Proving Mutual Termination of

Programs

Dima Elenbogen

Proving Mutual Termination of

Programs

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Dima Elenbogen

Submitted to the Senate of
the Technion — Israel Institute of Technology
Iyar 5774 Haifa May 2014

The research thesis was done under the supervision of Assoc. Prof. Ofer
Strichman and under the joint supervision of Prof. Shmuel Katz in the Com-
puter Science Department.

The generous financial support of the Technion is gratefully acknowledged.
This material is based on research sponsored by the Air Force Research Lab-
oratory, under agreement number FA8655-11-1-3006. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

Contents

Abstract
Abbreviations and Notations

1 Introduction
1.1 Structure of this thesis

2 Preliminaries
2.1 Preprocessing and mapping
2.2 Definitions and notations
2.2.1 Mutual termination
2.2.2 Call equivalence
2.2.3 Function isolation.
2.2.4 Partial equivalence.

3 Proof rules
3.1 Incompleteness
3.2 Checking the premise
3.3 Generalization Lo
3.4 Soundness proofs for (M-TERM) and (M-TERM')
3.4.1 Proof of (M-TERMT)

4 A decomposition algorithm
4.1 The algorithm oo
4.1.1 Examples
4.2 Choosing a vertex feedback set deterministically

4.2.1 Recycling proofso
4.2.2 Optimizing function CHOOSES

5 Improving completeness
5.1 Reducing prototypes of loop-replacing functions
5.2 Mapping functions with different numbers of input parameters
5.2.1 Detecting termination-inert input parameters
5.3 Partial equivalence with respect to a subset of outputs

6 Inference rules for proving termination
6.1 Proofrule (TERM)
6.2 Generalized rule (TERMT)
6.3 Soundness proofs for (TERM) and (TERMT)
6.3.1 Proof of (TERM™").

7 Experience and conclusions
7.1 Conclusion and future research.

Appendix
A.1 A proof of undecidability of the mutual termination problem .

Bibliography

Abstract in Hebrew

i

54
25
58
63
65

69
69
73
73
7

81
82

86
87

88

List of Figures

2.1
2.2

3.1

3.2
3.3

3.4

4.1

An implementation of the McCarthy-91 program [31].

An illustration of a computation m € [f(99)], where f is de-
fined in Fig. 2.1. 7! is highlighted with gray shading.

Two variations on the Collatz (“3x + 17) function that are
mutually terminating. f (f’) returns the total number of
times the function was called with an even (odd) number.
We use the convention that % is the modulo operator, ‘=" is
an assignment and ‘=’ is equality. Note that when a’ is odd,
a'/2 = (a’ —1)/2, and, hence, 6(a’/2) +4=3da"+1.
The isolated versions of the two given functions of Fig. 3.1. . .
Transition relations Tyur and Tpur derived from fYF and
'YF | respectively. The definitions of fUF and fVF appear
in Fig. 3.2. The static single-assignment form [36] is used,
e.g., ap, ay, ..., stand for the different versions of a.
The flat program that we generate and then verify its asser-
tion, given the two functions of Fig. 3.1. Note that in the
pseudo-code above, UF (g, in) represents U Fy(in) in the main
text of the thesis. The definitions of fUF" and f'VF appear in
Fig. 3.2 o o

Functions UF and UF’ emulate uninterpreted functions if in-
stantiated with functions that are mapped to one another.
They are part of the generated program 9, as shown in CALLE-
Qu1v of Alg. 1. These functions also contain code for recording
the parameters with which they are called.

il

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

Call graphs of the programs discussed in Ex. 4.1.1. Partially
equivalent functions are marked gray.
A mapped pair of MSCCs. Each one consists of a simple
recursive function. L Lo
Call graphs of the isolated versions of f; and f;. UF}, and
UFy;, which have replaced the calls to f5 and f, respectively,

emulate the same uninterpreted functions and are marked gray.

