
Proving Mutual Termination of

Programs

Dima Elenbogen

Proving Mutual Termination of

Programs

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Dima Elenbogen

Submitted to the Senate of

the Technion — Israel Institute of Technology

Iyar 5774 Haifa May 2014

The research thesis was done under the supervision of Assoc. Prof. Ofer

Strichman and under the joint supervision of Prof. Shmuel Katz in the Com-

puter Science Department.

The generous financial support of the Technion is gratefully acknowledged.

This material is based on research sponsored by the Air Force Research Lab-

oratory, under agreement number FA8655-11-1-3006. The U.S. Government

is authorized to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon.

Contents

Abstract 1

Abbreviations and Notations 2

1 Introduction 3

1.1 Structure of this thesis . 5

2 Preliminaries 7

2.1 Preprocessing and mapping 7

2.2 Definitions and notations . 8

2.2.1 Mutual termination . 8

2.2.2 Call equivalence . 9

2.2.3 Function isolation. 10

2.2.4 Partial equivalence. 12

3 Proof rules 13

3.1 Incompleteness . 14

3.2 Checking the premise . 14

3.3 Generalization . 19

3.4 Soundness proofs for (m-term) and (m-term+) 20

3.4.1 Proof of (m-term+) 24

4 A decomposition algorithm 27

4.1 The algorithm . 27

4.1.1 Examples . 32

4.2 Choosing a vertex feedback set deterministically 41

i

4.2.1 Recycling proofs . 45

4.2.2 Optimizing function ChooseS 45

5 Improving completeness 54

5.1 Reducing prototypes of loop-replacing functions 55

5.2 Mapping functions with different numbers of input parameters 58

5.2.1 Detecting termination-inert input parameters 63

5.3 Partial equivalence with respect to a subset of outputs 65

6 Inference rules for proving termination 69

6.1 Proof rule (term) . 69

6.2 Generalized rule (term+) . 73

6.3 Soundness proofs for (term) and (term+) 73

6.3.1 Proof of (term+). 77

7 Experience and conclusions 81

7.1 Conclusion and future research. 82

Appendix 86

A.1 A proof of undecidability of the mutual termination problem . 87

Bibliography 88

Abstract in Hebrew ℵ

ii

List of Figures

2.1 An implementation of the McCarthy-91 program [31]. 10

2.2 An illustration of a computation π ∈ 〚f(99)〛, where f is de-

fined in Fig. 2.1. π1 is highlighted with gray shading. 11

3.1 Two variations on the Collatz (“3x + 1”) function that are

mutually terminating. f (f ′) returns the total number of

times the function was called with an even (odd) number.

We use the convention that % is the modulo operator, ‘:=’ is

an assignment and ‘=’ is equality. Note that when a′ is odd,

a′/2 = (a′ − 1)/2, and, hence, 6(a′/2) + 4 = 3a′ + 1. 15

3.2 The isolated versions of the two given functions of Fig. 3.1. . . 16

3.3 Transition relations TfUF and Tf ′UF derived from fUF and

f ′UF , respectively. The definitions of fUF and f ′UF appear

in Fig. 3.2. The static single-assignment form [36] is used,

e.g., a0, a1, ..., stand for the different versions of a. 17

3.4 The flat program that we generate and then verify its asser-

tion, given the two functions of Fig. 3.1. Note that in the

pseudo-code above, UF(g,in) represents UFg(in) in the main

text of the thesis. The definitions of fUF and f ′UF appear in

Fig. 3.2. 18

4.1 Functions uf and uf’ emulate uninterpreted functions if in-

stantiated with functions that are mapped to one another.

They are part of the generated program δ, as shown in CallE-

quiv of Alg. 1. These functions also contain code for recording

the parameters with which they are called. 31

iii

4.2 Call graphs of the programs discussed in Ex. 4.1.1. Partially

equivalent functions are marked gray. 33

4.3 A mapped pair of MSCCs. Each one consists of a simple

recursive function. 33

4.4 Call graphs of the isolated versions of f5 and f ′5. UFf5 and

UFf ′5 , which have replaced the calls to f5 and f ′5, respectively,

emulate the same uninterpreted functions and are marked gray. 34

4.5 Call graphs of the isolated versions of f5 and f ′5. Partially

equivalent UFf5 and UFf ′5 , which have replaced the calls to f5

and f ′5, respectively, are marked gray. 35

4.6 Call graphs of the isolated versions of f2 and f ′2. Partially

equivalent uf, uf’, which respectively replace calls to f5, f ′5
and f4, f ′4, are distinguished as UFf5 ,UFf ′5 and UFf4 , UFf ′4 ,

respectively, for better understanding. 35

4.7 Call graphs of the isolated versions of f4 and f ′4. uf and uf’,

which replace calls to f2 and f ′2, respectively, are distinguished

with UFf2 and UFf ′2 , respectively, for better understanding.

They emulate different uninterpreted functions. 36

4.8 Call graphs of the isolated versions of f1 and f ′1. Two different

uninterpreted functions uf and uf’, which replace calls to f2

and f ′2, respectively, are distinguished as UFf2 and UFf ′2 , re-

spectively, for better understanding. The same uninterpreted

functions uf and uf’, which replace calls to f4 and f ′4, respec-

tively, are distinguished as UFf4 and UFf ′4 , respectively. 36

4.9 Call graphs of the isolated versions of f4 and f ′4 when 〈f2, f ′2〉
/∈ S. The same uf, uf’, which respectively replace calls to

f5, f ′5 and f4, f ′4, are distinguished as UFf5 , UFf ′5 and UFf4 ,

UFf ′4 , respectively, for better understanding. 38

4.10 Call graphs of the isolated versions of f1 and f ′1. The same

uninterpreted functions uf and uf’, which replace calls to f4

and f ′4, respectively, are distinguished as UFf4 and UFf ′4 , re-

spectively, for better understanding. The same uninterpreted

functions uf and uf’, which replace calls to f5 and f ′5, respec-

tively, are distinguished as UFf5 and UFf ′5 , respectively. 39

iv

4.11 An example of MSCC where a counterexample may be gener-

alized. 46

4.12 Call graphs of the programs discussed in Ex. 4.2.1. Partially

equivalent functions are gray. 50

4.13 A pseudo-Boolean formulation of the optimization problem of

finding the largest set of function pairs intersecting all cycles in

both {f7, f8, f9} and {f ′7, f ′8, f ′9, f ′10}. The list of the transitive

closure constraints (iii) is not full as floccinaucinihilipilificated

constraints are omitted here. 53

5.1 Two versions of programs each of which contains a loop with

an uninitialized variable y (y′) which is written-to before ever

being read. 55

5.2 Two versions of programs from Fig. 5.1 after elimination of

their loops. 56

5.3 Parts of the program generated for proving the mutual termi-

nation of functions main, main′, defined in Fig. 5.2. 56

5.4 Two versions of programs from Fig. 5.1 after replacement of

their loops with functions and reduction of variables y and

y′ from the argument lists of those replacing functions. See

Fig. 5.2 for a comparison. 57

5.5 Two versions of a program where functions h and h′ have

different prototypes. Nevertheless, we would like to prove

m-term(h, h′). 60

5.6 Function h′�{b′}, derived from function h′ (see Fig 5.5) ‘hiding’

b′ from the parameter list (see Def. 5.2.2). 62

5.7 The System Definition Graph [26] of the sub-program starting

in function h′, defined in Fig 5.5. 64

5.8 (top) Functions g and g′ are partially equivalent with respect

to their return value, but not with respect to the other output

∗p, ∗p′. We show that this ‘restricted’ partial equivalence is

sufficient for proving mutual termination; (bottom) the iso-

lated versions of g, g′. 66

v

5.9 Implementations for functions uf and uf’, where the lat-

ter takes into consideration partial information about partial

equivalence. uf and uf’ emulate uninterpreted functions if in-

stantiated with functions that are mapped to one another, and

form a part of the generated program δ, as shown in CallE-

quiv of Alg. 1 or in the determinization thereof Alg. 2 (see

pages 29, 42). These functions also contain code for recording

the parameters with which they are called. 68

6.1 The original Ackermann [3] function ϕ and its two-variable

variation A, developed by Péter and Robinson [34]. 70

6.2 The isolated versions of the original Ackermann function ϕ

and its more famous two-variable variation A, developed by

Péter and Robinson. 71

6.3 An illustration of depth(π), defined in (6.12), for a computa-

tion π ∈ 〚f(99)〛, where f is defined in Fig. 2.1. For a subcom-

putation πgi of π beginning at g (a callee of f), depth(πgi) <

depth(π). 76

7.1 Two possibly non-mutually terminating versions of int value. 82

7.2 Two possibly non-mutually terminating versions of parse funccall

and a newly introduced non-mapped function list set item’. 83

vi

List of Tables

4.1 Predicate labels used in the decomposition algorithm. 28

4.2 Applying Alg. 1 to the call graphs in Fig. 4.2 under the as-

sumptions made in Ex. 4.1.1 about the results of CallEquiv.

The following notations are used in the table:

‘X’ means that the pair is marked m term,

‘Xc’ means that it is marked conditionally (it becomes uncon-

ditional once all other pairs in S are marked as well), and

‘7’ means that it is not marked m term;

‘(=)’ denotes that uf and uf’ emulate the same uninterpreted

functions, while

‘(6=)’ denotes that they emulate different uninterpreted func-

tions. 37

4.3 Applying Alg. 1 to the call graphs in Fig. 4.2 under the as-

sumptions made in Ex. 4.1.2 about the results of CallEquiv.

The following notations are used in the table:

‘X’ means that the pair is marked m term,

‘7’ means that it is not marked m term;

‘(=)’ denotes that uf and uf’ emulate the same uninterpreted

functions, while

‘(6=)’ denotes that they emulate different uninterpreted func-

tions. 40

vii

5.1 Definition of WT analysis. This is an intraprocedural flow-

sensitive forward (F = flow(S?)) must (
⊔

=
⋂

) analysis.

Let def(n) denote the set of the variables updated in the con-

trol flow graph node n. See Chapter 2 of [33] for understanding

the rest of the notations used here. 59

5.2 Definition of RU analysis. This is an intraprocedural flow-

sensitive forward (F = flow(S?)) may (
⊔

=
⋃

) analysis.

Let use(n) denote the set of the variables which are read in

the control flow graph node n. See Chapter 2 of [33] for un-

derstanding the rest of the notations used here. 59

viii

List of Algorithms

1 Pseudo-code for a bottom-up decomposition algorithm for prov-

ing that pairs of functions mutually terminate. 29

2 Determinization of Alg. 1. 42

3 Pseudo-code for function ChooseS, which finds a feedback

vertex set over a given pair of MSSCs while blocking previously

failed solutions. 43

4 An optimized version of function ChooseS presented in Alg. 3. 47

5 Algorithm for checking whether an input argument is termination-

inert. 63

6 CallEquiv from Alg. 2 updated for proving termination of

functions. 74

ix

x

Abstract

Two programs are said to be mutually terminating if they terminate on ex-

actly the same inputs. We suggest inference rules and a proof system for

proving mutual termination of a given pair of functions 〈f , f ′〉 and the re-

spective subprograms that they call under a free context. Given a (possibly

partial) mapping between the functions of the two programs, the premise of

the rule requires proving that given the same arbitrary input in, f(in) and

f ′(in) call functions mapped in the mapping with the same arguments. A

variant of this proof rule with a weaker premise allows to prove termination of

one of the programs if the other is known to terminate for all inputs. In addi-

tion, we suggest various techniques for battling the inherent incompleteness

of our solution, including a case in which the interface of the two functions

is not identical, and a case in which there is partial information about the

partial equivalence (the equivalence of their input/output behavior) of the

two given functions.

We present an algorithm for decomposing the verification problem of

whole programs to that of proving mutual termination of individual func-

tions, based on our suggested inference rules. The reported prototype imple-

mentation of this algorithm is the first to deal with the mutual termination

problem.

1

Abbreviations and Notations

Notation Page(-s)

≡〈o,o′〉 67

〚f(in)〛 9

|s| 21

wc 69

C(m) 19

call-equiv 10

callees 11

calls 10

covered 28

DAG 13

depth 75

depthm 79

f�B 61

fUF 11

fUFS 45

input 9

isolated version 11

left side 44

m-term 9, 61

m term 28

Notation Page(-s)

mapM 13

mapF 8

mapF(m) 13

mapped 21

MSCC 13

out(f) 67

p-equiv 12

p-equiv〈o,o′〉 67

part eq 28

part eq〈o,o′〉 67

S 30

S(π) 21

Sm(π) 21

term 9, 69

trivial MSCC 13

UFf 10

Π 61

π1 9

πUF 20

2

Chapter 1

Introduction

Whereas termination of a single program has been widely studied (e.g., [7, 10,

11, 18]) for several decades by now, with the focus being, especially in the last

few years, on automating such proofs, little attention has been paid to the

related problem of proving that two similar programs (e.g., two consecutive

versions of the same program) terminate on exactly the same inputs. Ideally

one should focus on the former problem, but this is not always possible either

because the automatic techniques are inherently incomplete, or because the

program does not terminate on all inputs by design, e.g., a reactive program.

In such cases there is value in solving the latter problem, because developers

may wish to know that none of their changes affect the termination behavior

of their program. Moreover, the problem and solution thereof can be defined

in the granularity of functions rather than whole programs; in this case the

developer may benefit even more from a detailed list of pairs of functions

that terminate on exactly the same set of inputs. Those pairs that are not

on the list can help detecting termination errors.

Our focus is on successive, closely related versions of a program because

it both reflects a realistic problem of developers, and offers opportunities for

decomposition and abstraction that are not possible with the single-program

termination problem. This problem, which was initially proposed in [21]

and coined mutual termination, is proven undecidable in Appendix A.1 via

a simple reduction from the halting problem. We argue, however, that in

many cases it is easier to solve automatically, because unlike termination

3

proofs for a single program, it does not rely on proving that the sequence

of states in the programs’ computations can be mapped into well-founded

sets. Rather, it can be proven by showing that the loops and recursive

functions have the same set of function calls given the same inputs, which

is relatively easier to prove automatically. In Sect. 3.2, for example, we

show how to prove mutual termination of two versions of Collatz’s famous

3x+ 1 problem [19]; whereas proving termination of this program is open for

many decades, proving mutual termination with respect to another version

is simple.

Our suggested method for decomposing the proof is most valuable when

the two input programs P and P ′ are relatively similar in structure. In fact,

its complexity is dominated by the difference between the programs, rather

than by their absolute size. It begins by heuristically building a (possibly

partial) map between the functions of P and P ′. It then progresses bottom-

up on the two call graphs [4], and each time proves the mutual termination of

a pair of functions in the map, while abstracting their callees. The generated

verification conditions are in the form of assertions about ‘flat’ programs (i.e.,

without loops and recursive calls), which are proportional in size to the two

compared functions. It then discharges these verification conditions with a

bounded model-checker (CBMC [9] in our case). Each such program has

the same structure: it calls the two compared functions sequentially with

the same non-deterministic input, records all subsequent function calls and

their arguments, and asserts in the end that they have an equivalent set of

function calls. According to our proof rule, the validity of this assertion is

sufficient for establishing their mutual termination.

The algorithm is rather involved because it has to deal with cases in which

the call graphs of P and P ′ are not isomorphic (this leads to unmapped func-

tions), with mutually recursive functions, and with cases in which the proof of

mutual termination for the callees has failed. It also improves completeness

by utilizing extra knowledge that we may give to it on the partial equivalence

of the callees, where two functions are said to be partially equivalent if given

the same inputs they terminate with the same outputs, or at least one of

them does not terminate. If we know that two mapped callees are partially

equivalent, we abstract them with the same uninterpreted function, which

4

increases our chance to prove mutual termination. Partial equivalence was

studied in [21, 24]. It is implemented in RVT [24] and Microsoft’s SymD-

iff [27]. We also implemented our algorithm in RVT, which enables us to

gain this information in a preprocessing step.

To summarize our contributions in this thesis, it presents:

• a proof rule for inferring mutual termination of recursive (and mutually-

recursive) functions at the leaves of their respective call graphs,

• an extension of the first rule that applies also to internal nodes in the

call graphs, and

• a proof rule for inferring termination of one function (not mutual ter-

mination) in case the other function is known to be terminating.

More importantly,

• it shows how these rules can be applied to whole programs via a bottom-

up decomposition algorithm, and

• reports on a prototype implementation of this algorithm – the first to

deal with the mutual termination problem.

Some of the results of the research work to be reported in this thesis have

been recently published in [14].

1.1 Structure of this thesis

This thesis is structured as follows. The next chapter gives a formal defini-

tion of our problem and describes the preprocessing steps which are applied

to programs so that we were able to use our proof rules and decomposition al-

gorithm. Chapter 3 proposes a proof rule for proving mutual termination for

functions in mutual recursion and a generalization thereof to cases in which

functions outside the mutual recursion component are called as well. Chap-

ter 4 suggests a method for applying the generalized rule to whole programs,

based on a bottom-up traversal of the two call graphs. The completeness of

that method is the subject of Chapter 5, which proposes several methods for

5

improving it. Chapter 6 considers a problem related to mutual termination:

assuming that P terminates, prove that P ′ terminates. Experiments and

conclusions are summarized in Chapter 7. The appendix contains a proof

that the mutual termination problem is undecidable.

6

Chapter 2

Preliminaries

2.1 Preprocessing and mapping

Let P and P ′ be two programs whose mutual termination is to be checked.

The following three preprocessing steps are applied to them:

1. All loops are extracted to new recursive functions. By function we refer

to a programming language entity, rather than a mathematical entity.

The description of this step is thoroughly detailed in Appendix C of [20].

An interested reader can see an example in this thesis how extracting

the loops of the programs listed in Fig. 5.1 results in programs as listed

in Fig. 5.2 (pages 55–56). Implicit loops caused by goto statements

directed backward and long-jumps (goto outside the function scope)

are not supported.

When this step is passed, no loops remain in functions. Hence, non-

termination can only arise from recursion.

2. All global variables that are read by a function are appended to its

formal parameter list, and the calling sites are changed accordingly.

This is not essential for the proof, but simplifies the presentation. It

should be noted that this step in itself is impossible in general programs

that access the heap, because it is undecidable whether there exists

an input to a function that causes the function to read a particular

variable. Our only way out of this problem is to point out that it

7

is easy to overapproximate this information (in the worst case just

take the whole list of global variables) and to state that, based on

our experience with a multitude of real programs, it is rather easy

to compute this information precisely or slightly overapproximate it

with static analysis techniques such as alias analysis. Indeed, the same

exact problem exists in RVT and SymDiff for the case of partial

equivalence, and there, as in our case, overapproximation can only

hinder completeness, not soundness. In general, we will not elaborate

on issues arising from aliasing because these are not unique to mutual

termination, and are dealt with in [24, 27].

3. A bijective map mapF between the functions of P and P ′ is derived.

We apply the same heuristics for deriving this map as those that were

used in [23]. For functions f ∈ P and f ′ ∈ P ′, it is possible that

〈f, f ′〉 ∈ mapF only if f and f ′ have the same prototype, i.e., the

same list of formal input parameter types. We emphasize that the

output of the two functions need not be compatible (e.g., f can update

more global variables than f ′). The restriction to bijective maps seems

detrimental for completeness, because the two compared programs are

not likely to have such a map. In practice with inlining such a mapping

is usually possible, as we will describe later in Sect. 3.2. Our goal is to

prove mutual termination of pairs of functions in mapF .

2.2 Definitions and notations

2.2.1 Mutual termination

Although we assume that the compared functions are originally determinis-

tic (i.e., no internal non-determinism resulting from uninitialized variables,

etc.), since our methodology introduces non-determinism as part of the so-

lution process, the definitions and proofs in this article will refer to non-

deterministic functions. By non-deterministic function, we mean a modeling

tool for the purpose of verification, i.e., the verification engine checks the

verification condition under every possible value in the range defined by the

type of the function’s return-value.

8

Given a function f and actual values in for its inputs, let 〚f(in)〛 denote

the set of all possible computations of the call of f(in), i.e., sequences of

states that begin right after the call f(in), and are either infinite (in case

f(in) does not return) or end at the exit from the call. By convention,

〚f(in)〛 = ∅ if in does not match the input signature of f . Let term(π)

denote that a given computation π is finite, i.e., it represents a terminating

computation. We now define:

Definition 2.2.1 (Mutual termination of functions). Two functions 〈f, f ′〉 ∈
mapF are mutually terminating if and only if

∀in, in′. in = in′ → ∀π ∈ 〚f(in)〛, π′ ∈ 〚f ′(in′)〛. term(π)↔ term(π′) .

