x > 10 && r2 ( x ) > 0)

re turn −2;
e l s e re turn 1 ;

}

Figure 4.2: Functions f1 and f2 may only be proven equal when using a function
summary bound on the uninterpreted function calls to r1 and r2.

successful because for all inputs greater than 10 functions r1 and r2 return only

negative numbers.

4.2 Conclusion

In this thesis I presented methods which increase the completeness of the proof

rules used by rvt . The methods in chapter 2 were aimed at specific use cases:

when base case conditions are not in sync and when the recursive steps are not in

lock step. The method in chapter 3 may improve completeness on a wide variety

of use cases. The methods suggested and implemented in this work improve the

overall completeness of rvt and bring it closer to a state in which it can prove

real world examples. These methods may also be implemented and integrated

into other tools and frameworks.
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