Call graphs of the isolated versions of f; and fiI. Partially
equivalent UFy, and UFy;, which have replaced the calls to f5
and ff, respectively, are marked gray.
Call graphs of the isolated versions of f, and fj. Partially
equivalent UF, UF’, which respectively replace calls to f5, f7
and fy, fj, are distinguished as UFy, ,UFy and UFy,, UFy,
respectively, for better understanding.
Call graphs of the isolated versions of f, and f;. UF and UF’,
which replace calls to f, and f], respectively, are distinguished
with UFy, and UFYy,, respectively, for better understanding.
They emulate different uninterpreted functions.
Call graphs of the isolated versions of f; and f]. Two different
uninterpreted functions UF and UF’, which replace calls to fo
and f3, respectively, are distinguished as UFy, and UF 7}, Te-
spectively, for better understanding. The same uninterpreted
functions UF and UF’, which replace calls to f, and f}, respec-
tively, are distinguished as UF}, and UFy;, respectively.
Call graphs of the isolated versions of f; and f] when (fs, f5)
¢ S. The same UF, UF’, which respectively replace calls to
fs, f5 and f4, f}, are distinguished as UFy,, UFy;, and UFy,,
UFy;, respectively, for better understanding.
Call graphs of the isolated versions of f; and f{. The same
uninterpreted functions UF and UF’, which replace calls to f4
and f}, respectively, are distinguished as UF}y, and UFy;, re-
spectively, for better understanding. The same uninterpreted
functions UF and UF’, which replace calls to f5 and ff, respec-
tively, are distinguished as UF}, and U F}., respectively.

v

34

36

39

4.11 An example of MSCC where a counterexample may be gener-
alized.

4.12 Call graphs of the programs discussed in Ex. 4.2.1. Partially
equivalent functions are gray.

4.13 A pseudo-Boolean formulation of the optimization problem of
finding the largest set of function pairs intersecting all cycles in
both {f7, fs, fo} and {f7, f&, f$, fio}- The list of the transitive
closure constraints (iii) is not full as floccinaucinihilipilificated
constraints are omitted here.

5.1 Two versions of programs each of which contains a loop with
an uninitialized variable y (y’) which is written-to before ever
beingread..

5.2 Two versions of programs from Fig. 5.1 after elimination of
their loops.

5.3 Parts of the program generated for proving the mutual termi-
nation of functions main, main’, defined in Fig. 5.2.

5.4 Two versions of programs from Fig. 5.1 after replacement of
their loops with functions and reduction of variables y and
y' from the argument lists of those replacing functions. See
Fig. 5.2 for a comparison. L.

5.5 Two versions of a program where functions h and h' have
different prototypes. Nevertheless, we would like to prove

5.6 Function A/ |y, derived from function b’ (see Fig 5.5) ‘hiding’
b' from the parameter list (see Def. 5.2.2).

5.7 The System Definition Graph [26] of the sub-program starting
in function h’, defined in Fig 5.5.

5.8 (top) Functions g and ¢" are partially equivalent with respect
to their return value, but not with respect to the other output
xp,*p’. We show that this ‘restricted’ partial equivalence is
sufficient for proving mutual termination; (bottom) the iso-
lated versions of g, ¢’.

o6

5.9 Implementations for functions UF and UF’, where the lat-
ter takes into consideration partial information about partial
equivalence. UF and UF’ emulate uninterpreted functions if in-
stantiated with functions that are mapped to one another, and
form a part of the generated program 4, as shown in CALLE-
Quiv of Alg. 1 or in the determinization thereof Alg. 2 (see
pages 29, 42). These functions also contain code for recording
the parameters with which they are called. 68

6.1 The original Ackermann [3] function ¢ and its two-variable
variation A, developed by Péter and Robinson [34]. 70
6.2 The isolated versions of the original Ackermann function ¢
and its more famous two-variable variation A, developed by
Péter and Robinson.o 71
6.3 An illustration of depth(r), defined in (6.12), for a computa-
tion 7 € [f(99)], where f is defined in Fig. 2.1. For a subcom-
putation 7y, of 7 beginning at g (a callee of f), depth(m,,) <

7.1 Two possibly non-mutually terminating versions of INT_VALUE. 82
7.2 Two possibly non-mutually terminating versions of PARSE_FUNCCALL
and a newly introduced non-mapped function LIST_SET_ITEM’. 83

vi

List of Tables

4.1

4.2

4.3

Predicate labels used in the decomposition algorithm.