(2.1)

Note that a function that can either terminate or not terminate on the

same input cannot be mutually terminating with any other function accord-

ing to this definition. Let m-term(f, f ′) denote the fact that f and f ′ are

mutually terminating functions. We emphasize that the inputs in and in′

may include the heap.

The definition of mutual termination between programs is quite similar

to Def. 2.2.1:

Definition 2.2.2 (Mutual termination of programs). Two programs 〈P, P ′〉
are mutually terminating if and only if

∀in, in′. in = in′ → ∀π ∈ 〚P (in)〛, π′ ∈ 〚P ′(in′)〛. term(π)↔ term(π′) ,

(2.2)

where we override 〚P (in)〛 to denote the set of all possible computations of

program P with input in.

2.2.2 Call equivalence

Given a computation π ∈ 〚f(in)〛, we denote by π1 the projection of π to

states in the top frame of the stack. Note that we follow the convention by

which the stack grows downwards. The top frame therefore contains states

reachable in the initial call of f . This implies that π1 includes states in f

9

function f(int n)
if n > 100 then return n−10;

int temp := g(n+ 11);
return g(temp);

function g(int n)
int ret := f(n);
return ret;

Figure 2.1: An implementation of the McCarthy-91 program [31].

itself, but does not include states in recursive calls to f or in other functions

that f calls. An example of a computation π and its corresponding π1 is

given in Fig. 2.2. Let calls(π1) denote the set (not a multiset) of function-

call statements found in π1, or, formally:

calls(π1)
.
= {〈g, ing〉 | g(ing) is called in π1} . (2.3)

For example, for π given in Fig. 2.2, calls(π1) = {〈g, 110〉, 〈g, 100〉}. We use

the set calls to define:

Definition 2.2.3 (Call-equivalence of functions). Functions f and f ′ are

call-equivalent if and only if

∀in, in′. in = in′ → ∀π ∈ 〚f(in)〛, π′ ∈ 〚f ′(in′)〛. calls(π1) = calls(π′
1
) .

(2.4)

Denote by call-equiv(f, f ′) the fact that f and f ′ are call-equivalent. It

is undecidable to determine call-equiv(f, f ′). We, therefore, abstract the

callees as explained next.

2.2.3 Function isolation.

With each function g, we associate an uninterpreted function UFg such that

g and UFg have the same prototype and return type. This definition is

generalized naturally to cases in which g has multiple outputs owing to global

data and arguments passed by reference. An uninterpreted function returns a

non-deterministic value, but is constrained to return the same value if called

10

π ∈ 〚f(99)〛π1:
g(110) g(100)

f(110) f(100)

g(111) g(101)

f(111) f(101)

Figure 2.2: An illustration of a computation π ∈ 〚f(99)〛, where f is defined
in Fig. 2.1. π1 is highlighted with gray shading.

multiple times with the same inputs. In Sec. 3 we will describe how we

model this function in a standard programming language. For now it is only

important to know that it does not contain function calls or unbounded loops.

Let callees(f) denote the set of the functions called in f . We emphasize that

callees(f) is defined syntactically, i.e., it contains the functions that appear

in the code of f , regardless of whether they are actually called with any

particular input. We now define:

fUF
.
= f [g(exprin)← UFg(exprin) | g ∈ callees(f)] , (2.5)

where exprin is the expression(s) denoting actual argument(s) with which

g is called. fUF is called the isolated version of f . By construction it has

no loops or function calls, except for calls to uninterpreted functions, which,

recall, in themselves do not call functions or have unbounded loops. For this

reason call-equiv(fUF , f ′UF) is decidable.

The definition of fUF requires all function calls to be replaced with un-

interpreted functions. A useful relaxation of this requirement, which we will

later use, is that it can inline non-recursive functions. Clearly, the result is

still nonrecursive. Therefore, we still refer to this as an isolated version of f .

11

2.2.4 Partial equivalence.

The following definition will be used for specifying which functions are asso-

ciated with the same uninterpreted function, when isolating their callers:

Definition 2.2.4 (Partial equivalence of functions). Two functions f and f ′

are partially equivalent if and only if any two terminating computations of f

and f ′ starting from the same inputs, return the same value.

Denote by p-equiv(f, f ′) the fact that f and f ′ are partially equivalent.

We enforce that

UFg ≡ UFg′ → (〈g, g′〉 ∈ mapF ∧ p-equiv(g, g′)) (enforce-1) , (2.6)

i.e., we associate g and g′ with the same uninterpreted function only if

〈g, g′〉 ∈ mapF , and g, g′ were proven to be partially equivalent. The list

of pairs of functions that are proven to be partially equivalent is assumed to

be an input to the mutual termination algorithm.

12

Chapter 3

Proof rules

A rule for proving mutual termination of individual ‘leaf’ functions (i.e.,

that do not call functions other than themselves) appears in [21]. Here we

strengthen that rule by making its premise weaker, and consider the more

general problem of proving mutual termination of any pair of functions (in-

cluding mutually recursive ones), which enables us to consider whole pro-

grams.

Given a call graph of a general program, a corresponding directed acyclic

graph (DAG) may be built by collapsing each maximal strongly connected

component (MSCC) into a single node. Nodes that are not part of any cycle

in the call graph (corresponding to non-recursive functions) are called trivial

MSCCs in the DAG. Other MSCCs correspond to either simple or mutually

recursive function(s). Given the MSCC DAGs of the two input programs,

denote by mapM a map between their nodes, which is consistent with mapF .

Namely, if 〈m,m′〉 ∈ mapM, f is a function in m, and 〈f, f ′〉 ∈ mapF , then

f ′ is a function in m′ (and vice-versa).

Consider, then, two nontrivial MSCCs m, m′ such that 〈m,m′〉 ∈ mapM,

that are leaves in the MSCC DAGs. A projection of mapF to an MSCC m

(regardless of whether m is a leaf or not) is defined in the natural way:

mapF(m)
.
= {〈f, f ′〉 | 〈f, f ′〉 ∈ mapF , f ∈ m} . (3.1)

Our goal is to prove mutual termination of each of the pairs in mapF(m).

13

The following proof rule gives us a way to do it by proving call-equivalence

of each of these pairs:

∀〈f, f ′〉 ∈ mapF(m). call-equiv(fUF , f ′UF)

∀〈f, f ′〉 ∈ mapF(m). m-term(f, f ′)
(m-term) (3.2)

Its soundness will be proven in Sect. 3.4.

The premise of (3.2) is weaker than (hence, the rule itself is stronger than)

the one suggested in [21], because the latter required the compared functions

to be partially equivalent. Furthermore, whereas [21] refers to leaf MSCCs

only, later on in this chapter we will generalize (3.2) so it also applies to

non-leaf MSCCs, and, hence, tackles the general case.

3.1 Incompleteness

The abstraction of calls using uninterpreted functions is a major source of

incompleteness. Two examples of incompleteness are:

• call-equiv(fUF , f ′UF) may be false, but the counterexample may rely

on values returned by an uninterpreted function that are different than

what the corresponding concrete function would have returned if called

with the same arguments.

• The concrete versions of a function do not terminate, but their abstrac-

tions terminate and are followed by different function calls on the two

sides, which leads to call equivalence not being true.

We continue this chapter by discussing how the premise of (m-term) can

be checked (Sec. 3.2) and how this rule can be generalized to whole programs

(Sec. 3.3). Finally, in Sec. 3.4, we prove soundness.

3.2 Checking the premise

We check the premise of (3.2) by building a loop- and recursion-free program

for each pair of functions that we want to prove call equivalent, which includes

14

function f(int a)
int even := 0, ret := 0;
if a > 1 then

if ¬(a % 2) then . even
a := a/2;
even := 1;

else a := 3a+ 1;

ret := even+ f(a);
return ret;

function f ′(int a’)
int t′, odd′ := 0, ret′ := 0;
if a′ ≤ 1 then return ret′;

t′ := a′/2;
if a′%2 then . odd

a′ := 6t′ + 4;
odd′ := 1;

else a′ := t′;

ret′ := odd′ + f ′(a′);
return ret′;

Figure 3.1: Two variations on the Collatz (“3x + 1”) function that are mu-
tually terminating. f (f ′) returns the total number of times the function
was called with an even (odd) number. We use the convention that % is the
modulo operator, ‘:=’ is an assignment and ‘=’ is equality. Note that when
a′ is odd, a′/2 = (a′ − 1)/2, and, hence, 6(a′/2) + 4 = 3a′ + 1.

an assertion whose validity proves the premise. Checking the validity of

assertions in such programs is decidable for programming languages with

finite types such as C, and indeed our implementation uses the software

model checker CBMC [9] for this purpose. Here we describe the construction

informally, and only for the case of simple recursion at the leaf functions. We

will consider the general case in a more formal way in Chapter 4.

Let f, f ′ be simple recursive functions that only call themselves. We as-

sociate a set of call instructions with each called function. For example, in

f only f itself is called, and, hence, we maintain a set of call instructions to

f . We then build a program with the following structure: main assigns equal

non-deterministic values to the inputs of f and f ′. It then calls an implemen-

tation of fUF and f ′UF , and finally asserts that the sets of call instructions

are equal. The example below (hopefully) clarifies this construction. From

now on, we use the convention in pseudo-codes by which % is the modulo

operator, ‘:=’ is an assignment and ‘=’ is equality.

Example 3.2.1. Consider the two variants of the Collatz (“3x + 1”) pro-

15

function fUF (int a)
int even := 0, ret := 0;
if a > 1 then

if ¬(a % 2) then . even
a := a/2;
even = 1;

else a := 3a+ 1;

ret := even + UF(f, a);
return ret;

function f ′UF (int a′)
int t′, odd′ := 0, ret′ := 0;
if a′ ≤ 1 then return ret′;

t′ := a′/2;
if a′%2 then . odd

a′ := 6t′ + 4;
odd′ := 1;

else a′ := t′;

ret′ := odd′ + UF(f ′, a′);
return ret′;

Figure 3.2: The isolated versions of the two given functions of Fig. 3.1.

gram [19] in Fig. 3.1, which return different values (see explanation in the

caption of the figure). The Collatz program is a famous open problem in ter-

mination: no one knows whether it terminates for all (unbounded) integers.

That’s why the question whether call equivalence can be proven is partic-

ularly interesting. Indeed, proving mutual termination of the two variants

given here is easy.

The definitions of fUF , f ′UF appear in Fig. 3.2. Note that in this case

f, f ′ are not partially equivalent, and, therefore, according to (2.6) we replace

the recursive calls with different uninterpreted functions. Indeed, we call

uf above with two different function indices (f and f ′), which means that

on equal values of a and a′ they do not necessarily return the same non-

deterministic value.

A proof-theoretic method for establishing call-equiv(fUF , f ′UF) formu-

lates a verification condition which is valid only if the two functions are

call-equivalent. For this purpose we need to represent the transition relation

of the two functions TfUF , Tf ′UF , which can be easily done with the help of

the static single assignment form [5, 36], e.g., we use a0, a1, ... for the different

versions of a. Fig. 3.3 presents TfUF and Tf ′UF . In this case the verification

16

even0 = 0 ∧
ret0 = 0 ∧
a1 = a0/2 ∧
even1 = 1 ∧
a2 = 3a0 + 1 ∧
a3 = ¬(a0%2) ? a1 : a2 ∧
even2 = ¬(a0%2) ? even1 : even0 ∧
ret1 = a0 > 1 ? even2 + UF (f, a3)

: ret0

t′0 = 0 ∧
odd′0 = 0 ∧
ret′0 = 0 ∧
t′1 = a′0/2 ∧
a′1 = 6t′1 + 4 ∧
odd′1 = 1 ∧
a′2 = t′1 ∧
a′3 = a′0%2 ? a′1 : a′2 ∧
odd′2 = a′0%2 ? odd′1 : odd′0 ∧
ret′1 = ¬(a′0 ≤ 1) ? odd′2 + UF (f ′, a′3)

: ret′0

TfUF Tf ′UF

Figure 3.3: Transition relations TfUF and Tf ′UF derived from fUF and f ′UF ,
respectively. The definitions of fUF and f ′UF appear in Fig. 3.2. The static
single-assignment form [36] is used, e.g., a0, a1, ..., stand for the different
versions of a.

condition is:

(TfUF ∧ Tf ′UF ∧ a0 = a′0) → . given the same inputs(
((a0 > 1) ↔ ¬(a′0 ≤ 1)) ∧ . equal guards

((a0 > 1) → . if called, then

(a3 = a′3))
)
. . equal arguments

(3.3)

This is easy to validate using a decision procedure for linear arithmetic and

uninterpreted functions [28].

In this case we are able to prove termination without partial equiva-

lence, because the return values of UFf and UF ′f ′ affect neither the guarding

conditions nor the input arguments of other function calls. We defer the

17

function uf(function index g, input arguments in)
if in ∈ args[g] then return the output of the earlier call uf(g, in);

args[g] := args[g]
⋃

in;
return a non-deterministic value;

function main
for each 〈g, g′〉 ∈ mapF do args[g] := args[g′] := ∅;
in := nondet(); fUF (in); f ′UF (in);
assert(args[f] = args[f ′]); . checks call equivalence

Figure 3.4: The flat program that we generate and then verify its assertion,
given the two functions of Fig. 3.1. Note that in the pseudo-code above,
UF(g,in) represents UFg(in) in the main text of the thesis. The definitions
of fUF and f ′UF appear in Fig. 3.2.

presentation of the case in which the functions are known to be partially

equivalent to Chapter 4.

In stark contrast to the corresponding termination problem (recall that

termination of the Collatz program is not known), the demonstrated proof-

theoretic method proved call-equivalence (and thus mutual termination by

(m-term)) in Ex. 3.2.1 even when the variable types were infinite. Its major

disadvantage is that this method requires a program analysis in order to

derive the conditions. So we choose instead a model-theoretic method because

it is supported by the tool we use. The model-theoretic method delegates

most of the analysis to an off-the-shelf model checker. Instead of analyzing

the code to derive a general formula expressing the conditions of calls and

the actual arguments, derived programs are generated that would record

all arguments to the relevant functions. These programs are never actually

executed. Instead, an assertion of equivalence between the sets of arguments

with which the functions are called is model-checked, showing it true in every

possible computation, and thus automatically detecting call-equivalence.

Fig. 3.4 demonstrates an example of such a generated program for the

two variations on the Collatz functions of Ex. 3.2.1. The top of Fig. 3.4 shows

18

an implementation UF of the uninterpreted functions. It receives a function

index (abusing notation for simplicity, we assume here that a function name

represents also a unique index) and the actual arguments. It records the set

of call instructions in the array args.

The assertion in MAIN, shown in the bottom of Fig. 3.4, is verified by a

model-checker. The model checker we use is CBMC [9]. We will elaborate

on this method in Chapter 4. Although the comparison between the proof-

theoretic and model-theoretic methods is not fair, because the latter assumes

finite types, our choice of the model-theoretic approach is sufficiently sound

as we target C programs. CBMC is able to reason about C programs, in

which variables are of finite types.

What if there is no bijective map mapF , or if some of the pairs of functions

cannot be proven to be mutually terminating? It is not hard to see that it

is sufficient to prove mutual termination of pairs of functions that together

intersect all cycles in m, m′, whereas the other functions are inlined. The

same observation was made with regard to proving partial equivalence in a

technical report [22]. This observation can be used to improve completeness:

even when there is no bijective mapping or when it is impossible to prove

mutual termination for all pairs in m, m′, it is still sometimes possible to

prove it for some of the pairs. The algorithm that we describe in Chapter 4

uses this observation.

We continue in the next section by generalizing (m-term) to the case in

which there are calls to functions that are defined outside the MSCCs.

3.3 Generalization

We now generalize (m-term) to the case that m, m′ are not leaf MSCCs.

This means that there is a set of functions C(m) outside of m that are called

by functions in m. C(m′) is defined similarly with respect to m′. The premise

now requires that these functions are mutually-terminating:

19

∀〈f, f ′〉 ∈ mapF(m). call-equiv(fUF , f ′UF) ∧
(∀〈g, g′〉 ∈ mapF . ((g ∈ C(m) ∧ g′ ∈ C(m′))→ m-term(g, g′))

∀〈f, f ′〉 ∈ mapF(m). m-term(f, f ′)
(m-term+) .

(3.4)

Recall that (2.5) prescribes that calls to functions in C(m) and C(m′) are

replaced with calls to uninterpreted functions in fUF , f ′UF .

We continue in the next section with soundness proofs.

3.4 Soundness proofs for (m-term) and (m-

term+)

We begin by defining, for a given a computation π:

πUF
.
= π1[g(ing)← UFg(ing) | 〈g, ing〉 ∈ calls(π1)] , (3.5)

namely, we replace the function calls with calls in π1 to their respective

uninterpreted functions, with the same arguments. It is not hard to see that

π ∈ 〚f(in)〛 ∧ term(π)

πUF ∈ 〚fUF (in)〛
. (3.6)

When π is infinite, on the other hand, there may be statements in f that

would be executed if the non-terminating call would have returned. Since the

call is replaced by an uninterpreted function that does return, those state-

ments will be executed in fUF . In such a case there must exist a computation

π̂ in 〚fUF (in)〛 that extends πUF . In other words, πUF is a prefix of π̂. More

formally, letting prefix(πUF , π̂) denote that πUF is a prefix of π̂, we have

π ∈ 〚f(in)〛
∃π̂ ∈ 〚fUF (in)〛. prefix(πUF , π̂)

. (3.7)

Lemma 3.4.1. For any given pair of functions 〈f, f ′〉 ∈ mapF , function g′,

20

and inputs in, ing, the following inference is sound for any π ∈ 〚f(in)〛:

term(π) ∧ call-equiv(fUF , f ′UF) ∧ ∃π′ ∈ 〚f ′(in)〛. 〈g′, ing〉 ∈ calls(π′1)

∃g. (〈g, g′〉 ∈ mapF ∧ 〈g, ing〉 ∈ calls(π1))
(3.8)

Proof. Let 〈f, f ′〉 ∈ mapF , input in, function g′ and input ing satisfy the

premise. The bijectivity of mapF ensures existence of a function g such that

〈g, g′〉 ∈ mapF .

By (3.7) π′UF is a prefix of some π̂′ ∈ 〚f ′UF (in)〛. Note that 〈UFg′ , ing〉 ∈
calls(π′UF), which implies 〈UFg′ , ing〉 ∈ calls(π̂′). Hence, call-equiv(fUF ,

f ′UF) implies:

∀π̂ ∈ 〚fUF (in)〛. 〈UFg, ing〉 ∈ calls(π̂) . (3.9)

The premise of (3.6) holds, which implies πUF ∈ 〚fUF (in)〛. Thus (3.9)

implies 〈UFg, ing〉 ∈ calls(πUF). The construction of πUF implies 〈g, ing〉 ∈
calls(π1).

Given a computation π ∈ 〚f(in)〛, let S(π) denote the set of call-stacks

appearing during π, and for s ∈ S(π) let |s| be the number of frames

in s (possibly infinite). Let Sm(π) denote the subset of stacks in S(π)

that consist solely of functions in a given MSCC m. Given a call-stack

s′ ∈ S(π′), let mapped(s′) denote a call-stack which holds the following:

for each i ∈ N, f ′i(ini) is the i-th call in s′ if and only if the i-th call in

mapped(s′) is fi(ini) such that 〈fi, f ′i〉 ∈ mapF(m). Obviously, s′ ∈ Sm′(π′)

implies that mapped(s′) consists solely of calls of functions from m such that

〈m,m′〉 ∈ mapM. Further, given a function call f(in), let [f(in)] denote

the stack-frame of this call; for brevity, we also let [f(in)] denote a call-stack

which consists of this only frame. Given a non-empty finite call-stack s,

let s · [g(ing)] denote the call-stack resulted right after calling g(ing) from

the bottom frame of s.

The next lemma addresses call-stacks consisting of calls of mutually re-

cursive functions belonging to the same MSCC, i.e., call-stacks without outer

calls. It briefly states that given call-equivalence between all the abstractions,

if some finite call-stack appears in a computation of one side, then its cor-

21

responding mapped call-stack appears in all finite computations of the other

side.

Lemma 3.4.2. For any given 〈f, f ′〉 ∈ mapF(m), input in, finite call-stack

s′, and computation π ∈ 〚f(in)〛:

term(π) ∧ ∀〈h, h′〉 ∈ mapF(m). call-equiv(hUF , h′UF) ∧
∃π′ ∈ 〚f ′(in)〛. s′ ∈ Sm′(π′)

mapped(s′) ∈ Sm(π)
. (3.10)

Proof. Consider 〈f, f ′〉 ∈ mapF(m), input in, finite call-stack s′, and com-

putation π ∈ 〚f(in)〛 which satisfy the premise. Since s′ is finite, there is

some value d such that |s′| ≤ d. The proof is by induction on the bound d.

Base: For d = 1, the only call-stack of size 1 in any π′ ∈ 〚f ′(in)〛 is

[f ′(in)]. Analogously, the only call-stack of size 1 in any π ∈ 〚f(in)〛 is

[f(in)]. Note that mapped([f ′(in)]) = [f(in)]. Further note that f ∈ m,

which implies mapped([f ′(in)]) ∈ Sm(π).

Step: Assume that the rule holds up to a given d and the premise holds

at d+ 1 for a call f ′(in). Consider a call-stack s′ such that 1 < |s′| ≤ d+ 1.

Let π′ ∈ 〚f(in)〛 be a computation which satisfies s′ ∈ Sm′(π′). We now

prove that the consequent of the rule is true for d+ 1, i.e.,

mapped(s′) ∈ Sm(π) . (3.11)

Assume that the bottom frame of s′ is [g′(ing)]. Consider a call-stack s′p
such that s′ = s′p · [g′(ing)]. Assume that the bottom frame of s′p is [h′(inh)].

This implies that h′(inh) directly calls g′(ing) in π′, i.e.,

∃π′h ∈ 〚h′(in)〛. 〈g′, ing〉 ∈ calls(π′h
1
) . (3.12)

Thus the premise of (3.8) holds. Hence, Lemma 3.4.1 implies:

∀πh ∈ 〚h(inh)〛. (term(πh)→ ∃g. (〈g, g′〉 ∈ mapF ∧ 〈g, ing〉 ∈ calls(πh1))) .

(3.13)

Since |s′p| ≤ d, the induction hypothesis, (3.10) holds up to d, and

therefore, mapped(s′p) ∈ Sm′(π′). Hence, the bottom frame of mapped(s′p) is

22

[h(inh)]. The subcomputation of π which starts from this call h(inh) is finite

owing to term(π), also implied by the induction hypothesis. (3.13) implies

that in this subcomputation, h(inh) must call g(ing). Hence, mapped(sp) ·
[g(ing)] ∈ S(π). Now note that the call g′(ing) is found in s′ ∈ Sm′(π′),

which implies g′ ∈ m′. In combination with 〈g, g′〉 ∈ mapF , implied by

(3.13), the latter means g ∈ m. Consequently, mapped(sp) · [g(ing)] ∈ Sm(π)

by (3.11).

It is just left to note that mapped(sp) · [g(ing)] = mapped(s′). Thereby,

mapped(s′) ∈ Sm(π) holds.

The rest of our proofs in this chapter rely on the following observations:

term(π)↔ ∃d ∈ Z+. ∀s ∈ S(π). |s| ≤ d , (3.14)

and:

∀π′, s′ ∈ S(π′). |s′| = |mapped(s′)| . (3.15)

An immediate consequence of (3.14) is:

¬term(π)↔ ∀d ∈ Z+. ∃s ∈ S(π). |s| > d . (3.16)

Also observe that for a leaf MSCC m, Sm(π) ≡ S(π).

Lemma 3.4.3. For any given 〈f, f ′〉 ∈ mapF(m), input in, and computa-

tions π ∈ 〚f(in)〛, π′ ∈ 〚f ′(in)〛:

∀〈h, h′〉 ∈ mapF(m). call-equiv(hUF , h′UF) ∧
∀d ∈ Z+. ∃s′ ∈ Sm′(π′). |s′| > d

¬term(π)
. (3.17)

Proof. Consider 〈f, f ′〉 ∈ mapF(m) called with the same argument in. As-

sume that the premise of (3.17) holds for given computations π ∈ 〚f(in)〛
and π′ ∈ 〚f ′(in)〛. Falsely assume term(π). By (3.14) term(π) implies that

there is some finite value d for which

∀s ∈ Sm(π). |s| ≤ d (3.18)

23

holds. On the other hand, the premise of (3.17) guarantees:

∃s′ ∈ Sm′(π′). |s′| > d . (3.19)

The premise of (3.10) holds. This impliesmapped(s′) ∈ Sm(π) by Lemma 3.4.2.

(3.15) and (3.19) imply |mapped(s′)| = |s′| > d, which contradicts (3.18).

Hence, the assumption term(π) was wrong, i.e., π must be infinite.

Theorem 3.4.1. (m-term) is sound.

Proof. Assume that the premise of rule (m-term) holds. Consider 〈f, f ′〉 ∈
mapF(m) called with the same argument in. Falsely assume ¬m-term(f, f ′).

Without loss of generality, consider a finite computation π ∈ 〚f(in)〛 and an

infinite computation π′ ∈ 〚f ′(in)〛. (3.16) implies:

∀d ∈ Z+. ∃s′ ∈ Sm′(π′). |s′| > d .

The premise of (3.17) now holds. Hence, by Lemma 3.4.3, ¬term(π) holds,

in contradiction to the assumption that π is finite.

The same argument would hold if we reversed the roles of f and f ′. Hence,

m-term(f, f ′) must hold.

3.4.1 Proof of (m-term+)

We continue towards proving the soundness of (m-term+). The following

lemma extends (3.16) to cases in which there are mutually-terminating calls

outside the MSCC.

Lemma 3.4.4. The following inference rule holds for any computations π

and π′:

∀〈h, h′〉 ∈ mapF(m). call-equiv(hUF , h′UF) ∧
∀〈g, g′〉 ∈ mapF . ((g ∈ C(m) ∧ g′ ∈ C(m′))→ m-term(g, g′)) ∧
∃〈f, f ′〉 ∈ mapF(m), in. (π ∈ 〚f(in)〛 ∧ term(π) ∧ π′ ∈ 〚f ′(in)〛 ∧ ¬term(π′))

∃s′ ∈ Sm′(π′). ∀d ∈ Z+. |s′| > d
.

(3.20)

24

Note that the premise simply strengthens the premise of rule (m-term+)

with the third line.

Proof. Assume that given computations π and π′ satisfy the premise of the

rule. (3.16) implies:

∃s′ ∈ S(π′). ∀d ∈ Z+. |s′| > d . (3.21)

Proving that s′ in (3.21) must belong to Sm′(π′), i.e., s′ ∈ Sm′(π′), but

s′ /∈ S(π′) \ Sm′(π′), amounts to validating the following:

¬∃s̃′ ∈ S(π′) \ Sm′(π′). ∀d ∈ Z+. |s̃′| > d . (3.22)

Falsely assume that such unbounded call-stack s̃′ exists, i.e., it satisfies

s̃′ ∈ S(π′) \ Sm′(π′) ∧ ∀d ∈ Z+. |s̃′| > d . (3.23)

The call-stack s̃′ consists of two non-intersecting parts: the finite prefix s̃′1
which consists solely of functions in m′ and the unbounded suffix s̃′2 which

consists solely of functions ouside of m′. Assume that the bottom frame of s̃′1
is [h′(inh)] and that the top frame of s̃′2 is [g′(ing)]. Note that g′ ∈ C(m′) and

s̃′1 ∈ Sm′(π′) hold. The latter implies mapped(s̃′1) ∈ Sm(π). The premise of

(3.8) holds. Therefore, by Lemma 3.4.1, in π the bottom frame of mapped(s̃′1),

which is [h(inh)], directly calls g(ing), where 〈g, g′〉 ∈ mapF and thus

g ∈ C(m). This call must return because of term(π). Hence, m-term(g, g′)

implies that the call g′(ing) in π′ must return. It is a contradiction to the

assumption that s̃′ is an unbounded call-stack (see (3.23)), in which no call

returns. Hence, such s̃′ cannot exist.

Now we can prove the soundness of (m-term+).

Theorem 3.4.2. (m-term+) is sound.

Proof. Assume that the premise of rule (m-term+) holds. Consider 〈f, f ′〉 ∈
mapF(m) called with the same argument in. Falsely assume ¬m-term(f, f ′).

Without loss of generality, consider a finite computation π ∈ 〚f(in)〛 and an

25

infinite computation π′ ∈ 〚f ′(in)〛. Lemma 3.4.4 implies:

∀d ∈ Z+. ∃s′ ∈ Sm′(π′). |s′| > d .

The premise of (3.17) now holds. Hence, by Lemma 3.4.3, ¬term(π) holds,

in contradiction to the assumption that π is finite.

The same argument would hold if we reversed the roles of f and f ′. Hence,

m-term(f, f ′) must hold.

26

Chapter 4

A decomposition algorithm

In this chapter we present an algorithm for proving mutual termination of

full programs. As mentioned in Chapter 3, the call graph of a program can

be viewed as a DAG where the nodes correspond to MSCCs. After building a

mapping between the MSCCs of the two call graphs, the algorithm traverses

the DAG bottom-up. For each mapped pair of MSCCs m,m′, it attempts

to prove the mutual termination of their mapped functions, based on (m-

term+).

The algorithm is inspired by a similar algorithm for verification of partial

equivalence, which is described in a technical report [22]. The algorithm here

is more involved, however, because it handles differently cases in which the

checked functions are also partially equivalent (recall that this information,

i.e., which functions are known to be partially equivalent, is part of the

input to the algorithm). Furthermore, the algorithm in [22] is described with

a non-deterministic step, and here we suggest a method for determinizing it.

The preprocessing and mapping are as detailed in Sect. 2.1. Hence the

program is loop-free, globals accessed by a function are sent instead as ad-

ditional inputs, and there is a (possibly partial) mapping mapF between the

functions of P and P ′.

4.1 The algorithm

Table 4.1 contains the labels we use in the decomposition algorithm (Alg. 1).

27

Predicate label What is labeled Meaning
m term 〈f , f ′〉∈ mapF The mapped functions f and f ′

are mutually terminating
part eq 〈f , f ′〉∈ mapF The mapped functions f and f ′

are partially equivalent
covered 〈m, m′〉∈ mapM The MSCC pair has been pro-

cessed.

Table 4.1: Predicate labels used in the decomposition algorithm.

The input to Alg. 1 consists of P , P ′, a (possibly partial) mapping mapF
between their functions, and (implicitly) those paired functions that are

known to be partially equivalent. Its output is a set of function pairs that

are marked as m term, indicating that it succeeded to prove their mutual

termination based on (m-term+). We now describe the three functions used

by this algorithm.

ProveMT.

This entrance function traverses the call graphs of P, P ′ bottom-up,

each time focusing on a pair of MSCCs. In line 2 it inlines all non-

recursive functions that are not mapped in mapF . In line 3 it uses

renaming to resolve possible name collisions between the globals of the

two input programs. The next line builds the MSCC DAGs MD and

MD′ from the call graphs, as explained in Sect 3. Line 5 attempts to

build mapM (defined in page 13), only that it must be bijective. If such

a bijective map does not exist, the algorithm aborts. In practice one

may run the algorithm bottom-up until reaching non-mapped MSCCs,

but we omit this option here for brevity.

The bottom-up traversal starts in line 6. Initially all MSCCs are un-

marked. The algorithm searches for a next unmarked pair 〈m, m′〉 of

MSCCs all of whose children pairs are marked. If m, m′ are trivial (see

page 13 for a definition), then line 10 simply checks the call-equivalence

of the function pair 〈f , f ′〉 that constitutes 〈m, m′〉, and marks them

accordingly in line 10. Note that even if the descendants of m, m′ are

mutually-terminating, m, m′ are not necessarily so, because they may

28

Algorithm 1 Pseudo-code for a bottom-up decomposition algorithm for
proving that pairs of functions mutually terminate.

1: function ProveMT(Programs P , P ′, map between functions mapF)
2: Inline non-recursive non-mapped functions;
3: Solve name collisions in global identifiers of P, P ′ by renaming;
4: Generate MSCC DAGs MD, MD′ from the call graphs of P, P ′;
5: If possible, generate a bijective map mapM between the nodes of MD

and MD′ that is consistent with mapF
a; Otherwise abort;

6: while ∃〈m,m′〉 ∈ mapM not marked covered but its children are, do
7: Choose such a pair 〈m,m′〉 ∈ mapM and mark it covered;
8: if m,m′ are trivial then
9: Let f, f ′ be the functions in m,m′, respectively;

10: if CallEquiv (isolate(f, f ′, ∅)) then mark f, f ′ as m term;

11: else
12: Select non-deterministically S ⊆ {〈f, f ′〉 | 〈f, f ′〉 ∈ mapF(m)}

that intersects every cycle in m and m′;
13: if ∀〈f, f ′〉 ∈ S. CallEquiv (isolate(f, f ′, S)) then
14: for each 〈f, f ′〉 ∈ S do mark 〈f, f ′〉 as m term;

15: else mark the ancestors of m, m′ as covered ;

16: function isolate(functions f , f ′, function pairs S) . Builds fUF , f ′UF

17: for each {〈g, g′〉 ∈ mapF | g, g′ are reachable from f, f ′} do
18: if 〈g, g′〉 ∈ S or 〈g, g′〉 is marked m term then
19: Replace calls to g(exprin) with calls to uf(g, exprin);
20: Replace calls to g′(exprin′) with calls to uf’(g’, exprin′);
21: else inline g, g′ in their callers;

22: return 〈f, f ′〉;

23: function CallEquiv(A pair of isolated functions 〈fUF , f ′UF 〉)
24: Let δ denote the program:

B here add the definitions of uf() and uf’() (see Fig. 4.1).

in := nondet(); fUF (in); f ′UF (in);
for each {〈g, g′〉 ∈ mapF | g ∈ callees(f) ∨ g′ ∈ callees(f ′)} do

assert(args[g] ⊆ args[g′]);

25: return CBMC(δ);

aIt is desirable but not necessary to add pairs of trivial nodes to mapM.

29

call their descendants with different parameters. Also note that if this

check fails, we continue to check their ancestors (in contrast to the case

of non-trivial MSCCs, listed next). The reason is that even if 〈f , f ′〉
are not mutually terminating for every input, their callers may still

be, because they can be mutually terminating in the context of their

callers. We can check this by inlining them, which is only possible

because they are not recursive.

Next, consider the case that the selected m, m′ in line 7 are not trivial.

In line 12 the algorithm chooses non-deterministically a subset S of

pairs from mapF(m) that intersects all the cycles in m and m′. In

graph-theoretic terms, the functions in S constitute a feedback vertex

set [15] of both m and m′. This guarantees that we can always inline

the functions in m, m′ that are not in S. Determinization of this step

will be considered in Sect. 4.2. If CallEquiv returns true for all

the function pairs in S, then all those pairs are labeled as m term in

line 14. Otherwise it abandons the attempt to prove their ancestors

in line 15, by marking them as mscc covered in line 15: it cannot

prove that mapped functions in 〈m,m′〉 are mutually terminating, nor

can it inline these functions in their callers, so we cannot check all its

ancestors.

Regardless of whether 〈m, m′〉 are trivial, they get marked as

mscc covered in line 7, and the loop in ProveMT continues to another

pair.

isolate.

The function isolate receives as input a pair 〈f, f ′〉 ∈ mapF and a set

S of paired functions which, by construction (see line 12), contains only

pairs from the same MSCCs as f, f ′, i.e., if f ∈ m and f ′ ∈ m′, then

〈g, g′〉 ∈ S implies that g ∈ m and g′ ∈ m′. As output, it generates

fUF and f ′UF , or rather a relaxation thereof as explained at the bottom

of page 11. We will occasionally refer to them as side 0 and side 1.

These functions do not have function calls (other than to uninterpreted

30

1: function uf(function index g, input parameters in) . Called in side 0
2: if in ∈ params[g] then return the output of the earlier call uf(g, in);

3: params[g] := params[g]
⋃

in;
4: return a non-deterministic output;

5: function uf’(function index g′, input parameters in′) . Called in side 1
6: if in′ ∈ params[g′] then return the output of the earlier call uf’(g′, in′);

7: params[g′] := params[g′]
⋃

in′;
8: if in′ ∈ params[g] then . 〈g, g′〉 ∈ mapF
9: if 〈g, g′〉 is marked part eq then

10: return the output of the earlier call uf(g, in′);

11: return a non-deterministic output;

12: assert(0); . Not call-equivalent: params[g′] 6⊆ params[g]

Figure 4.1: Functions uf and uf’ emulate uninterpreted functions if instan-
tiated with functions that are mapped to one another. They are part of the
generated program δ, as shown in CallEquiv of Alg. 1. These functions
also contain code for recording the parameters with which they are called.

functions, see line 19), but may include inlined (non-recursive) callees

that were not proven to be mutually terminating (see line 21). isolate

should be thought of as working on a new copy of the original programs

in each invocation1.

The implementations of uf and uf’ appear in Fig. 4.1, and are rather

self-explanatory. Their main role is to check call-equivalence. This

is done by checking that they are called with the same set of inputs.

When 〈g, g′〉 is marked part eq, uf and uf’ emulate the same uninter-

preted function (i.e., to return the same output given the same input),

1There is some redundancy in the listing of this algorithm, as demonstrated by the
following case: f calls g, and g calls h (assume that g is the only function to call h), where
h is inlined in line 21, but then g is replaced with an uninterpreted function in line 19,
which makes the former inlining redundant. Our implementation avoids such cases by
reaching the same result by only considering functions for inlining if their callers have
already been dealt-with.

31

formally:

∀in. uf(g, in) = uf’(g′, in) .

When 〈g, g′〉 is not marked part eq, uf and uf’ emulate two different

uninterpreted functions.

CallEquiv.

Our implementation is based on the C model checker CBMC [9], which

enables us to fully automate the check for call-equivalence. CBMC is

complete for bounded programs (i.e., loops and recursions are bounded),

and, indeed, the program δ we build in CallEquiv is of that nature.

It simply calls fUF , f ′UF (which, recall, have neither loops nor func-

tion calls by construction), with the same non-deterministic value, and

asserts in the end that the set of calls in f is included in the set of calls

in f ′ (the other direction is checked in lines 8, 12 of uf’). Examples

of such generated programs that we checked with CBMC are available

online in [1].

4.1.1 Examples

The following example demonstrates how Alg. 1 works.

Example 4.1.1. Consider the call graphs in Fig. 4.2.

Assume that 〈fi, f ′i〉 ∈ mapF for i = 1, . . . , 5, and that the functions rep-

resented by gray nodes are known to be partially equivalent to their coun-

terparts. Line 4 generates the following nodes of the MSCC DAGs (listed

bottom-up, left-to-right):

• MD = {{f5}, {f3}, {f2, f4}, {f1}};

• MD′ = {{f ′5}, {f ′3}, {f ′2, f ′4, f ′6}, {f ′1}}.

The MSCC mapping mapM in line 5 is naturally derived from mapF :

32

f1

f2 f4

f3

f5

f ′1

f ′2 f ′4

f ′3

f ′5

f ′6

Figure 4.2: Call graphs of the programs discussed in Ex. 4.1.1. Partially
equivalent functions are marked gray.

mapM =


〈{f5}, {f ′5}〉,
〈{f3}, {f ′3}〉,
〈{f2, f4}, {f ′2, f ′4, f ′6}〉,
〈{f1}, {f ′1}〉


The only leaf MSCC pair 〈{f5}, {f ′5}〉 is chosen in line 7. It is shown

in Fig. 4.3. This is a case of simple recursion. In line 12 the only possible

f5 f ′5

Figure 4.3: A mapped pair of MSCCs. Each one consists of a simple recursive
function.

33

f5
UF

UFf5

f ′5
UF

UFf ′5

Figure 4.4: Call graphs of the isolated versions of f5 and f ′5. UFf5 and UFf ′5 ,
which have replaced the calls to f5 and f ′5, respectively, emulate the same
uninterpreted functions and are marked gray.

S is 〈f5, f
′
5〉. isolate replaces all recursive calls to f5(in), f ′5(in′) with

uf(f5, in), uf’(f ′5, in′), respectively, which emulate the same uninterpreted

functions. The constructed pair of isolated functions 〈f5
UF , f ′5

UF 〉 is shown

in Fig. 4.4. Assume that CallEquiv returns true. Line 14 marks 〈f5, f
′
5〉

m term.