Applying Alg. 1 to the call graphs in Fig. 4.2 under the as-
sumptions made in Ex. 4.1.1 about the results of CALLEQUIV.
The following notations are used in the table:

‘v"? means that the pair is marked m_term,

‘v’ means that it is marked conditionally (it becomes uncon-
ditional once all other pairs in S are marked as well), and

‘X’ means that it is not marked m_term;

‘() denotes that UF and UF’ emulate the same uninterpreted
functions, while

“(7)” denotes that they emulate different uninterpreted func-
tlons.

Applying Alg. 1 to the call graphs in Fig. 4.2 under the as-
sumptions made in Ex. 4.1.2 about the results of CALLEQUIV.
The following notations are used in the table:

‘v means that the pair is marked m_term,

‘X’ means that it is not marked m_term;

‘() denotes that UF and UF’ emulate the same uninterpreted
functions, while

“(7)” denotes that they emulate different uninterpreted func-
tlons.

vii

5.1

5.2

Definition of WT analysis. This is an intraprocedural flow-
sensitive forward (F = flow(S)) must (|| = () analysis.
Let def(n) denote the set of the variables updated in the con-
trol flow graph node n. See Chapter 2 of [33] for understanding
the rest of the notations used here.
Definition of RU analysis. This is an intraprocedural flow-
sensitive forward (F = flow(S,)) may (|] = |J) analysis.
Let use(n) denote the set of the variables which are read in
the control flow graph node n. See Chapter 2 of [33] for un-
derstanding the rest of the notations used here.

viii

List of Algorithms

1 Pseudo-code for a bottom-up decomposition algorithm for prov-
ing that pairs of functions mutually terminate. 29
2 Determinization of Alg. 1. 42

3 Pseudo-code for function CHOOSES, which finds a feedback
vertex set over a given pair of MSSCs while blocking previously
failed solutions. 43

4 An optimized version of function CHOOSES presented in Alg. 3. 47

) Algorithm for checking whether an input argument is termination-
inert. 63

6 CaLLEQuiv from Alg. 2 updated for proving termination of
functions. 74

X

Abstract

Two programs are said to be mutually terminating if they terminate on ex-
actly the same inputs. We suggest inference rules and a proof system for
proving mutual termination of a given pair of functions (f, f’) and the re-
spective subprograms that they call under a free context. Given a (possibly
partial) mapping between the functions of the two programs, the premise of
the rule requires proving that given the same arbitrary input in, f(in) and
f'(in) call functions mapped in the mapping with the same arguments. A
variant of this proof rule with a weaker premise allows to prove termination of
one of the programs if the other is known to terminate for all inputs. In addi-
tion, we suggest various techniques for battling the inherent incompleteness
of our solution, including a case in which the interface of the two functions
is not identical, and a case in which there is partial information about the
partial equivalence (the equivalence of their input/output behavior) of the
two given functions.

We present an algorithm for decomposing the verification problem of
whole programs to that of proving mutual termination of individual func-
tions, based on our suggested inference rules. The reported prototype imple-
mentation of this algorithm is the first to deal with the mutual termination
problem.

Abbreviations and Notations

Notation
=(0,0')
[f(in)]
||

e
C(m)
call-equiv
callees
calls
covered
DAG
depth
depth,,

fiB

fUF

UF
S

input

1solated version

left side
m-term
m_term

Page(-s)
67
9
21
69
19
10
11
10
28
13
75
79
61
11
45
9
11
41
9, 61
28

Notation

map
mapr
mapz(m)
mapped
MSCC

out(f)
p-equiv
D-€qUIV (o o)
part_eq
part_eq(oq

S

S(m)

S ()

term

trivial MSCC
UFy

IT

7T1

7TUF

Page(-s)
13

8

13

21

13
67

12
67
28
67
30
21

21

9, 69
13
10
61

9

20

Chapter 1

Introduction

Whereas termination of a single program has been widely studied (e.g., [7, 10,
11, 18]) for several decades by now, with the focus being, especially in the last
few years, on automating such proofs, little attention has been paid to the
related problem of proving that two similar programs (e.g., two consecutive
versions of the same program) terminate on exactly the same inputs. Ideally
one should focus on the former problem, but this is not always possible either
because the automatic techniques are inherently incomplete, or because the
program does not terminate on all inputs by design, e.g., a reactive program.
In such cases there is value in solving the latter problem, because developers
may wish to know that none of their changes affect the termination behavior
of their program. Moreover, the problem and solution thereof can be defined
in the granularity of functions rather than whole programs; in this case the
developer may benefit even more from a detailed list of pairs of functions
that terminate on exactly the same set of inputs. Those pairs that are not
on the list can help detecting termination errors.