The next available MSCC pair chosen in line 7 is 〈{f3}, {f ′3}〉. This is

a case of a pair of trivial MSCCs, which is handled in lines 8–10. isolate

replaces all calls to f5(in) and f ′5(in′) with calls to uf(f5, in) and uf’(f ′5,

in′), respectively, which emulate the same uninterpreted functions. The con-

structed pair of isolated functions 〈f3
UF , f ′3

UF 〉 is shown in Fig. 4.5. Assume

that CallEquiv returns false. The algorithm cannot assign label m term

to 〈f5, f
′
5〉 in line 10, i.e., it cannot prove their mutual termination in a general

context. However, since this is a pair of trivial MSCCs, the algorithm can

try to establish their mutual termination under the context of their calling

functions.

So the algorithm proceeds to the upper MSCC pair 〈{f2, f4}, {f ′2, f ′4, f ′6}〉.
This is a case of mutually recursive functions. Assume that line 12 chooses

S = {〈f2, f ′2〉, 〈f4, f ′4〉}. The algorithm is to check CallEquiv (isolate(f2,

f ′2, S)) and CallEquiv (isolate(f4, f ′4, S)) in line 13. Assume that first

it checks call-equivalence for 〈f2, f ′2〉.
isolate(f2, f ′2, S) inlines calls to f3 in f2, and then it replaces calls to f4

and f5 with calls to uf (distinguished as calls to UFf ′4 and UFf ′5 , respectively,

34

f3
UF

UFf5

f ′3
UF

UFf ′5

Figure 4.5: Call graphs of the isolated versions of f5 and f ′5. Partially equiv-
alent UFf5 and UFf ′5 , which have replaced the calls to f5 and f ′5, respectively,
are marked gray.

f2
UF

UFf5

UFf4 f ′2
UF

UFf ′5

UFf ′4

Figure 4.6: Call graphs of the isolated versions of f2 and f ′2. Partially equiv-
alent uf, uf’, which respectively replace calls to f5, f ′5 and f4, f ′4, are distin-
guished as UFf5 ,UFf ′5 and UFf4 , UFf ′4 , respectively, for better understanding.

in Fig. 4.6 for better understanding). In f ′2 calls to f ′3 and f ′6 are inlined,

and then calls to f ′4 and f ′5 are replaced with calls to uf’. Each replacing

uninterpreted function pair emulates a pair of the same functions. These

replacements are shown in Fig. 4.6. Assume that CallEquiv returns true.

However, the algorithm cannot yet mark 〈f2, f ′2〉 with label m term. It needs

yet to check call-equivalence for 〈f4, f ′4〉.
Fig. 4.7 shows the function-call replacements made by isolate(f4, f ′4, S).

It has no calls to inline, but there are calls f2(in) in f4 which are replaced

with calls to uf(f2, in). Similarly, calls to f ′2(in′) in f ′4 are replaced with

35

f4
UFUFf2 f ′4

UFUFf ′2

Figure 4.7: Call graphs of the isolated versions of f4 and f ′4. uf and uf’,
which replace calls to f2 and f ′2, respectively, are distinguished with UFf2
and UFf ′2 , respectively, for better understanding. They emulate different
uninterpreted functions.

f1
UF

UFf2 UFf4

f ′1
UF

UFf ′2 UFf ′4

Figure 4.8: Call graphs of the isolated versions of f1 and f ′1. Two differ-
ent uninterpreted functions uf and uf’, which replace calls to f2 and f ′2,
respectively, are distinguished as UFf2 and UFf ′2 , respectively, for better un-
derstanding. The same uninterpreted functions uf and uf’, which replace
calls to f4 and f ′4, respectively, are distinguished as UFf4 and UFf ′4 , respec-
tively.

calls to uf’(f ′2, in′). Note that in this case uf and uf’ emulate different

uninterpreted functions. Assume CallEquiv returns true. Line 14 of the

algorithm marks both 〈f2, f ′2〉 and 〈f4, f ′4〉 with label m term.

The last MSCCs pair to check is 〈{f1}, {f ′1}〉. This is again a case of

a pair of trivial MSCCs. isolate replaces all calls to f2(in) and f ′2(in′)

with calls to uf(f2, in) and uf’(f ′2, in′), respectively, which emulate two

different uninterpreted functions. Calls to f4(in) and f ′4(in′) are replaced

with calls to uf(f4, in) and uf’(f ′4, in′), respectively, which emulate the

same uninterpreted functions. The constructed pair of isolated functions

〈f3
UF , f ′3

UF 〉 is shown in Fig. 4.8. Assume that CallEquiv returns true.

The algorithm marks 〈f5, f
′
5〉 m term in line 10, i.e., it has proven their

36

MSCCs Checked Description Res.
functions

{f5}, {f ′5} 〈f5, f
′
5〉 In line 12 the only possible S is 〈f5, f

′
5〉. iso-

late replaces the recursive call to f5, f
′
5 with

uf, uf’, respectively (=). Assume CallE-
quiv returns true. 〈f5, f

′
5〉 is marked

m term in line 14.

X

{f3}, {f ′3} 〈f3, f
′
3〉 This is a case of trivial MSCCs, which is han-

dled in lines 8–10. isolate replaces the calls
to f5, f

′
5 with uf, uf’, respectively (=). As-

sume CallEquiv returns false.

7

{f2, f4}, In line 12 let S = {〈f2, f
′
2〉, 〈f4, f

′
4〉}.

{f ′2, f ′4, f ′6} 〈f2, f
′
2〉 In f2 calls to f3 are inlined, and calls to f4, f5

are replaced with calls to uf. In f ′2 calls to f ′3,
f ′6 are inlined, and calls to f ′4, f ′5 are replaced
with calls to uf’ (=). Assume CallEquiv
returns true.

Xc

〈f4, f
′
4〉 In f4, f ′4 calls to f2, f ′2 are respectively re-

placed with calls to uf, uf’ (6=). Assume
CallEquiv returns true. Now 〈f2, f

′
2〉 and

〈f4, f
′
4〉 are marked m term in line 14.

X

{f1}, {f ′1} 〈f1, f
′
1〉 Again, a case of a trivial MSCC. Calls to f2,

f ′2 are respectively replaced with uf, uf’ (6=).
Calls to f4, f ′4 are replaced with uf, uf’ (=),
respectively. Assume CallEquiv returns
true. 〈{f1}, {f ′1}〉 is marked m term.

X

Table 4.2: Applying Alg. 1 to the call graphs in Fig. 4.2 under the assump-
tions made in Ex. 4.1.1 about the results of CallEquiv. The following
notations are used in the table:
‘X’ means that the pair is marked m term,
‘Xc’ means that it is marked conditionally (it becomes unconditional once
all other pairs in S are marked as well), and
‘7’ means that it is not marked m term;
‘(=)’ denotes that uf and uf’ emulate the same uninterpreted functions,
while
‘(6=)’ denotes that they emulate different uninterpreted functions.

37

f4
UF

UFf5

UFf4 f ′4
UF

UFf ′5

UFf ′4

Figure 4.9: Call graphs of the isolated versions of f4 and f ′4 when 〈f2, f ′2〉
/∈ S. The same uf, uf’, which respectively replace calls to f5, f ′5 and f4,
f ′4, are distinguished as UFf5 , UFf ′5 and UFf4 , UFf ′4 , respectively, for better
understanding.

mutual termination in a general context.

The output of the algorithm, based on the aforementioned assumptions

about the results of the checks for call equivalence, is that the following pairs

of functions are marked as m term: 〈f1, f
′
1〉, 〈f2, f

′
2〉, 〈f4, f

′
4〉, and 〈f5, f

′
5〉.

Since functions f1 and f ′1 are main in the compared programs, those whole

programs are mutually terminating. The overall progress of the algorithm in

this example is summarized in Table 4.2.

In the previous example only maximal feedback vertex sets were chosen.

The following example demonstrates how the algorithm proceeds when a

chosen feedback vertex set S is not maximal.

Example 4.1.2. Consider again the call graphs in Fig. 4.2. Suppose that

the algorithm has processed MSCC pairs 〈{f5}, {f ′5}〉 and 〈{f3}, {f ′3}〉 as

described in the previous example. Now the algorithm is proceeding to MSCC

pair 〈{f2, f4}, {f ′2, f ′4, f ′6}〉. Assume that line 12 chooses S = {〈f4, f ′4〉} having

left 〈f2, f ′2〉 outside of S. The algorithm is to check CallEquiv (isolate(f4,

f ′4, S)) in line 13.

isolate(f4, f ′4, S) inlines calls to f3 in f2, inlines calls to f2 in f4, and

then it replaces calls to f4, f5 with calls to uf (distinguished as calls to UFf ′4
and UFf ′5 , respectively, in Fig. 4.9 for better understanding). On side 1, calls

38

f1
UF

UFf5 UFf4

f ′1
UF

UFf ′5 UFf ′4

Figure 4.10: Call graphs of the isolated versions of f1 and f ′1. The same unin-
terpreted functions uf and uf’, which replace calls to f4 and f ′4, respectively,
are distinguished as UFf4 and UFf ′4 , respectively, for better understanding.
The same uninterpreted functions uf and uf’, which replace calls to f5 and
f ′5, respectively, are distinguished as UFf5 and UFf ′5 , respectively.

to f ′3 and f ′6 are inlined in f ′2, calls to f ′2 are inlined in f ′4, and then calls to f ′4
and f ′5 are replaced with calls to uf’. Each replacing uninterpreted function

pair emulates a pair of the same functions. These replacements are shown

in Fig. 4.9. Assume CallEquiv returns true. Line 14 of the algorithm

marks only 〈f4, f ′4〉 with label m term, while 〈f2, f ′2〉 remains unmarked.

As a result, in the last iteration of the algorithm (for the uppermost MSCC

pair), isolate(f1, f ′1, ...) will not replace the calls to f2 (f ′2) with calls to

uf (uf’) because 〈f2, f ′2〉 is not marked m term. Instead, in line 21, those

calls will be inlined. The call graphs of the program generated by isolate

are shown in Fig 4.10.

Assume that the check of call equivalence for 〈f1, f ′1〉 succeeds. Then the

output of the algorithm, based on the aforementioned assumptions about

the results of the checks for call equivalence, is that the following pairs of

functions are marked asm term: 〈f1, f
′
1〉, 〈f4, f

′
4〉, and 〈f5, f

′
5〉. Consequently,

those whole programs are mutually terminating. The overall progress of the

algorithm in this example is summarized in Table 4.3.

39

MSCCs Checked Description Res.
functions

{f5}, {f ′5} 〈f5, f
′
5〉 In line 12 the only possible S is 〈f5, f

′
5〉. iso-

late replaces the recursive call to f5, f
′
5 with

uf, uf’, respectively (=). Assume CallE-
quiv returns true. 〈f5, f

′
5〉 is marked

m term in line 14.

X

{f3}, {f ′3} 〈f3, f
′
3〉 This is a case of trivial MSCCs, which is han-

dled in lines 8–10. isolate replaces the calls
to f5, f

′
5 with uf, uf’, respectively (=). As-

sume CallEquiv returns false.

7

{f2, f4}, In line 12 let S = {〈f4, f
′
4〉}.

{f ′2, f ′4, f ′6} 〈f4, f
′
4〉 Calls to f3 are inlined in f2, calls to which are

inlined in f4, and calls to f4, f5 are replaced
with calls to uf. On the other side, calls to f ′3,
f ′6 are inlined in f ′2, calls to which are inlined in
f ′4, and calls to f ′4, f

′
5 are replaced with calls to

uf’ (=). Assume CallEquiv returns true.

X

{f1}, {f ′1} 〈f1, f
′
1〉 Again, a case of a trivial MSCC. Calls to f2,

f ′2 are respectively replaced with uf, uf’ (6=).
Calls to f4, f ′4 are replaced with uf, uf’ (=),
respectively. Assume CallEquiv returns
true. 〈{f1}, {f ′1}〉 is marked m term.

X

Table 4.3: Applying Alg. 1 to the call graphs in Fig. 4.2 under the assump-
tions made in Ex. 4.1.2 about the results of CallEquiv. The following
notations are used in the table:
‘X’ means that the pair is marked m term,
‘7’ means that it is not marked m term;
‘(=)’ denotes that uf and uf’ emulate the same uninterpreted functions,
while
‘(6=)’ denotes that they emulate different uninterpreted functions.

40

4.2 Choosing a vertex feedback set determin-

istically

The choice of the set S in line 12 of Alg. 1 is non-deterministic. In RVT,

however, we determinized the choice. The deterministic version of the al-

gorithm tries various choices for such sets until it detects a successful one.

In the worst case this amounts to trying all sets, which is exponential in

the size of the MSCC. Observe, however, that large MSCCs are rare in real

programs and, indeed, this has never posed a computational problem in our

experiments.

The determinized version of the decomposition algorithm is presented in

Alg. 2. The differences versus the non-deterministic version are:

• lines 12–15 of ProveMT of Alg. 1 are replaced in Alg. 2 with a call

to function ProveMT NonTrivial, defined in lines 12–22, and

• line 25 of CallEquiv of Alg. 1 is replaced in Alg. 2 with lines 32–35.

The changes in CallEquiv will be explained in Sect. 4.2.1. Here we describe

the function ProveMT NonTrivial.

ProveMT NonTrivial.

The loop in lines 14–21 tries various subsets of pairs from mapF(m)

that intersect every cycle in m and m′ until one is discovered all of

whose function pairs are found call-equivalent and thereafter marked

as m term in line 20. If no such subset is discovered, the ancestors of

the current MSCC pair 〈m, m′〉 are doomed (line 22).

The objective is that a maximal set S of function pairs would be tried

each time, because the larger the set is, the more functions are declared

to be mutually terminating in case of success. Further, larger sets imply

fewer functions to inline, and, hence, the burden on CallEquiv is

expected to be smaller. Line 14 of Alg. 2 delegates the optimization

problem of finding such a maximal set to function ChooseS, detailed

later in this section. Since ChooseS needs to know for which function

pairs the recent call-equivalence checks have failed, every such function

41

Algorithm 2 Determinization of Alg. 1.
1: function ProveMT(Programs P , P ′; map between functions mapF)
2: Inline non-recursive non-mapped functions;
3: Solve name collisions in global identifiers of P, P ′ by renaming.
4: Generate MSCC DAGs MD, MD′ from the call graphs of P, P ′;
5: If possible, generate a bijective map mapM between the nodes of MD

and MD′ that is consistent with mapF ; Otherwise abort.
6: while ∃〈m,m′〉 ∈ mapM not marked covered but its children are, do
7: Choose such a pair 〈m,m′〉 ∈ mapM and mark it covered;
8: if m,m′ are trivial then
9: Let f, f ′ be the functions in m,m′, respectively;

10: if CallEquiv (isolate(f, f ′, ∅)) then mark 〈f, f ′〉 as m term;

11: else ProveMT NonTrivial(〈m, m′〉);

12: function ProveMT NonTrivial(A pair of MSCCs 〈m, m′〉)
13: failed pairs := S := ∅;
14: while (S := ChooseS(〈m,m′〉, failed pairs, S)) 6= ∅ do
15: failed pairs := ∅;
16: for each 〈f, f ′〉 ∈ S do
17: if ¬CallEquiv (isolate(f, f ′, S)) then
18: failed pairs := failed pairs ∪ {〈f, f ′〉};
19: if failed pairs = ∅ then . Every check has succeeded
20: for each 〈f, f ′〉 ∈ S do mark 〈f, f ′〉 as m term;

21: return ;

22: mark the ancestors of m, m′ as covered ;

23: function isolate(Functions f , f ′; function pairs S) . Builds fUF , f ′UF

24: for each {〈g, g′〉 ∈ mapF | g, g′ are reachable from f, f ′} do
25: if 〈g, g′〉 ∈ S or 〈g, g′〉 is marked m term then
26: Replace calls to g(exprin) with calls to uf(g, exprin);
27: Replace calls to g′(exprin′) with calls to uf’(g’, exprin′);
28: else inline g, g′ in their callers;

29: return 〈f, f ′〉;

30: function CallEquiv(A pair of isolated functions 〈fUF , f ′UF 〉)
31: Let δ denote the program:

B here add the definitions of uf() and uf’() (see Fig. 4.1).
in := nondet();
fUF (in);

f ′UF (in);
for each {〈g, g′〉 ∈ mapF | g ∈ callees(f) ∨ g′ ∈ callees(f ′)} do

assert(params[g] ⊆ params[g′]);

32: if WasProven(proven, 〈fUF , f ′UF 〉) ora CBMC(δ) then
33: proven := proven ∪ {〈fUF , f ′UF 〉};
34: return true;

35: return false

aThe second condition is evaluated only if the first condition has been evaluated as false.

42

Algorithm 3 Pseudo-code for function ChooseS, which finds a feedback
vertex set over a given pair of MSSCs while blocking previously failed solu-
tions.

1: function ChooseS(A pair of MSSCs: 〈m,m′〉,
sets of function pairs: failed pairs, Sfailed)

. failed pairs ⊆ Sfailed
2: if failed pairs = ∅ then
3: σ := ∅;
4: else
5: σ := σ ∪ {{f | 〈f, f ′〉 ∈ Sfailed}};
6: Let β denote the pseudo-Boolean formula:

maximize S: max
∑

g∈mapped(m)

vg ,

where mapped(m) denotes the set of functions in m that are mapped in mapF ,
vg is a Boolean variable associated with a function node g in M = m ∪m′,
subject to the following constraints for M :

i. Banning unmapped ∀g ∈ (M \mapped(M)). ¬vg
nodes from S:

ii. Defining the edges: ∀{f, g | (f, g) is an edge in M}.
¬vf ∧ ¬vg → efg

iii. Transitive closure of edges: ∀f, g, h ∈M. efg ∧ egh → efh
iv. Forbidding self loops: ∀g ∈M. ¬egg
v. Enforcing mapping mapF : ∀〈g, g′〉 ∈ mapF(m). vg ↔ vg′
vi. Blocking the failed solutions:

∧
si∈σ(

∨
g∈si ¬vg) ;

7: s := minisat+(β); . minisat returns ∅ if β is unsatisfiable
8: return {〈f, f ′〉 | vf ∈ s ∧ 〈f, f ′〉 ∈ mapF}

43

pair (for which the call-equivalence check has failed) is recorded into a

set failed pairs in line 18 of Alg. 2.

ChooseS.

Function ChooseS, presented in Alg. 3, solves the above optimization

problem for a given pair of mapped MSSCs 〈m, m′〉 via a reduction to

a 0-1 ILP problem (equivalently, a pseudo-Boolean formula β). Each

function node g (g′) in m (m′) is associated with a Boolean variable vg
(vg′) in that formula, indicating whether it is a part of S. The objective

is thus to maximize the sum of those variables that are mapped (those

that are unmapped cannot be in S anyway). In addition, there is a

variable for each edge in m ∪m′ (e.g., egh for edge (g, h)), which is set

to true if and only if neither of the vertices of the edge is a function

in S. By enforcing a transitive closure, we guarantee that if there is

a cycle of edges set to true (i.e., a cycle in which none of the nodes is

in S), then the self edges (e.g., egg) are set to true as well. We then

prevent such cycles by setting them to false. The problem formulation

appears in line 6 of Alg. 3, and is rather self-explanatory. The generated

pseudo-Boolean formula β is then solved by minisat+ [13] (see line 7).

Once a solution s to this problem is found, the last line returns the set

S = {〈f, f ′〉 | vf ∈ s, 〈f, f ′〉 ∈ mapF}.

If the returned set fails (i.e., one of the pairs in it cannot be proven

to be call-equivalent), ChooseS will be called again for the current

MSCC pair 〈m, m′〉. From now on, by left side of a set of pairs we

mean the set of the elements found in the left side of the pairs. In that

repeated call, in line 5 the left side of the failed set Sfailed will be added

to σ. Thus Sfailed will be removed from the solution space owing to

constraint #vi in line 6 of Alg. 3. When there are no more solutions

available, the repeated call will return an empty set.

Note that argument failed pairs is unused in the current version of

ChooseS, but its presence in the function interface enables compat-

ibility with the final version of ChooseS, which will be presented in

Sect. 4.2.2.

We have implemented three optimizations in RVT. The rest of this chap-

44

ter will elaborate on them.

4.2.1 Recycling proofs

The first optimization that we have implemented is the following. Searching

for a vertex feedback set as explained above amounts to solving an opti-

mization problem for various subsets of vertices. We may save some effort by

analyzing the cause of failure. Specifically, when failing with a set S0, we save

the strict subset s0 ⊂ S0 for which we were able to prove call-equivalence.

Let S1 be a new set under consideration and let 〈g, g′〉 ∈ S1 ∩ s0. Denote

by fUFS the function fUF as constructed given the set S. Then the positive

result of g can be reused if gUFS0
is equally or more abstract than gUFS1

. This

condition holds if none of the functions inlined in gUFS0
are abstracted in gUFS1

.

The positive results are accumulated in the set proven in line 33 of Alg. 2.

Searching proven for a previous proof reusable for two given abstracted

functions fUF , f ′UF is executed in a Boolean function WasProven, whose

pseudo-code is not explicitly listed. WasProven is invoked in line 32 and

returns true if it could find isolated versions of functions f , f ′ which are

equally or more abstract than fUF and f ′UF , respectively. In this case a heavy

operation of checking the generated program δ with CBMC is skipped. Only

when nothing can be recycled, CBMC is involved (line 32). An example of

a recycled proof will be given in Ex. 4.2.1 (at the end of the next section).

4.2.2 Optimizing function ChooseS

The two additional optimizations we have implemented concern the process

of function ChooseS. Alg. 4 presents an optimized version of this function.

Note that its lines 1–4, 6, 8, and 9 are syntactically equal to lines 1–4, 5, 7,

and 8, respectively, in Alg. 3. Here is the description of the two optimizations:

• Generalizing counterexamples :

Recall that constraint #vi (see line 6 of Alg. 3) blocks failed solutions.

In some cases it is possible to generalize the failed solution, which

expedites convergence. Let Sfailed denote a set with which the mutual-

termination check has failed. It is frequently possible to find a strict

45

gf h

Figure 4.11: An example of MSCC where a counterexample may be general-
ized.

subset of Sfailed which is sufficient to make the proof fail. Specifically,

such a subset can consist of the set failed pairs of the failing pair nodes

in Sfailed plus nodes in Sfailed that can be reached from failed pairs not

through any other node in Sfailed. As an example, consider the MSCC

{f, g, h} as shown in Fig. 4.11, and Sfailed = {〈f, f ′〉, 〈g, g′〉, 〈h, h′〉}
such that f ′, g′, h′ are mapped with f , g, h, respectively. If 〈f, f ′〉
fails, then we must remove from Sfailed either 〈f, f ′〉 or 〈g, g′〉, regard-

less of what we do with 〈h, h′〉. Hence, here we can regard the sub-

set {〈f, f ′〉, 〈g, g′〉} as the failing set, rather than Sfailed itself, which

strengthens constraint #vi. In other words, adding the negation of this

subset removes from the solution space sets that are bound to fail.

Counterexamples are generalized inside function GeneralizeCoun-

terexample, which is not explicitly listed in the pseudo-code of Alg. 4.

The arguments of ChooseS needed for this purpose are:

– Sfailed, and

– failed pairs, which is the set of function pairs whose call-equivalence

checks have failed upon Sfailed (it receives the value of the local

variable failed pairs of the function

ProveMT NonTrivial of Alg. 2).

GeneralizeCounterexample is called in line 5 of Alg. 4. The left

side of its output, i.e., the left side of either the generalized counterex-

ample or the originally failing Sfailed if no counterexample could be

generalized, is added to σ (line 6); then the output is removed from the

solution space owing to constraint #vi.

• Higher priority for partially-equivalent pairs :

Among equal-sized sets, it is better to give priority to sets that include

46

Algorithm 4 An optimized version of function ChooseS presented in
Alg. 3.

1: function ChooseS(A pair of MSSCs: 〈m,m′〉,
sets of function pairs: failed pairs, Sfailed)

. failed pairs ⊆ Sfailed
2: if failed pairs = ∅ then
3: σ := ∅;
4: else
5: Sfailed := GeneralizeCounterexample(failed pairs, Sfailed);
6: σ := σ ∪ {{f | 〈f, f ′〉 ∈ Sfailed}};
7: Let β denote the pseudo-Boolean formula:

maximize S: max
∑

g∈mapped(m)

vg · wg ,

where mapped(m) denotes the set of functions in m that are mapped in mapF ,
vg is a Boolean variable associated with a function node g in M = m ∪m′,

and wg =

{
|m|+ 1 if 〈g, g′〉 is marked as part eq s.t. 〈g, g′〉 ∈ mapF ,
|m| otherwise,

subject to the following constraints for M :

i. Banning unmapped ∀g ∈ (M \mapped(M)). ¬vg
nodes from S:

ii. Defining the edges: ∀{f, g | (f, g) is an edge in M}.
¬vf ∧ ¬vg → efg

iii. Transitive closure of edges: ∀f, g, h ∈M. efg ∧ egh → efh
iv. Forbidding self loops: ∀g ∈M. ¬egg
v. Enforcing mapping mapF : ∀〈g, g′〉 ∈ mapF(m). vg ↔ vg′
vi. Blocking the failed solutions:

∧
si∈σ(

∨
g∈si ¬vg) ;

8: s := minisat+(β); . minisat+ returns ∅ if β is unsatisfiable
9: return {〈f, f ′〉 | vf ∈ s ∧ 〈f, f ′〉 ∈ mapF}

47

a maximal number of pairs that are marked as part eq, because there

is a better chance of success with partially-equivalent functions (recall

that these are replaced with the same uninterpreted functions). This

strategy is implemented by assigning weights in the objective which

on one hand give higher priority to partially-equivalent function pairs,

and on the other hand still ensure finding the largest set S possible.

We will prove in Proposition 4.2.1 that the following weights guarantee

these two properties:

? |m|+ 1 for functions that are maked as part eq;

? |m| for other functions,

where m is the currently considered MSCC in side 0.

Proposition 4.2.1. Function ChooseS in Alg. 4 returns a set with a

maximal number of function pairs subject to constraints #i-vi.

Proof. Proving this proposition amounts to validating the following

formula for any MSCC m:

∀s, s̃ ⊆ m. ∀1≤i≤|s|
1≤j≤|s̃|

wi, w̃j ∈ {|m|, |m|+ 1}.

|s| > |s̃| ⇒
|s|∑
i=1

wi >
|s̃|∑
j=1

w̃j .
(4.1)

Consider any s, s̃ ⊆ m such that s is larger than s̃. For s̃ we have:

∀1≤j≤|s̃| w̃j ∈ {|m|, |m|+ 1}.
|s̃|∑
j=1

w̃j ≤ |s̃| · (|m|+ 1) .

Since s is larger than s̃, i.e., |s̃| ≤ |s| − 1, we deduce:

|s̃| · (|m|+ 1) ≤ (|s| − 1) · (|m|+ 1) .

But the fact that |s| ≤ |m| implies:

(|s| − 1) · (|m|+ 1) < |s| · |m| ,

48

which means:

∀1≤j≤|s̃| w̃j ∈ {|m|, |m|+ 1}.
|s̃|∑
j=1

w̃j < |s| · |m| .

On the other hand, for s we have:

∀1≤i≤|s| wi ∈ {|m|, |m|+ 1}.
|s|∑
i=1

wi ≥ |s| · |m| .

Hence, the formula in (4.1) is valid.

The following example will demonstrate all the three described optimiza-

tions.

Example 4.2.1. Consider the call graphs in Fig. 4.12. Assume that 〈fi, f ′i〉 ∈
mapF for i = 0, . . . , 5, 7, . . . , 9, and that the functions represented by gray

nodes are known to be partially equivalent to their counterparts. The MSCC

mapping mapM in line 5 of Alg. 2 is naturally derived from mapF :

mapM =



〈{f5}, {f ′5}〉,
〈{f3}, {f ′3}〉,
〈{f2, f4}, {f ′2, f ′4, f ′6}〉,
〈{f1}, {f ′1}〉,
〈{f7, f8, f9}, {f ′7, f ′8, f ′9, f ′10}〉,
〈{f0}, {f ′0}〉


Suppose that Alg. 2 has processed MSCC pairs 〈{f5}, {f ′5}〉, 〈{f3}, {f ′3}〉,

and 〈{f2, f4}, {f ′2, f ′4, f ′6}〉, and, in the same manner as in Ex. 4.1.1, found

the following mapped function pairs as mutually terminating: 〈f5, f ′5〉, 〈f2,

f ′2〉, 〈f4, f ′4〉, and 〈f1, f ′1〉. Now the algorithm proceeds with the MSCC pair

〈{f7, f8, f9}, {f ′7, f ′8, f ′9, f ′10}〉. When ChooseS listed in Alg. 4 is called for

the first time for this pair, its mission amounts to solving the optimization

problem given in Fig. 4.13. Since this is the first attempt (failed pairs = ∅),
constraint #vi is irrelevant. The solution yields the largest possible set2

2For simplicity, we will index the feedback vertex sets returned by ChooseS, e.g.,

49

f0

f1

f2 f4

f3

f5

f7 f8 f9

f ′0

f ′1

f ′2 f ′4

f ′3

f ′5

f ′6

f ′7 f ′8 f ′10 f ′9

Figure 4.12: Call graphs of the programs discussed in Ex. 4.2.1. Partially
equivalent functions are gray.

50

S1 = {〈f7, f
′
7〉, 〈f8, f

′
8〉, 〈f9, f

′
9〉} exactly as Alg. 3 would choose if it were

running. Assume that CallEquiv (isolate(f7, f ′7, S1)) and CallEquiv

(isolate(f8, f ′8, S1)) return false, while CallEquiv (isolate(f9, f ′9, S1))

returns true. This result invalidates S1. Another feedback vertex set should

be sought by ChooseS. Now note that there is a strict subset of S1 which

consists of a failing node pair 〈f7, f
′
7〉 plus 〈f8, f

′
8〉, which is the only pair in

S1 reachable from 〈f7, f
′
7〉 not through any other nodes in S1. General-

izeCounterexample reduces S1 and returns Sfailed = {〈f7, f
′
7〉, 〈f8, f

′
8〉}.

Seeking a new feedback vertex set amounts to solving the same optimization

problem given in Fig. 4.13 with an additional constraint for blocking Sfailed:

vi. Blocking the failed solutions: (¬vf7 ∨ ¬vf8) .

If we applied the version of ChooseS defined in Alg. 3, Minisat+ would

yield either {f7, f9} or {f8, f9}. However, its only solution in the optimized

version of ChooseS (defined in Alg. 4) is {f7, f9}, because f7 and f ′7 are

partially-equivalent (unlike f8, f ′8), and, consequently, {f7, f9} weighs more

than {f8, f9}.
For proving the mutual termination of the pairs in S2 = {〈f7, f

′
7〉, 〈f9, f

′
9〉},

Alg. 2 is to check the call equivalence of those pairs. In CallEquiv (fUF9 ,

fUF9), the previous proof of the call equivalence of 〈fUF9 , f ′UF9 〉 is recycled by

RecycleProof because fUF9S1
≡ fUF9S2

and f ′UF9S1
≡ f ′UF9S2

. Thus CBMC is

involved only for verifying the call equivalence of 〈f7
UF , f ′7

UF 〉. Assume that

it fails. ChooseS is called again. GeneralizeCounterexample cannot

reduce the failing set S2, which is blocked by updating constraint #vi:

vi. Blocking the failed solutions: (¬vf7 ∨ ¬vf8) ∧ (¬vf7 ∨ ¬vf9) .

Note that any feedback vertex set must cover both the self-loop of f9

and the circle between f7 and f8. Therefore, the only option left is S3 =

{〈f8, f
′
8〉, 〈f9, f

′
9〉}. This time CallEquiv (fUF9 , fUF9) cannot recycle the

previous proofs of the call-equivalence of 〈fUF9 , f ′UF9 〉 because fUF9S3
(f ′UF9S3

)

contains abstracted calls to UFf8 (UF ′f ′8
), which is missing in fUF9S1

(f ′UF9S1
).

S1, S2, etc.

51

Assume that CallEquiv (isolate(f8, f ′8, S3)) returns false. In this case,

ChooseS is called one more time and returns an empty set indicating that

there no more solutions available. Alg. 2 finally gives up by marking the

main pair of MSCCs 〈{f0}, {f ′0}〉 as covered (but not as m term) in line 22

and ends. This is an example where we are unable to prove the mutual

termination of the main functions, but we are able to prove the mutual

termination of some of their descendants.

52

max
∑

g∈{f7, f8, f9}
vg · wg ,

where wf7 = 4 and wf8 = wf9 = 3,

subject to the following constraints for {f7, f8, f9, f
′
7, f

′
8, f

′
9, f

′
10}:

i. Banning unmap- ¬vf ′10
ped nodes from S:

ii. Defining the ¬vf7 ∧ ¬vf8 → ef7f8 ¬vf ′7 ∧ ¬vf ′8 → ef ′7f ′8
edges: ¬vf8 ∧ ¬vf9 → ef8f9 ¬vf ′8 ∧ ¬vf ′9 → ef ′8f ′9

¬vf8 ∧ ¬vf7 → ef8f7 ¬vf ′8 ∧ ¬vf ′10 → ef ′8f ′10
¬vf9 ∧ ¬vf7 → ef9f7 ¬vf ′9 ∧ ¬vf ′8 → ef ′9f ′8
¬vf9 ∧ ¬vf9 → ef9f9 ¬vf ′10 ∧ ¬vf ′7 → ef ′10f ′7

iii. Transitive ef7f8 ∧ ef8f9 → ef7f9 ef ′7f ′8 ∧ ef ′8f ′9 → ef ′7f ′9
closure of ef7f9 ∧ ef9f7 → ef7f7 ef ′7f ′8 ∧ ef ′8f ′10 → ef ′7f ′10
edges: ef8f9 ∧ ef9f7 → ef8f7 ef ′7f ′10 ∧ ef ′10f ′7 → ef ′7f ′7

ef8f7 ∧ ef7f8 → ef8f8 ef ′8f ′10 ∧ ef ′10f ′7 → ef ′8f ′7
ef9f7 ∧ ef7f8 → ef9f8 ef ′8f ′7 ∧ ef ′7f ′8 → ef ′8f ′8
ef9f7 ∧ ef7f9 → ef9f9 ef ′9f ′8 ∧ ef ′8f ′7 → ef ′9f ′7
... ef ′9f ′8 ∧ ef ′8f ′9 → ef ′9f ′9

ef ′9f ′8 ∧ ef ′8f ′10 → ef ′9f ′10
ef ′10f ′7 ∧ ef ′7f ′8 → ef ′10f ′8
ef ′10f ′8 ∧ ef ′8f ′9 → ef ′10f ′9
ef ′10f ′8 ∧ ef ′8f ′10 → ef ′10f ′10
...

iv. Forbidding ¬ef7f7 ¬ef ′7f ′7
self loops: ¬ef8f8 ¬ef ′8f ′8

¬ef9f9 ¬ef ′9f ′9
¬ef ′10f ′10

v. Enforcing vf7 ↔ vf ′7
mapping mapF : vf8 ↔ vf ′8

vf9 ↔ vf ′9
vi. Blocking the

failed solutions:

Figure 4.13: A pseudo-Boolean formulation of the optimization problem
of finding the largest set of function pairs intersecting all cycles in both
{f7, f8, f9} and {f ′7, f ′8, f ′9, f ′10}. The list of the transitive closure constraints
(iii) is not full as floccinaucinihilipilificated constraints are omitted here.

53

Chapter 5

Improving completeness

No sound method of proving mutual termination can be complete because

this problem is undecidable, but we should strive to improve the completeness

of our approach. The two major reasons of its incompleteness were mentioned

in Sect. 3.1. They are related to the overapproximation of the real behavior

caused by replacing recursive calls with uninterpreted functions. Refining our

uninterpreted functions can solve a few of overapproximation-related issues.

For example, enforcement (enforce-1) (see (2.6)) is found effective. Recall, it

enforces that uninterpreted functions replacing a pair of partially equivalent

functions must be the same. Additional ideas for refinements of uninterpreted

function which have not yet been implemented will be proposed in Sect. 7.1.

However, there exist other reasons for the incompleteness in our approach.

In this chapter we will address a few of them we have coped with. Some of

them are applicable to or refine the output of the decomposition algorithm

presented in a technical report [22] for verification of partial equivalence.

Such improvements are valuable for proving mutual termination too because,

as we mentioned above, knowing that some functions are partially-equivalent

can be beneficial for establishing their mutual termination.

54

int main() {
int y, x = 1;
while (x < 10) {

y = 2 + x;
x = y + y;

}
return x*2;

}

int main’() {
int x’ = 1, y’;
while (x’ <= 9) {

y’ = x’ + 2;
x’ = 2 * y’;

}
return x’ << 1;

}

Figure 5.1: Two versions of programs each of which contains a loop with an
uninitialized variable y (y′) which is written-to before ever being read.

5.1 Reducing prototypes of loop-replacing func-

tions

Appendix C of [20] gives a detailed description of how loops are replaced

with functions. Local variables that are used inside loops are part of the

interface of the replacing function, even if they are written-to before being

read. The problem is that these variables are local and, hence, receive a non-

deterministic value and thus make the uninterpreted functions representing

the loop return different values. The following example demonstrates the

issue.

Example 5.1.1. Consider the pair of C programs listed in Fig. 5.1. Here-

after, the syntax of C is slightly violated, for instance, by ending identifiers

of side 1 with ’, in order to adhere to the notations we have used until

now. Extracting the loops into separate recursive functions results in the

two programs listed in Fig. 5.2. When partial equivalence of 〈main, main′〉
is verified, 〈mainUF , main′UF 〉 are generated as listed in Fig. 5.3. The values

of y and y′ in 〈mainUF , main′UF 〉, respectively, are non-deterministic. Con-

sequently, not all the arguments passed into calls uf (Loop main while1, &x,

&y) and uf’ (Loop main while1’, &x′, &y′) are considered equal, because di-

rect pointers are considered equal if they point to equal values. Thus those

calls are considered different. As a result, 〈mainUF , main′UF 〉 are not consid-

55

int Loop main while1(int *px,
int *py)

{
if (!(*px < 10)) return 0;
*py = 2 + *px;
*px = *py + *py;
return Loop main while1(px, py);

}

int main() {
int y, x = 1;
Loop main while1(&x, &y);
return x*2;

}

int Loop main while1’(int *px’,
int *py’)

{
if (!(*px’ <= 9)) return 0;
*py’ = *px’ + 2;
*px’ = 2 * *py’;
return Loop main while1’(px’, py’);

}

int main’() {
int x’ = 1, y’;
Loop main while1’(&x’, &y’);
return x’ << 1;

}

Figure 5.2: Two versions of programs from Fig. 5.1 after elimination of their
loops.

...

int mainUF () {
int y, x = 1;
uf (Loop main while1, &x, &y);
return x*2;

}

...

int main′UF () {
int x’ = 1, y’;
uf’ (Loop main while1’, &x′, &y′);
return x’ << 1;

}

Figure 5.3: Parts of the program generated for proving the mutual termina-
tion of functions main, main′, defined in Fig. 5.2.

56

int Loop main while1(int *px) {
int y;
if (!(*px < 10)) return 0;
y = 2 + *px;
*px = y + y;
return Loop main while1(px);

}

int main() {
int y, x = 1;
Loop main while1(&x);
return x*2;

}

int Loop main while1’(int *px’) {
int y’;
if (!(*px’ <= 9)) return 0;
y’ = *px’ + 2;
*px’ = 2 * y’;
return Loop main while1’(px’);

}

int main’() {
int x’ = 1, y’;
Loop main while1’(&x’);
return x’ << 1;

}

Figure 5.4: Two versions of programs from Fig. 5.1 after replacement of their
loops with functions and reduction of variables y and y′ from the argument
lists of those replacing functions. See Fig. 5.2 for a comparison.

ered call-equivalent. Hence, RVT will fail to provem-term(mainUF ,main′UF).

There is no good reason to include the variables of loop bodies that satisfy

the two following conditions, into the argument list of the functions that

replace the loop:

C1. before their values are ever read, some value is assigned into them, and

C2. they are no longer used after the body of the loop.

They may become mere local variables in the replacing functions.