Our focus is on successive, closely related versions of a program because
it both reflects a realistic problem of developers, and offers opportunities for
decomposition and abstraction that are not possible with the single-program
termination problem. This problem, which was initially proposed in [21]
and coined mutual termination, is proven undecidable in Appendix A.1 via
a simple reduction from the halting problem. We argue, however, that in
many cases it is easier to solve automatically, because unlike termination

proofs for a single program, it does not rely on proving that the sequence
of states in the programs’ computations can be mapped into well-founded
sets. Rather, it can be proven by showing that the loops and recursive
functions have the same set of function calls given the same inputs, which
is relatively easier to prove automatically. In Sect. 3.2, for example, we
show how to prove mutual termination of two versions of Collatz’s famous
3z + 1 problem [19]; whereas proving termination of this program is open for
many decades, proving mutual termination with respect to another version
is simple.

Our suggested method for decomposing the proof is most valuable when
the two input programs P and P’ are relatively similar in structure. In fact,
its complexity is dominated by the difference between the programs, rather
than by their absolute size. It begins by heuristically building a (possibly
partial) map between the functions of P and P’. Tt then progresses bottom-
up on the two call graphs [4], and each time proves the mutual termination of
a pair of functions in the map, while abstracting their callees. The generated
verification conditions are in the form of assertions about ‘flat’ programs (i.e.,
without loops and recursive calls), which are proportional in size to the two
compared functions. It then discharges these verification conditions with a
bounded model-checker (CBMC [9] in our case). Each such program has
the same structure: it calls the two compared functions sequentially with
the same non-deterministic input, records all subsequent function calls and
their arguments, and asserts in the end that they have an equivalent set of
function calls. According to our proof rule, the validity of this assertion is
sufficient for establishing their mutual termination.

The algorithm is rather involved because it has to deal with cases in which
the call graphs of P and P’ are not isomorphic (this leads to unmapped func-
tions), with mutually recursive functions, and with cases in which the proof of
mutual termination for the callees has failed. It also improves completeness
by utilizing extra knowledge that we may give to it on the partial equivalence
of the callees, where two functions are said to be partially equivalent if given
the same inputs they terminate with the same outputs, or at least one of
them does not terminate. If we know that two mapped callees are partially
equivalent, we abstract them with the same uninterpreted function, which

4

increases our chance to prove mutual termination. Partial equivalence was
studied in [21, 24]. It is implemented in RVT [24] and Microsoft’s SymD-
IFF [27]. We also implemented our algorithm in RVT, which enables us to
gain this information in a preprocessing step.

To summarize our contributions in this thesis, it presents:

e a proof rule for inferring mutual termination of recursive (and mutually-
recursive) functions at the leaves of their respective call graphs,

e an extension of the first rule that applies also to internal nodes in the
call graphs, and

e a proof rule for inferring termination of one function (not mutual ter-
mination) in case the other function is known to be terminating.

More importantly,

e it shows how these rules can be applied to whole programs via a bottom-
up decomposition algorithm, and

e reports on a prototype implementation of this algorithm — the first to
deal with the mutual termination problem.

Some of the results of the research work to be reported in this thesis have
been recently published in [14].

1.1 Structure of this thesis

This thesis is structured as follows. The next chapter gives a formal defini-
tion of our problem and describes the preprocessing steps which are applied
to programs so that we were able to use our proof rules and decomposition al-
gorithm. Chapter 3 proposes a proof rule for proving mutual termination for
functions in mutual recursion and a generalization thereof to cases in which
functions outside the mutual recursion component are called as well. Chap-
ter 4 suggests a method for applying the generalized rule to whole programs,
based on a bottom-up traversal of the two call graphs. The completeness of
that method is the subject of Chapter 5, which proposes several methods for

improving it. Chapter 6 considers a problem related to mutual termination:
assuming that P terminates, prove that P’ terminates. Experiments and
conclusions are summarized in Chapter 7. The appendix contains a proof
that the mutual termination problem is undecidable.