Example 5.1.2. Reconsider the programs given in Fig. 5.1 and note that

variable y (y′) in function main (main′) is initialized every time before be-

ing read in the loop-body. In fact, there is a single execution path in that

loop-body. Thus, y (y′) satisfies condition C1. Moreover, note that it is

not used after the end of the loop body, i.e., it satisfies C2 too. Hence,

57

py (py′) may be reduced from the argument list of the loop-replacing func-

tion Loop main while1 (Loop main while1′), and, furthermore, y (y′) may

become a local variable inside it as listed in Fig. 5.4. Now m-term(main,

main′) can be proven.

Here is a description of the procedure we apply for detecting variables

that satisfy conditions C1 and C2. Validating C1 amounts to checking that

a variable is initialized before being read in every computation path in the

loop-body block. If it passes the check, C2 shall be validated. The latter

validation is done using live-variables analysis [32]. If it establishes that the

variable has stopped being a live variable by the end of the loop body, then

C2 holds.

Two simple intraprocedural static analyses [25] aid to validate C1 in a

checked loop-body block. The first analysis, which we call Write-To (WT),

for each node of the control flow graph of that block, finds variables that

something is written to them in all execution paths leading to the node,

including writings in this node itself. The nodes of control flow graphs on

which we run our analyses are expressions in the C-language. WT is a flow-

sensitive forward [17, 38] must [33] analysis. Based on its results, the second

one, called Read-Uninitialized (RU), finds those variables that may be read

before something is written to them, i.e., detects potential reads of unitialized

variables. Those variables of the checked loop which are not listed in the

results of RU are written-to before being read in this loop-body, i.e., satisfy

C1. RU is a flow-sensitive forward may [33] analysis. Both analyses are

formally defined in Tables 5.1 and 5.2.

The described reduction of variables from the argument lists of loop-

replacing functions can be useful for proving partial equivalence too.

5.2 Mapping functions with different num-

bers of input parameters

Recall that in Sect. 2.1 we imposed a bijective map mapF between the func-

tions of the two compared programs P, P ′ as a precondition to apply our

58

kill function
kill(B`) = ∅

gen function
gen(B`) = def(B)

in all other cases:
gen(B`) = ∅

Data flow equations WT=

WTentry(`) =

{
∅ if ` = init(S?)⋂
{WTexit(`

′) | (`′, `) ∈ flow(S?)} otherwise

WTexit(`) =
((
WTentry(`) \ kill(B`)

)
∪ gen(B`)

)
, where B` ∈ blocks(S?)

Table 5.1: Definition of WT analysis. This is an intraprocedural flow-sensitive
forward (F = flow(S?)) must (

⊔
=
⋂

) analysis. Let def(n) denote the
set of the variables updated in the control flow graph node n. See Chapter 2
of [33] for understanding the rest of the notations used here.

kill function
kill(B`) = ∅

gen function
gen(B`) = {v | v ∈ use(B) ∧ v /∈ WTentry(`)}

Data flow equations RU=

RUentry(`) =

{
∅ if ` = init(S?)⋃
{RUexit(`′) | (`′, `) ∈ flow(S?)} otherwise

RUexit(`) =
((
RUentry(`) \ kill(B`)

)
∪ gen(B`)

)
, where B` ∈ blocks(S?)

Table 5.2: Definition of RU analysis. This is an intraprocedural flow-sensitive
forward (F = flow(S?)) may (

⊔
=
⋃

) analysis. Let use(n) denote the
set of the variables which are read in the control flow graph node n. See
Chapter 2 of [33] for understanding the rest of the notations used here.

59

int h(int x) {

if (x <= 0)
return h(1 - x);

return x;
}

int h’(int x’, int b’) {
if (b’ != 0)

report’(“...”);
if (x’ <= 0)

return h’(1 - x’, b’);
return x’;

}

void report’(const char *s’) {
...

}

Figure 5.5: Two versions of a program where functions h and h′ have different
prototypes. Nevertheless, we would like to prove m-term(h, h′).

algorithm. Furthermore, for functions f ∈ P and f ′ ∈ P ′, 〈f, f ′〉 ∈ mapF
only if f and f ′ have the same prototypes. Our method requires this in order

to be able to check call-equiv(fUF , f ′UF). However, we would like to extend

the definition of mutual termination so that it captures cases in which al-

though the two functions have different numbers of input parameters, they

terminate with respect to the common elements of their prototypes. The

following example demonstrates such a case.

Example 5.2.1. Consider two versions of a program listed in Fig. 5.5.

Functions h and h′ have different numbers of input arguments. However,

argument b′ does not affect the guarding conditions of recursive calls in h′.

Thus we would like to still be able to prove that h and h′ mutually terminate

regardless of the value of b′.

In Sect. 5.2.1 we will formally present a method for detecting such input

parameters as b′ in function h′ from Ex. 5.2.1. We coin input parameters

which have no influence on the termination of their function termination-

inert. But now we will describe what we do with them assuming we have

detected them.

60

Let Π denote the indices of the common elements in the prototypes of

f and f ′. Let in and in′ denote the actual input arguments of f and f ′

respectively, and let in|Π, in′|Π denote their respective projections to the

elements defined by Π. The following definition generalizes Def. 2.2.1 to

functions with different prototypes.

Definition 5.2.1 (Generalized mutual termination of functions). Two func-

tions f and f ′ are mutually terminating, if and only if

∀in, in′. in|Π = in′|Π → ∀π ∈ 〚f(in)〛, π′ ∈ 〚f ′(in′)〛. term(π)↔ term(π′) .

(5.1)

We continue to use the predicate m-term(f, f ′) to denote mutual ter-

mination of f, f ′, only that now it also applies to the case that f, f ′ have

different prototypes, according to the definition above. Note that (5.1) gen-

eralizes (2.1), and is more difficult to prove because (5.1) has a universal

quantifier over variables that are not constrained on the left-hand-side of the

implication. For example, considering h and h′ of Example 5.2.1, we need to

prove:

∀x, x′, b′. x = x′ → ∀π ∈ 〚h(x)〛, π′ ∈ 〚h′(x′, b′)〛. term(π)↔ term(π′) ,

that is, b′ is unconstrained.

We suggest to reduce the problem of generalized mutual termination

(Def. 5.2.1) to that of mutual termination (Def. 2.2.1) by deriving new non-

deterministic functions from f , f ′ so that their inputs are restricted to the

common part Π. We call this construction hiding.

Definition 5.2.2 (Hiding function parameters). Given a function f in a

program P and a subset B of the formal input parameters of f , the hiding

of B is given by the following transformation of P :

• Let f�B be f after the following transformation:

– remove B from the prototype of f ;

– declare the B variables as local variables of f , and initialize them

with non-deterministic values;

61

int h′�{b′}(int x’) {
int b’ = nondet();
if (b’ != 0)

report’(“...”);
if (x’ <= 0)

return h′�{b′}(1 - x’);
return x’;

}

Figure 5.6: Function h′�{b′}, derived from function h′ (see Fig 5.5) ‘hiding’ b′

from the parameter list (see Def. 5.2.2).

• In P , replace f with f�B and all calls to f with calls to f�B.

As an example, hiding of b′ in Fig. 5.5 of Ex. 5.2.1 results in the function

appearing in Fig. 5.6. Functions h and h′ have different numbers of input

parameters. However, no value of parameter b′ can affect the guarding con-

ditions of recursive calls in h′. Thus we would like to still be able to prove

that h and h′ mutually terminate regardless of the value of b′.

Let B,B′ be the set of parameters of f, f ′, respectively, outside of the

common part Π, i.e., these are parameters that are not mapped to parame-

ters in the other function. Hiding these parameters results in f�B and f ′�B′ ,

which have the same prototype and can therefore be checked for mutual ter-

mination with the inference rules of Chapter 3. It is left to prove that mutual

termination of these transformed functions imply the mutual termination of

the original ones. In other words, we need to prove the soundness of the

following proof rule:

m-term(f�B, f
′
�B′)

m-term(f, f ′)
(m-term-Π) . (5.2)

Proof. It is sufficient to show that f�B overapproximates f and f ′�B′ overap-

proximates f ′, because mutual termination of overapproximating functions

clearly implies mutual termination of the original ones. Indeed f�B overap-

proximates f because by construction, for any actual values passed to the

62

B parameters in f , the executions of f can be mimicked by f�B by choosing

the same values for the corresponding local variables (recall that they are

initialized with nondeterministic values). The same argument proves that

f ′�B′ overapproximates f ′.

Note that the modifications that create f�B (f ′�B′) do not necessarily

preserve the semantics of f (f ′). Consequently, checking m-term(f�B, f
′
�B′)

usually involves different uninterpreted functions.

Example 5.2.2. Reconsider functions h and h′ listed in Fig 5.5. Parameter

b′ of the prototype of h′ is a termination-inert input argument. It can be

excluded from the parameter list of h′. Function h′�{b′}, listed in Fig 5.6,

and h, defined in Fig 5.5, have the same prototype. Now RVT can prove

m-term(h, h′�{b′}) and infer m-term(h, h′).

5.2.1 Detecting termination-inert input parameters

An algorithm for checking whether a given argument v of function f is a

termination-inert input argument of f consists of two stages. First, it builds

a System Definition Graph [26] (SDG) for program P where f is defined.

Briefly, an SDG is an extension of a Program Dependence Graph [16, 29]

(PDG) for multi-function programs. The original nodes of some function’s

PDG represent the statements of the function. The edges of the PDG repre-

sent data and control dependencies between the statements of the function

and thus define their partial order: the semantics of the function is preserved

if its statements are executed in this order.

Algorithm 5 Algorithm for checking whether an input argument is
termination-inert.

1: function IsCallEquivInert(Program P , function f , argument v)
2: Build an SDG for P ;
3: for each call to f in this SDG do
4: if this call is reachable from node v = vinf

then return false;

5: return true;

63

d24Enter h′

x′ = x′inh′

x′ <= 0

h′(1− x′, b′)

x′inh′
= 1− x′

d21return x′

retvalh′

b′ = b′inh′

b′! = 0

report(”...”)

b′inh′
= b′d22

Enter report′

d25 s′ = s′inreport′

...

s′inreport′
= ”...”

Figure 5.7: The System Definition Graph [26] of the sub-program starting in
function h′, defined in Fig 5.5.

64

An SDG consists of PDGs for each function of the program plus the

following additions. Each function g of the program is associated with an

entrance node “Enter g”. For each input argument u of this function, the

SDG contains a node of type u = uing and an edge entering this node and

leaving node “Enter g”. Each node representing a call to function g has a

leaving edge entering the entrance node of g, i.e., “Enter g”. In addition,

for an expression expr passed as parameter u in that call, there are a node

of type uing = expr with the two following edges:

• an entering edge which leaves that function-call node, and

• a leaving edge which enters the recently mentioned node of type u = uing .

The return value of g has its own dedicated node retvalg. Its entering edges

leave nodes whose statements affect the return value. Its leaving edges enter

nodes whose statements depend on the return value. Fig. 5.7 demonstrates

an example of an SDG built for the sub-program starting in function h′ from

Fig 5.5.

At the second stage the algorithm checks whether any of the calls to

function f is reachable from node v = vinf
, where, recall, v is the name

of the given input argument. If none is reachable, then argument v is a

termination-inert input argument of f . The algorithm is presented in Alg. 5.

Example 5.2.3. Regard the SDG in Fig. 5.7, built for the sub-program

starting in function h′ from Fig 5.5. It has no node of a function call to

h′ which is reachable from node b′ = b′inh′
. Hence, b′ does not affect any

guarding condition over any recursive call to h′.

5.3 Partial equivalence with respect to a sub-

set of outputs

The improvement reported in this section refines the output of the decom-

position algorithm for checking partial equivalence [22].

Recall that functions in a language such as C may have multiple outputs,

and that so far we defined partial equivalence with respect to all of them, i.e.,

65

int g(int x, int *p) {
if (x > 5 || p == NULL)

return 0;
*p = 0;
g(g(x + 1, p), NULL);
return x;

}

int g’(int x’, int *p’) {
if (x’ > 5 || p’ == NULL)

return 0;
*p’ = 1;
g’(g’(x’ + 1, p’), NULL);
return x’;

}

int gUF (int x, int *p) {
if (x > 5 || p == NULL)

return 0;
*p = 0;
UFg(UFg(x + 1, p), NULL);
return x;

}

int g′UF (int x’, int *p’) {
if (x’ > 5 || p’ == NULL)

return 0;
*p’ = 1;
UF ′g′(UF

′
g′(x’ + 1, p’), NULL);

return x’;
}

Figure 5.8: (top) Functions g and g′ are partially equivalent with respect
to their return value, but not with respect to the other output ∗p, ∗p′. We
show that this ‘restricted’ partial equivalence is sufficient for proving mutual
termination; (bottom) the isolated versions of g, g′.

given the same inputs, the two functions are equivalent in all output elements

pair-wise. However, sometimes the equivalence of some of the outputs is

sufficient for proving mutual termination, as demonstrated in the following

example.

Example 5.3.1. Consider the functions listed at the top of Fig. 5.8. For-

mally, g and g′ are not partially equivalent because different values are as-

signed to p and p′, which are among the outputs of g and g′, respectively.

But the return values of g and g′ are equivalent. This fact could be useful

for establishing m-term(g, g′).

Consider gUF and g′UF listed at the bottom of Fig. 5.8. The obstacle

for proving call-equiv(gUF , g′UF) is the fact that UFg and UF ′g′ are different

uninterpreted functions (because ¬p-equiv(g, g′)). We may solve this problem

by enforcing the equivalence of the return values of UFg and UF ′g′ only (but

66

not those of *p,*p’). We can do this if we are able to prove that g and g′

are partially equivalent with respect to their return values.

Let out(f) denote the list of outputs of f .

Definition 5.3.1 (Partial equivalence with respect to individual outputs).

Two functions f and f ′ are partially equivalent with respect to individual

outputs 〈o, o′〉 such that o ∈ out(f) ∧ o′ ∈ out(f ′) if and only if for all input

in and for any π ∈ 〚f(in)〛, π′ ∈ 〚f ′(in)〛 which satisfy term(π) ∧ term(π′),

π and π′ end with the same value for o and o′.

Let p-equiv〈o,o′〉(f, f
′) denote the fact that f and f ′ are partially equivalent

with respect to 〈o, o′〉. We can now refine enforcement (enforce-1) (see (2.6)):

UFf ≡〈o,o′〉 UF ′f ′ →
(
〈f, f ′〉 ∈ mapF ∧ p-equiv〈o,o′〉(f, f ′)

)
(enforce-2) ,

(5.3)

where ≡〈o,o′〉 is the natural restriction of ≡ to 〈o, o′〉. We refine the imple-

mentation of uf’ (see Fig. 4.1) in a manner compatible with this condition,

i.e., given the same inputs, the values of o and o′ are still non-deterministic

but forced to be the same when we are able to prove p-equiv〈o,o′〉(f, f
′).

Otherwise, no such enforcement is made. The correspondingly refined imple-

mentation of uf’ is shown at the bottom of Fig. 5.9.

Our tool RVT is capable of proving partial equivalence of functions

with respect to individual outputs. When it is activated for checking par-

tial equivalence, it first attempts to establish p-equiv(f, f ′) for each 〈f , f ′〉
that it is checks. Only if it fails to have proven this, it checks the equiv-

alence of output elements one by one. For each pair of output elements

〈o, o′〉 with respect to which partial equivalence could be proven, it as-

signs label part eq〈o,o′〉 to 〈f , f ′〉. Thereby it finds a maximal mapping

{〈o, o′〉 | o ∈ out(f) ∧ o′ ∈ out(f ′) ∧ p-equiv〈o,o′〉(f, f ′)}. This mapping can

be also useful when the outputs of f cannot be bijectively mapped with the

outputs of f ′.

67

1: function uf(function index g, input parameters in) . Called in side 0
2: if in ∈ params[g] then return the output of the earlier call uf(g, in);

3: params[g] := params[g]
⋃

in;
4: return a non-deterministic output;

5: function uf’(function index g′, input parameters in′) . Called in side 1
6: if in′ ∈ params[g′] then return the output of the earlier call uf’(g′, in′);

7: params[g′] := params[g′]
⋃

in′;
8: if in′ ∈ params[g] then . 〈g, g′〉 ∈ mapF
9: result := [];

10: for each oi ∈ out(g) do . o′i ∈ out(g′)
11: if 〈g, g′〉 is marked as part eq or as part eq〈oi,o′i〉 then
12: append the result for oi of the earlier call uf(g, in′) to result;
13: else append a non-deterministic value to result;

14: return result;

15: assert(0); . Not call-equivalent: params[g′] 6⊆ params[g]

Figure 5.9: Implementations for functions uf and uf’, where the latter takes
into consideration partial information about partial equivalence. uf and
uf’ emulate uninterpreted functions if instantiated with functions that are
mapped to one another, and form a part of the generated program δ, as
shown in CallEquiv of Alg. 1 or in the determinization thereof Alg. 2 (see
pages 29, 42). These functions also contain code for recording the parameters
with which they are called.

68

Chapter 6

Inference rules for proving

termination

6.1 Proof rule (term)

We now consider a different variant of the mutual termination problem:

Given that a program P terminates, does P ′ terminate as well? Clearly

this problem can be reduced to that of mutual termination, but in fact it can

also be solved with a weaker premise. We first define:

Definition 6.1.1 (Call-containment). Function f call-contains a function f ′

if and only if

∀in, in′. in = in′ → ∀π ∈ 〚f(in)〛, π′ ∈ 〚f ′(in′)〛. calls(π1) ⊇ calls(π′
1
) .

(6.1)

Denote by f wc f ′ the fact that f call-contains f ′. We now overload term

to refer to the set of computations possible in a function f with any input:

term(f)
.
= ∀in. ∀π ∈ 〚f(in)〛. term(π) . (6.2)

We can now define the rule for leaf MSCCs m, m′:

69

ϕ(m,n, p) =


m+ n if p = 0
0 if n = 0 ∧ p = 1
1 if n = 0 ∧ p = 2
m if n = 0 ∧ p > 2
ϕ(m,ϕ(m,n− 1, p), p− 1) if n > 0 ∧ p > 0

A(a, b) =


b+ 1 if a = 0
A(a− 1, 1) if a > 0 ∧ b = 0
A(a− 1, A(a, b− 1)) if a > 0 ∧ b > 0

Figure 6.1: The original Ackermann [3] function ϕ and its two-variable vari-
ation A, developed by Péter and Robinson [34].

∀〈f, f ′〉 ∈ mapF(m).
(
term(f) ∧ fUF wc f ′UF

)
∀〈f, f ′〉 ∈ mapF(m). term(f ′)

(term) . (6.3)

One can note that call equivalence (Def. 2.2.3) is simply bi-directional

call containment, which makes the premise of the new rule weaker than that

of (m-term) (see (3.2)) for proving mutual termination. The soundness of

(term) will be proven in Sect. 6.3. A generalization to non-leaf MSCCs will

be given in Sect. 6.2.

Example 6.1.1. Consider the original definition of Ackermann function [3]

and its more famous two-argument variation, developed by Péter and Robin-

son [34]. Fig. 6.1 displays the functions. The arguments of each variation are

non-negative integers. Observe that once ϕ is called with some m0 passed as

the first argument, all the recursive calls of ϕ pass m0 as the first argument.

70

ϕUFm (n, p) =


m+ n if p = 0
0 if n = 0 ∧ p = 1
1 if n = 0 ∧ p = 2
m if n = 0 ∧ p > 2
UFϕm(UFϕm(n− 1, p), p− 1) if n > 0 ∧ p > 0

AUF (a, b) =


b+ 1 if a = 0
UFA(a− 1, 1) if a > 0 ∧ b = 0
UFA(a− 1, UFA(a, b− 1)) if a > 0 ∧ b > 0

Figure 6.2: The isolated versions of the original Ackermann function ϕ and
its more famous two-variable variation A, developed by Péter and Robinson.

This observation allows to define function ϕm as following:

ϕm(n, p) =



m+ n if p = 0

0 if n = 0 ∧ p = 1

1 if n = 0 ∧ p = 2

m if n = 0 ∧ p > 2

ϕm(ϕm(n− 1, p), p− 1) if n > 0 ∧ p > 0

Note that ϕm(n, p) = ϕ(m,n, p). Now the prototypes of ϕm and A can

be matched:

• argument n in ϕm matches argument b in A, and

• argument p in in ϕm matches argument a in A.

Their corresponding isolated versions are shown in Fig. 6.2.

UFϕ1 can be called in ϕ1
UF (y, x) only when both x and y are positive. In

this case the following calls take place:

• UFϕ1(y − 1, x), and

71

• UFϕ1(UFϕ1(y − 1, x), x− 1).

But given those positive x and y, the calls of UFA(y, x) in AUF are:

• UFA(x, y − 1), and

• UFA(x− 1, UFA(x, y − 1)).

If we are given that ϕ1 and A are partially equivalent, we can enforce:

UFϕ1(y, x) = UFA(x, y) ,

and then:

• the first parameter of UFϕ1(UFϕ1(y − 1, x), x− 1) will be equal to the

second parameter of UFA(x− 1, UFA(x, y − 1)), and

• the second parameter of UFϕ1(UFϕ1(y − 1, x), x − 1) will be equal to

the first parameter of UFA(x− 1, UFA(x, y − 1)).

Consequently,

∀x > 0, y > 0, w, z.

ϕ1(z, w) ∈ calls
(
ϕ1

UF (y, x)
)
↔ A(w, z) ∈ calls

(
AUF (x, y)

)
.

(6.4)

It was previously mentioned that ϕ1
UF (y, x) contains no function calls when

either x or y (or both) is not positive. Hence,

∀x, y ∈ N.(x = 0 ∨ y = 0)→ calls
(
ϕ1

UF (y, x)
)

= ∅ (6.5)

The combination of (6.4) and (6.5) will imply AUF wc ϕ1
UF . Having taken

in consideration that term(A) is a known fact [6], we can conclude term(ϕ1)

according to rule (term), i.e., that the original version of the Ackermann

function ϕ(m,n, p) terminates for m = 1.

The weakness of our method appears for m 6= 1, when ϕ(m, y, x) and

A(x, y) are not partially equivalent. In this case we cannot prove

AUF wc ϕmUF because we may not enforce UFϕm(y − 1, x) = UFA(x, y − 1).

72

6.2 Generalized rule (term+)

A generalization to non-leaf MSCCs can be done in a similar way to (3.4):

∀ 〈f, f ′〉 ∈ mapF(m).(term(f) ∧ fUF wc f ′UF) ∧
∀〈g, g′〉 ∈ mapF . ((g ∈ C(m) ∧ g′ ∈ C(m′))→ m-term(g, g′))

∀ 〈f, f ′〉 ∈ mapF(m). term(f ′)
(term+) ,

(6.6)

where, recall, C(m) denotes the functions that are outside of m and are called

by functions in m. A proof appears in Sect. 6.3.

The decomposition algorithm applies with the following change: in func-

tion CallEquiv , the statement asserting params[g] ⊆ params[g′] (line 31

in Alg. 2) should be removed. Namely, the adapted version of function

CallEquiv is presented in Alg. 6. The only assertion that should be

verified is thus inside uf’ (see line 12 in Fig. 4.1 or line 15 of the refined

implementation thereof in Fig. 5.9). It checks that every call on side 0 is

matched by a call on side 1.

6.3 Soundness proofs for (term) and (term+)

The outline of the proof of (term) is the following:

• In Theorem 6.3.1 we will falsely assume that the premise fUF wc f ′UF

for all pairs 〈f, f ′〉 ∈ mapF(m) holds, whereas there exists computa-

tions π ∈ 〚f(in)〛 and π′ ∈ 〚f ′(in)〛 such that term(π) and ¬term(π′).

• In Lemma 6.3.2 we show that term(π) together with the premise above

implies that ∀π′ ∈ 〚f ′(in)〛. term(π′), which is a contradiction.

• To prove Lemma 6.3.2 we first prove an auxiliary lemma—Lemma 6.3.1—

that if there exists a function call g′(ing) in π′1 and π is finite, then π1

must contain a matching call to g(ing) where 〈g, g′〉 ∈ mapF .

73

Algorithm 6 CallEquiv from Alg. 2 updated for proving termination of
functions.

30: function CallEquiv(A pair of isolated functions 〈fUF , f ′UF 〉)
31: Let δ denote the program:

B here add the definitions of uf() and uf’()
B (see Fig. 4.1 or Fig. 5.9).
in := nondet();
fUF (in);

f ′UF (in);

32: if WasProven(proven, 〈fUF , f ′UF 〉) ora CBMC(δ) then
33: proven := proven ∪ {〈fUF , f ′UF 〉};
34: return true;

35: return false

aThe second condition is evaluated only if the first condition has been evaluated as
false.

We begin by defining, for a given a computation π:

πUF
.
= π1[g(ing)← UFg(ing) | 〈g, ing〉 ∈ calls(π1)] , (6.7)

namely we replace the function calls in π1 with calls to their respective un-

interpreted functions, with the same arguments. It is not hard to see that

π ∈ 〚f(in)〛 ∧ term(π)

πUF ∈ 〚fUF (in)〛
. (6.8)

When π is infinite, on the other hand, there may be statements in f that

would be executed if the non-terminating call would have returned. Since the

call is replaced by an uninterpreted function that does return, those state-

ments will be executed in fUF . In such a case there must exist a computation

π̂ in 〚fUF (in)〛 that extends πUF . In other words, πUF is a prefix of π̂. More

formally, letting prefix(πUF , π̂) denote that πUF is a prefix of π̂, we have

π ∈ 〚f(in)〛
∃π̂ ∈ 〚fUF (in)〛. prefix(πUF , π̂)

. (6.9)

74

Lemma 6.3.1. For any given pair of functions 〈f, f ′〉 ∈ mapF , function g′,

and inputs in, ing, the following inference is sound for any π ∈ 〚f(in)〛:

term(π) ∧ fUF wc f ′UF ∧ ∃π′ ∈ 〚f ′(in)〛. 〈g′, ing〉 ∈ calls(π′1)

∃g. (〈g, g′〉 ∈ mapF ∧ 〈g, ing〉 ∈ calls(π1))
(6.10)

Its proof reminds very much of that given for Lemma 3.4.1 in Sect. 3.4.

Proof. Let 〈f, f ′〉 ∈ mapF , input in, function g′ and input ing satisfy the

premise. The bijectivity of mapF ensures existence of a function g such that

〈g, g′〉 ∈ mapF .

By (6.9) π′UF is a prefix of some π̂′ ∈ 〚f ′UF (in)〛. Note that 〈UFg′ , ing〉 ∈
calls(π′UF), which implies 〈UFg′ , ing〉 ∈ calls(π̂′). Hence, fUF wc f ′UF

implies:

∀π̂ ∈ 〚fUF (in)〛. 〈UFg, ing〉 ∈ calls(π̂) . (6.11)

The premise of (6.8) holds, which implies πUF ∈ 〚fUF (in)〛. Thus (6.11)

implies 〈UFg, ing〉 ∈ calls(πUF). The construction of πUF implies 〈g, ing〉 ∈
calls(π1).

We now define:

depth(π)
.
= max{|s| | s ∈ S(π)} , (6.12)

where, recall, S(π) denotes the set of call-stacks appearing during a given

computation π, and for s ∈ S(π), |s| is the number of frames in s (possibly

infinite). Fig. 6.3 illustrates depth(π), for the program listed in Fig. 2.1.

Our proofs of the lemmas in the rest of this chapter rely on the following

observations:

O1. term(π)↔ ∃d ∈ Z+. depth(π) ≤ d ;

O2. ¬term(π) implies that among all function calls made in π1, there is

exactly one which does not return, and its call-statement is the last

statement in π1.

The next lemma addresses mutually recursive functions without outer calls,

i.e., calls to functions outside the MSCCs.

75

π ∈ 〚f(99)〛π1:

πg1 ∈ 〚g(110)〛 πg2 ∈ 〚g(100)〛

πf1 ∈ 〚f(110)〛 πf2 ∈ 〚f(100)〛

πg3 ∈ 〚g(111)〛 πg4 ∈ 〚g(101)〛

πf3 ∈ 〚f(111)〛 πf4 ∈ 〚f(101)〛

d
epth

(π
)

=
5

Figure 6.3: An illustration of depth(π), defined in (6.12), for a computation
π ∈ 〚f(99)〛, where f is defined in Fig. 2.1. For a subcomputation πgi of π
beginning at g (a callee of f), depth(πgi) < depth(π).

Lemma 6.3.2. For any given 〈f, f ′〉 ∈ mapF(m) called with the same input

in,

∀〈h, h′〉 ∈ mapF(m). hUF wc h′UF ∧ ∃π ∈ 〚f(in)〛. term(π)

∀π′ ∈ 〚f ′(in)〛. term(π′)
. (6.13)

Proof. Consider the finite computation π provided by the premise. By O1,

depth(π) is bounded by a finite value. Let d = depth(π). The proof is by

induction on d.

Base: For d = 1, π does not contain any call statements. Falsely assume

∃π′ ∈ 〚f ′(in)〛. ¬term(π′), which by O2 implies that π′1 contains some call

statement g′(ing). Since the premise of Lemma 6.3.1 holds (fUF wc f ′UF

holds owing to the premise of (6.13)), π must contain a matching call state-

ment g(ing), where 〈g, g′〉 ∈ mapF , in contradiction to the assumption that

there are no call statements in π. Hence, term(π′) holds.

Step: Assume that the rule holds up to a given d and the premise holds

at d + 1 for a call f(in). Let π ∈ 〚f(in)〛 be a computation which satisfies

depth(π) ≤ d+ 1, and hence, term(π) holds (by O1). We now prove that the

consequent of the rule is true for d+ 1.

Falsely assume that there is a computation π′ ∈ 〚f ′(in)〛, where 〈f, f ′〉 ∈
mapF(m), such that ¬term(π′) holds. This implies that f ′(in) must make

some call g′(ing) which does not return. Since the premise of Lemma 6.3.1

76

holds, π contains a matching call statement g(ing), where 〈g, g′〉 ∈ mapF .

Now note that depth(π) ≤ d+ 1 implies that for any subcomputation πg of π

such that πg ∈ 〚g(ing)〛, depth(πg) ≤ d. By the induction hypothesis, (6.13)

holds up to d and, therefore, the following is true:

∀π′g ∈ 〚g′(ing)〛. term(π′g) .

Consequently, the supposedly non-terminating call of g′(ing) in π′ must have

returned, which is a contradiction. Hence, term(π′) holds.

Theorem 6.3.1. (term) is sound.

Proof. Falsely assume that the premise of rule (term) holds

∀〈f, f ′〉 ∈ mapF(m).
(
term(f) ∧ fUF wc f ′UF

)
,

but the consequent

∀〈f, f ′〉 ∈ mapF(m). term(f ′)

does not. This means that there exists 〈f, f ′〉 ∈ mapF(m), an input in,

and computations π ∈ 〚f(in)〛 and π′ ∈ 〚f ′(in)〛 such that term(π) and

¬term(π′). The former implies by O1 that depth(π) is bounded by some

finite value d. The premise of (6.13) now holds, and hence by Lemma 6.3.2,

all the computations of f ′(in), including π′, must be finite, which contradicts

our assumption that π′ is infinite. Hence, term(f ′) must hold.

6.3.1 Proof of (term+).

The outline of the proof is the following:

• In Theorem 6.3.2 we will falsely assume that the premise of (term+)

∀ 〈f, f ′〉 ∈ mapF(m).(term(f) ∧ fUF wc f ′UF) ∧
∀〈g, g′〉 ∈ mapF . ((g ∈ C(m) ∧ g′ ∈ C(m′))→ m-term(g, g′))

holds, but there exists computations π ∈ 〚f(in)〛 and π′ ∈ 〚f ′(in)〛

77

such that term(π) and ¬term(π′), which contradicts the consequent of

that rule.

• In Lemma 6.3.3 we show that ¬term(π′) can only be caused by an inner

call statement in π′1 (i.e., a call to a function in m′), which does not

return.

• In Lemma 6.3.4 we prove, in contrast, that all inner calls of π′ must

terminate if term(π) holds.

The proof is based on the following inference rule, which holds for any given

〈f, f ′〉 ∈ mapF(m) called with the same input in:

∀〈h, h′〉 ∈ mapF(m). hUF wc h′UF ∧
∀〈g, g′〉 ∈ mapF . (g ∈ C(m) ∧ g′ ∈ C(m′))→ m-term(g, g′) ∧
∃π ∈ 〚f(in)〛. term(π)

∀π′ ∈ 〚f ′(in)〛. term(π′)
. (6.14)

Note that the premise simply strengthens the premise of rule (term+) with

the third line, requiring that there exists a finite computation in f(in). In

order to show the soundness of (6.14), we need first to prove the following

lemma:

Lemma 6.3.3. Consider a pair of MSCCs 〈m,m′〉 ∈ mapM and a pair

of functions 〈f, f ′〉 ∈ mapF(m) called with an input in which satisfy the

premise of (6.14). Then

∃π′ ∈ 〚f ′(in)〛. 〈f, f ′〉 ∈ mapF(m) ∧ ¬term(π′)

implies the following:

1. π′1 must contain exactly one call statement which does not return, and

2. the called function must belong to m′.

Proof. The first item is an immediate consequence of observation O2. It is

left to prove that the non-returning function must belong to m′. Let g′(ing)

be this non-returning call. Falsely assume g′ ∈ C(m′). This call is made in

78

f ′(in). term(π) and fUF wc f ′UF imply by Lemma 6.3.1 that g(ing) is called

in π, where 〈g, g′〉 ∈ mapF ∧ g ∈ C(m). This call must terminate because of

term(π). The latter fact and m-term(g, g′) imply that all computations of

g′(ing) are finite, in contradiction to the assumption that the call of g′(ing)

does not return. Hence, the assumption g′ ∈ C(m′) was wrong, which implies

g′ ∈ m′.

Now we can prove the soundness of (6.14). The proof follows similar lines

to those used in the proof above of (term). Specifically, we will extend

Lemma 6.3.2 to cases in which there are mutually-terminating calls outside

the MSCC. Correspondingly, we define

depthm(π)
.
= max{|s| | s ∈ Sm(π)} , (6.15)

where, recall, Sm(π) denotes the subset of stacks in S(π) that consist solely

of functions in a given MSCC m.

Lemma 6.3.4. Rule (6.14) is sound.

Proof. For the finite computation π guaranteed by the third line of the

premise, let d = depthm(π). The proof is by induction on d.

Base: For d = 1, π does not contain any inner calls statements, i.e.,

any calls of functions of m. Falsely assume ¬term(π′), which implies by

Lemma 6.3.3 that π′1 contains some call statement g′(ing) such that g′ ∈ m′.
Since the premise of Lemma 6.3.1 holds (fUF wc f ′UF holds owing to the

premise of (6.14)), π must contain a matching call statement g(ing), where

〈g, g′〉 ∈ mapF(m), in contradiction to the assumption that there are no inner

call statements in π. Hence, term(π′) holds.

Step: Assume that the rule holds up to a given d and the premise holds

at d + 1 for a call f(in). Let π ∈ 〚f(in)〛 be a computation which satisfies

depthm(π) ≤ d+ 1 ∧ term(π). We now prove that the consequent of the rule

is true for d+ 1. Falsely assume:

∃π′ ∈ 〚f ′(in)〛. 〈f, f ′〉 ∈ mapF(m) ∧ ¬term(π′) .

Lemma 6.3.3 implies that f ′(in) must make some call g′(ing), where g′ ∈ m′,
which does not return. Since the premise of Lemma 6.3.1 holds, π contains

79

a matching call statement g(ing), where 〈g, g′〉 ∈ mapF(m). Now note that

depthm(π) ≤ d + 1 and g ∈ m imply that for any subcomputation πg of

π such that πg ∈ 〚g(ing)〛, depthm(πg) ≤ d. By the induction hypothesis,

(6.14) holds up to d and, therefore,

∀π′g ∈ 〚g′(ing)〛. term(π′g)

holds. Consequently, the supposedly non-terminating call of g′(ing) in π′

must have returned, which is a contradiction. Hence, term(π′) holds.

Theorem 6.3.2. (term+) is sound.

Proof. Assume that the premise of rule (term+) holds. Consider 〈f, f ′〉 ∈
mapF(m) called with the same argument in. term(f) implies that every

computation π ∈ 〚f(in)〛 is finite. Falsely assume ¬term(f ′), which implies

that there is an infinite computation π′ ∈ 〚f ′(in)〛. The premise of (6.14)

now holds, and, hence, by Lemma 6.3.4, all the computations of f ′(in),

including π′, must be finite, which contradicts our assumption that π′ is

infinite. Hence, term(f ′) must hold.

80

Chapter 7

Experience and conclusions

We implemented Alg. 2 in RVT [1, 24], and tested it with many small pro-

grams and one real software project. Here we describe the latter.

We tested our tool on the open source project Betik [2], which is an in-

terpreter for a scripting language. The code has 2000 – 2500 lines (depending

on the version). It has many loops and recursive functions, including mu-

tual recursion forming an MSCC of size 14. We compared eight consecutive

versions of this program from the code repository, i.e., seven comparisons.

The amount of changes between the versions varied with an average of 3–

4 (related) functions. Somewhat to our surprise, many of the changes do

not preserve termination behavior in a free context, mostly because these

functions traverse global data structures on the heap.

In five out of the seven comparisons, RVT discovered correctly, in less

than 2 minutes each, that the programs contained mapped functions that do

not mutually terminate. Fig. 7.1 displays two versions of a function called

int value, which receives a pointer to a node in a syntax tree. The old

version compared the type of the node to several values, and if none of them

matched it simply returned the input node. In the new code, a ‘default’

branch was added, that called int value’ with the node’s subtype. In an

arbitrary context, it is possible that the syntax ‘tree’ is not actually a tree,

rather a cyclic graph, e.g., owing to data aliasing. Hence, there is a context in

which the old function terminates whereas the new one is trapped in infinite

recursion.

81

value t *int value(value t *v) {
switch(v→type) {

case 0:
v = . . .;
break;

...
case N:
v = . . .;
break;

}
return v;
}

value t *int value’(value t *v′) {
switch(v′→type) {

case 0:
v′ = . . .;
break;

...
case N:
v′ = . . .;
break;

default:
v′ = int value’(v′→subvalue);

}
return v′;
}

Figure 7.1: Two possibly non-mutually terminating versions of int value.

An additional example in which mutual termination is not preserved is

the code presented in Fig. 7.2. It contains a function called parse funccall

that receives a pointer to a function node and processes it according to the

function name. The newer version handles an additional option for the func-

tion name and calls a new function list set item. The latter receives a

pointer to a list, traverses it from the list head, and modifies data of some

of its items. The traversal ends upon reaching a ‘NULL’ node, but may

not terminate in an arbitrary context, e.g., when the list is cyclic. The new

function is not mapped to any function in the old code. Indeed, Alg. 1 and

Alg. 2 abort in line 5 when encountering this function.

In the remaining two comparisons RVT marked correctly, in less than a

minute each, that all mapped functions are mutually terminating.

7.1 Conclusion and future research.

Checking mutual termination for two whole programs is a crucial sub-task

in proving their full equivalence, which means that they are both partially

82

function parse funccall(fcall t *f)
{

if (!strcmp(f→func name, “env”)) {
. . .
} else if (!strcmp(. . ., “len”)) {
. . .
}

}

function parse funccall’(fcall t *f ′)
{

if (!strcmp(f ′→func name, “env”)) {
. . .
} else if (!strcmp(. . ., “len”)) {
. . .
} else if (!strcmp(. . ., “set”)) {

list t *list′ = . . .;
list set item’(list′, . . .);
}

}

function list set item’(list t *list′, ...)
{

listitem t *item′ = list′→head;
while(item′ != NULL) {
. . .
item′ = item′→next;
}

}

Figure 7.2: Two possibly non-mutually terminating versions of
parse funccall and a newly introduced non-mapped function
list set item’.

83

equivalent and mutually terminating [30, 35]. Particularly, listing the func-

tions that changed their termination behavior owing to code updates may be

valuable to programmers. In this research several steps have been made to-

wards achieving these goals. We showed a proof rule for mutual termination.

We presented a bottom-up decomposition algorithm for handling entire pro-

grams. This algorithm calls a model-checker for discharging the premise of

the rule. Our prototype implementation of this algorithm in RVT is the first

to give an automated (inherently incomplete) tool to the mutual termination

problem.

The limitations of the tool are inherited from RVT itself, namely the fact

that it did not cover various features of C, for instance, unions, abnormal

castings, etc. It is important to note for empirical evaluation that the work

for this thesis has included a large engineering effort for fulfilling the aim of

proving the mutual termination of real programs. We have supported many

of those uncovered features, including as important ones as pointers, some

cases of casting to void ∗ and back. Despite that at the current stage, RVT

is still not utterly robust, its quality has significantly risen.

An urgent conclusion from our experiments is that checking mutual ter-

mination under free context is possibly insufficient, especially when it comes

to programs that manipulate a global structure on the heap. Developers

would also want to know whether their programs mutually terminate under

the context of their specific program. This is not an easy modification to

our algorithm, because the decomposition is based on a bottom-up traversal,

hence ignoring the context. Perhaps, a method can be found that propagates

information down the call graphs that can restrict the context in which pairs

of functions are checked for mutual termination.

Another direction for future research is to improve the information that

is propagated upwards. Specifically, it would be nice to refine the abstrac-

tion imposed by the use of uninterpreted functions. Adding function sum-

maries [12] that provide more information about what these functions do

(thus making them more interpreted) is bound to make the method more

complete.

A third direction is to interface RVT with an external tool that checks

termination: in those cases that they can prove termination of one side but

84

not of the other, the inference rules of Chapter 6 can be useful for proving

termination in the other side. The solution suggested there can be fully au-

tomated unlike many existing approaches for proving termination that rely

on searching for well-founded sets, which can sometimes be tricky. Know-

ing that a pair of functions terminate (not just mutually terminate) can

also be beneficial because in such a situation they should be excluded from

call-equivalence checks of their callers. Also it seems plausible to develop

methods for proving termination by using the rule (m-term+). One needs

to find a variant of the input program that on the one hand is easier to prove

terminating, and on the other hand is still call-equivalent to the original

program.

An orthogonal direction for improving RVT is related to performance.

The current implementation checks the call-equivalence of MSSC pairs iter-

atively one after another. However, decomposition usually creates numerous

pairs whose call-equivalence checks do not require establishing mutual termi-

nation for a majority of the other pairs. RVT could execute such independent

checks as parallel tasks and thus boost its performance on modern multicore

hardware.

Finally, it seems essential to develop algorithms for proving mutual ter-

mination for multithreaded programs. This can be a tough challenge owing

to non-determinism in scheduling of threads, possibility for deadlocks, data

races, and other problems that do not occur in a single-threaded program. A

theoretical research into the related problem of partial equivalence between

multithreaded programs has recently appeared in [8].

85

Appendix

86

A.1 A proof of undecidability of the mutual

termination problem

Theorem A.1.1. The mutual termination problem is undecidable.

Proof. Falsely assume that the mutual termination problem is decidable,

i.e., it is possible to write a Boolean function CheckMutualTerm, which

using only finite amount of time determines whether two given functions are

mutually terminating. Let Ef denote a function having the same prototype

as a function f and immediately terminating without computing anything.

Consider the following function:

function CheckTermination(A function: f)

return CheckMutualTerm(f , Ef);
Since Ef is a terminating function, CheckTermination determines during

finite amount of time whether a given function f is terminating, i.e., it decides

the halting problem. But the latter problem was proven undecidable in [37].

Hence, the assumption that the mutual termination problem is decidable was

wrong.

87

Bibliography

[1] http://ie.technion.ac.il/∼ofers/rvt.html.

[2] Available from http://code.google.com/p/betik.

[3] Wilhelm Ackermann. Zum hilbertschen aufbau der reellen zahlen. Math-

ematische Annalen, 99:118–133, 1928.

[4] Frances E. Allen. Control flow analysis. SIGPLAN Notices 5(7), pages

1–19, 1970.

[5] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of val-

ues in programs. In In Conference Record of the 15th ACM Symposium

on Principles of Programming Languages, pages 1–11. ACM, New York,

January 1988.

[6] Clara Bertolissi. The graph rewriting calculus: properties and expressive

capabilities. PhD thesis, L’Institut National Polytechnique de Lorraine,

2005.

[7] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking

with reachability. In CAV, pages 491–504, 2005.

[8] Sagar Chaki, Arie Gurfinkel, and Ofer Strichman. Regression verifica-

tion for multi-threaded programs. In Verification, Model Checking, and

Abstract Interpretation (VMCAI’12), pages 119–135. Springer-Verlag,

2012.

88

[9] Edmund Clarke and Daniel Kroening. Hardware verification using

ANSI-C programs as a reference. In Proceedings of ASP-DAC 2003,

pages 308–311. IEEE Computer Society Press, January 2003.

[10] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction

refinement for termination. In SAS, pages 87–101, 2005.

[11] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Proving pro-

gram termination. Commun. ACM, 54(5):88–98, 2011.

[12] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. Precise and

compact modular procedure summaries for heap manipulating pro-

grams. In PLDI, pages 567–577, 2011.

[13] Niklas Eén and Niklas Sörensson. Translating pseudo-boolean con-

straints into sat. JSAT, 2(1-4):1–26, 2006.

[14] Dima Elenbogen, Shmuel Katz, and Ofer Strichman. Proving mutual

termination of programs. In Hardware and Software: Verification and

Testing (HVC’12), pages 24–39. Springer-Verlag, May 2013.

[15] S. Even. Graph Algorithms. Computer Science Press, 1979.

[16] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The program dependence

graph and its use in optimization. ACM Trans. on Computer Systems,

9(3):319–349, 1987.

[17] C.N. Fisher and R.J.L. Blanc. Crafting a Compiler. The Benjamin-

Cummings Series in Computer Science. Benjamin/Cummings, 1988.

[18] R.W. Floyd. Assigning meanings to programs. Proc. Symposia in Ap-

plied Mathematics, 19:19–32, 1967.

[19] Lynn E. Garner. On the Collatz 3n + 1 algorithm. Proceedings of the

American Mathematical Society, 82(1):19–22, 1981.

[20] Benny Godlin. Regression verification: Theoretical and implementation

aspects. Master’s thesis, Technion, Israel Institute of Technology, 2008.

89

[21] Benny Godlin and Ofer Strichman. Inference rules for proving the equiv-

alence of recursive procedures. Acta Informatica, 45(6):403–439, 2008.

[22] Benny Godlin and Ofer Strichman. Regression verifica-

tion. Technical Report IE/IS-2011-02, Technion, 2011.

http://ie.technion.ac.il/tech reports/1306207119 j.pdf.

[23] Benny Godlin and Ofer Strichman. Regression verification – proving

equivalance of similar programs. Journal of Software Testing, Verifica-

tion & Reliability, 23(3):241 – 258, 2013.

[24] Benny Godlin and Ofer Strichman. Regression verification. In 46th

Design Automation Conference (DAC), 2009.

[25] M.S. Hecht. Flow Analysis of Computer Programs. North Holland, 1977.

[26] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using de-

pendence graphs. ACM Trans. on Computer Systems, 12(1):26–61, 1990.

[27] Ming Kawaguchi, Shuvendu K. Lahiri, and Henrique Rebelo. Condi-

tional equivalence. Technical Report MSR-TR-2010-119, Microsoft Re-

search, 2010.

[28] Daniel Kroening and Ofer Strichman. Decision procedures – an algorith-

mic point of view. Theoretical computer science. Springer-Verlag, May

2008.

[29] D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe. De-

pendence graphs and compiler optimizations. In Conference Record of

the Eighth ACM Symposium on Principles of Programming Languages,

pages 207–218, 1981.

[30] D.C. Luckham, D.M.R. Park, and M.S. Paterson. On formalized com-

puter programs. J. Comp. Systems Sci., 4(3):220–249, 1970.

[31] Zohar Manna and John McCarthy. Properties of programs and partial

function logic. Machine Intelligence, 5:27–37, 1969.

90

[32] F. Nielson. Program transformation in a denotational setting. ACM

Trans. Prog. Lang. Sys., 7:359–379, 1985.

[33] F. Nielson, H.R. Nielson, and C. Hankin. Principles of program analysis.

Springer-Verlag, Berlin, 2005.

[34] R. Péter. Konstruktion nichtrekursiver funktionen. In Math Annalen,

volume 111, pages 42–60, 1935.

[35] Terrence W. Pratt. Kernel equivalence of programs and proving kernel

equivalence and correctness by test cases. International Joint Conference

on Artificial Intelligence, 1971.

[36] B.K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value num-

bers and redundant computations. In Conference Record of the 15th

ACM Symposium on Principles of Programming Languages, pages 12–

27. ACM, New York, January 1988.

[37] C. Strachey. An impossible program. Computer Journal, 1965.

[38] R.A. Wilhelm, D.A. Maurer, and D. Maurer. Compiler Design. Inter-

national Computer Science Series. Addison-Wesley, 1995.

91

 ג

יש לפתח , כנראה. וץרל אמורות עשויים לדעת האם תוכניותיהם עוצרות בהקשר הספציפי שתחתיו הן
 טה להפצת מידע למטה בגרף הקריאות לשם הגבלת ההקשר שתחתיו נבדקת עצירה הדדית לזוגיש

 .יותצפונק

מומלץ לעדן יותר את , ראשית .להמשך מחקר עתידי בנושא נוספים אנחנו מציעים כיוונים אפשריים

כלים ל יתממשק RVT-כדאי ש, שנית .מפורשות בלתיהקירוב המוטל על ידי השימוש בפונקציות
הפעיל את אז ניתן ל, עוצרתתמיד אם ידוע שאחת הגירסאות . חיצוניים לבדיקת עצירה של פונקציות

ניתן , כמו כן. לשם בדיקה האם גם הגירסה השנייה עוצרתהנחה חלשה יותר בעל +TERMכלל ה
להסיר זוג פונקציות שידועות כעוצרות תמיד מהבדיקות הנדרשות להוכחת העצירה ההדית של

בעית העצירה ההדדית של תוכניות רבות הוא ר מאתגר להמשך המחק תחום, ולבסוף. תוכניותיהן

 .(multithreaded) כיםתהלי

 ב

, כמו כן .מספר פרמטרים שונה הן מקבלות, קרי, נבדליםשתי הפונקציות שקים של נהמבמקרה שבו

)בהתאמה(’h-ו hקוראות לפונקציות ’f-ו fידוע כי במידה ו f’UF-ו fUFניתן לדייק את ההתנהגויות של

בהינתן אותם ש להאכלומר כ ,(partially equivalent) ות חלקיתקולש נןיוה mapF-ממופות ב אשר
הקירוב ניתן לעדן אתבמקרה זה .סופיים בשתיהן מחזיר אותם פלטים קלטים כל זוג חישובים

גם .זהות ’’UFh-ו UFh פונקציות בלתי מפורשותקריאות לב חלפת הקריאות הללוההמוטל על ידי

 .’’UFh-ו UFhלעדן יותר את מסייע ’h-ו h של ת חלקיה שקילותהמידע חלקי אודות

אנחנו מציגים אלגוריתם לפירוק בעית אימות של תוכניות , המתוארים לעילבהסתמך על כללי ההיסק
בהתחלה האלגוריתם בונה . הוכחת העצירה ההדדית של זוגות של פונקציות בודדותשלמות לבעית

 הוא בונה מהם כל אחדמ). G1 -ו G0הם נקרא ל(גרף קריאות בין הפונקציות של כל אחת מהתוכניות
ם רכיביהומנסה למפות בין מקסימלייםגרף מכוון חסר מעגלים של רכיבים קשירים היטב אחרי כן

זוגות ממופים הוא מטפל ב ,אם הוא הצליח .התוכנית הראשונה לבין רכיבי התוכנית השנייה ל של''הנ
לבחירת זוג רכיבים ים כאשר התנאיבאופן סידרתי החל בעלים וכלה בזוג השורש ל''הרכיבים הנשל

לא בוחר קבוצה האלגוריתם ’m-ו mממופים לכל זוג רכיבים .לטיפול הוא שכל בניהם כבר טופלו

 סות את כל המעגליםכל Sעל . mapF-ממופות בו ’m-וm -יכות לישל זוגות של פונקציות שש Sריקה

תהיה Sהקבוצה עדיף ש.)אמהתבה(’m-ו m-השייכות ל בין הפונקציותהנוצרים G1-בו G0-ב
 ,לאחר מכן .הקבוצהשל שיטה לבחירה דטרמיניסטית יםראתאנחנו מ. בגודלה מקסימלית

ממופות ש ’h-ו hקריאות לפונקציות .מייצר עותק לכל אחת משתי התוכניות המקוריות האלגוריתם

 :כדלהלןבעותקים מתעדכנות mapF-ב

 :במידה ואחד התנאים הבאים מתקיים •

o זוגh, h’ ל ךשיי-S ,או

o העצירה ההדדית שלh ו-h’ כבר נקבעה,

 ;)בהתאמה(’UFh - ו UFh בלתי מפורשות קריאות לפונקציותב פותחלומהן

 .)בהתאמה(מן במקונשזר ’h-ו h הקוד שלת ווֹרסָ וּמהן , אחרת •

fמתקבלות באופן זה
UF ו-f’

UF ממופות עבור כל זוג פונקציות f ו-f’)ל ךשייש)בהתאמה-S . אם עבור

כאשר נבדקת עצירה +M-TERMהיסק הכלל תאת הנח מקיים ואנקבע כי ה S-ל ששייך ’f-ו f זוג כל

TERMהיסק הכלל הנחת את ,לחילופין ,או(הדדית
אלה כל הזוגות האזיי ,)כאשר נבדקת עצירה +

 הזה מסביר את העדיפות לבחירת קבוצ .)עוצרת ,לחילופין ,או(הם זוגות של פונקציות עוצרות הדדית

S שהאלגוריתם משתדל להוכיח עצירה הדדית עבור מספר רב ככל שניתן של הרי, ככל שניתן הגדול
של בעזרת כלי ממוחשב לבדיקת תכונות נבדק כלל ההיסק המתאיםשל ההנחהקיום .זוגות פונקציות

 .CBMCבשם C תיכנות תוכניות חסומות בשפת

המימוש . C תוכניות כתובות בשפת עבור דדיה סיוםלבדיקת ל''טיפוס של האלגוריתם הנאב מימשנו
 שתת על כלי לאימות נסיגתיוהוא מ. הוא ראשון מסוגו שעוסק בבעית העצירה ההדדית

(regression verification) בשםRVT .יצוין כי תוך כדי ה אימפירית של עבודתנוהערכ טובתל
שיפרנו , כתוצאת לוואי. תתוכנות אמיתיועם מאמץ הנדסי גדול למען התמודדות הושקע המימוש

 .שלא נתמכו בעבר Cשל שפת מתקדמות תכונות מספר ותמכנו ב RVTמשמעותית את האיכות של

של פרויקט עוקבותגירסאות פיתוח מספר תוכניות פשוטות והן על כמההטיפוס הן על הרצנו את אב
המסקנה המיידית .אנחנו מדווחים על המסקנות שהתקבלו בעקבות הריצות הללו .תוכנה אמיתי

מפתחים . בדיקת עצירה הדדית תחת הקשר חופשי אינה מספיקהכל הנראה כמהבדיקות היא ש

 א

 תקציר

התוכנית כאשר (mutually terminating) הדדית)עוצרות(מסתיימות נקראות שתי תוכניות
בעית העצירה ההדדית של . עוצרת אם ורק אם השנייה עוצרת בהינתן אותם קלטיםהראשונה

המטרה העיקרית של המחקר . ב לעומת בעית העצירה של תוכנית בודדתחתוכניות לא זכתה במחקר ר
פונקציות בהיקראן תחת הקשר של להוכחת עצירה הדדית של זוג נתון שיטה ויישום היא פיתוח

העצירה תהוכח, כגון שתי גירסאות עוקבות של פרויקט תוכנה, קרובות תושתי תוכניבהינתן .חופשי
כחה לעצירה ההדדית של התוכניות ומהווה ה, בהתאמה, שלהןראשיות הפונקציות הההדדית של זוג

שתתת על הוכחה שסידרת חישובים שמבצעת ואינה מ שתי תוכנית עוצרות הדדיתהאם קביעה. עצמן

היא משימה אנחנו משערים כי לכן .(well-founded set)כל תוכנית ניתנת למיפוי ליחס מבוסס היטב
, ןכעל יתר . עוצרת התוכניות המושוותהאם כל אחת מ העיקבאשר קלה יותר לחישוב אוטומטי מ

 יותתגובתכגון תוכניות , על פי התיכון שלהןעם כל הקלטים אמורות לעצור אינןת שקיימות תוכניו

(reactive programs) .

 תהליכים- ללא תתי, קרי(דטרמיניסטיות שתי תוכניות אנחנו מתמקדים בהוכחת סיום הדדי של

(single-threaded) דטרמיניזם מובנה-איוללא(P0 ו- P1. מקדימות פעולות לושש ותנדרש כךלשם:

הסיבה הבלעדית שנותרה לריצה אינסופית ,לאחר שלב זה. המרת כל לולאה לרקורסית זנב)א
 . קריאות רקורסיביותשל תוכנית היא

. לרשימת הפרמטרים הפורמלית שלהניגשת אליהם פונקציה שמשתנים גלובלים צירוף של)ב
 .בהתאם ותמתעדכנ זאת קריאות לפונקציה

 אם כי חשוב, המיפוי יכול להיות חלקי. P1 -ו P0נקציות של בין הפו mapFמיפוי ניתב)ג
 של הקוד. סה את כל המעגלים בגרף הקריאות בין הפונקציות של כל אחת מהתוכניותכשי

 .מקומות שבהם הפונקציה נקראתב)inlined(נשזר תילא ממופש הפונקצי

g (overapproximation)עלמ-אנחנו מגדירים פונקצית קירוב gת יממופ ציהלכל פונק
UF וך החלפת ת

נקרא (מתאימה (uninterpreted function)מפורשת בלתיבקריאה לפונקציה hכל קריאה לפונקציה

להוכחת עצירה הדדית +M-TERM בשם כלל היסקאנחנו מציעים זאת בעזרת הגדרה.)UFhלה בשם

in ,fתן קלט שרירותי בהינ כידורשת הכלל הנחת. ’f-ו f ממופות פונקציותשל של זוג נתון
UF
(in) ו-

f’
UF
(in) ממופות בש ציותמחליפות זוג פונקשבלתי מפורשות קוראות לפונקציות-mapF עם אותם

 model)לבדיקת תכונות ייםאוטומטי םבעזרת כליממוחשבת לבדיקה ןההנחה ניתקיום . ארגומנטים

checkers). זוגות של הם כולם אזי, ותממופהפונקציות של הזוג כלעבור אם ההנחה מתקיימת
 .פונקציות עוצרות הדדית

TERM בשם גירסה נוספת
מאפשרת הוכחת עצירה בעלת הנחה חלשה יותר ל ''הנההיסק של כלל +

 fהפונקציה כי ידועכאשר תוכנית נתונה שלגירסאות האחת של ’fפונקציה של) לא רק סיום הדדי(

כי ולכל קלט עוצרת f כי דורשתהכלל תהנח .כל קלט עוצרת בהינתן השנייה גירסהב ’f-הממופת ל

’f-לכל קריאה ב, inבהינתן קלט שרירותי
UF
(in) לפונקציה בלתי מפורשתUFh’ עם קיימת קריאה

f-ב UFhלפונקציה בלתי מפורשת אותם ארגומנטים
UF
(in) , כאשרf ו-f’ וכןh ו-h’ בהתאמה(ןה (

, ממופותהפונקציות של הזוג כלההנחה מתקיימת עבור אם .mapF-ממופות בשזוגות של פונקציות
 .עוצרותהממופות של התוכנית השניה פונקציות כל האזיי

. שלנו בהיותו נאות לא יכול להיות שלםלכן הפתרון . באופן כללי כריעהאינה העצירה ההדדית בעית
כולל בין היתר ,ישתנוהשלמות הטבועה בג כדי להילחם באיבאף על פי כן אנחנו מציעים מספר שיטות

כ"ץ שמואל פרופ' של משותפת ובהנחייה שטריכמן עופר פרופ''ח בהנחיית נעשה המחקר
המחשב. למדעי בפקולטה

על מבוסס זה חומר בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
מספר להסכם בכפוף האמריקאי האוויר חיל של מחקר מעבדת על־ידי שמומן מחקר
זה חומר של העתק ולהפיץ להעתיק רשאית הברית ארצות ממשלת .FA60035558־11־1־

יוצרים. זכויות אודות הערה מכל התעלמות תוך ממשלתי לשימוש

תוכניות של הדדי סיום הוכחת

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

אלנבוגן דימה

לישראל טכנולוגי מכון – הטכניון לסנט הוגש
2014 מאי חיפה ה'תשע"ד אייר

תוכניות של הדדי סיום הוכחת

אלנבוגן דימה