Chapter 2

Preliminaries

2.1 Preprocessing and mapping

Let P and P’ be two programs whose mutual termination is to be checked.
The following three preprocessing steps are applied to them:

1. All loops are extracted to new recursive functions. By function we refer
to a programming language entity, rather than a mathematical entity.
The description of this step is thoroughly detailed in Appendix C of [20].
An interested reader can see an example in this thesis how extracting
the loops of the programs listed in Fig. 5.1 results in programs as listed
in Fig. 5.2 (pages 55-56). Implicit loops caused by goto statements
directed backward and long-jumps (goto outside the function scope)
are not supported.

When this step is passed, no loops remain in functions. Hence, non-
termination can only arise from recursion.

2. All global variables that are read by a function are appended to its
formal parameter list, and the calling sites are changed accordingly.
This is not essential for the proof, but simplifies the presentation. It
should be noted that this step in itself is impossible in general programs
that access the heap, because it is undecidable whether there exists
an input to a function that causes the function to read a particular
variable. Our only way out of this problem is to point out that it

7

is easy to overapproximate this information (in the worst case just
take the whole list of global variables) and to state that, based on
our experience with a multitude of real programs, it is rather easy
to compute this information precisely or slightly overapproximate it
with static analysis techniques such as alias analysis. Indeed, the same
exact problem exists in RVT and SYMDIFF for the case of partial
equivalence, and there, as in our case, overapproximation can only
hinder completeness, not soundness. In general, we will not elaborate
on issues arising from aliasing because these are not unique to mutual
termination, and are dealt with in [24, 27].

3. A bijective map mapr between the functions of P and P’ is derived.
We apply the same heuristics for deriving this map as those that were
used in [23]. For functions f € P and f' € P’ it is possible that
(f,f") € mapg only if f and f’ have the same prototype, i.e., the
same list of formal input parameter types. We emphasize that the
output of the two functions need not be compatible (e.g., f can update
more global variables than f’). The restriction to bijective maps seems
detrimental for completeness, because the two compared programs are
not likely to have such a map. In practice with inlining such a mapping
is usually possible, as we will describe later in Sect. 3.2. Our goal is to
prove mutual termination of pairs of functions in mapzx.

2.2 Definitions and notations

2.2.1 Mutual termination

Although we assume that the compared functions are originally determinis-
tic (i.e., no internal non-determinism resulting from uninitialized variables,
etc.), since our methodology introduces non-determinism as part of the so-
lution process, the definitions and proofs in this article will refer to non-
deterministic functions. By non-deterministic function, we mean a modeling
tool for the purpose of verification, i.e., the verification engine checks the
verification condition under every possible value in the range defined by the
type of the function’s return-value.

Given a function f and actual values in for its inputs, let [f(in)] denote
the set of all possible computations of the call of f(in), i.e., sequences of
states that begin right after the call f(in), and are either infinite (in case
f(in) does not return) or end at the exit from the call. By convention,
[f(in)] = 0 if 4n does not match the input signature of f. Let term(r)
denote that a given computation 7 is finite, i.e., it represents a terminating
computation. We now define:

Definition 2.2.1 (Mutual termination of functions). Two functions (f, f') €
mapr are mutually terminating if and only if

Vin,in'. in =in’ — Vr € [f(in)], " € [f'(in’)]. term(n) < term(n’) .
(2.1)

Note that a function that can either terminate or not terminate on the
same input cannot be mutually terminating with any other function accord-
ing to this definition. Let m-term(f, f') denote the fact that f and f’ are
mutually terminating functions. We emphasize that the inputs ¢n and in’
may include the heap.

The definition of mutual termination between programs is quite similar
to Def. 2.2.1:

Definition 2.2.2 (Mutual termination of programs). Two programs (P, P’
are mutually terminating if and only if

Vin,in'. in = in’ — Vr € [P(in)], 7’ € [P'(in’)]. term(xw) > term(x’) ,
(2.2)

where we override [P(in)] to denote the set of all possible computations of
program P with input 2n.

2.2.2 Call equivalence

Given a computation m € [f(in)], we denote by 7! the projection of 7 to
states in the top frame of the stack. Note that we follow the convention by
which the stack grows downwards. The top frame therefore contains states
reachable in the initial call of f. This implies that 7! includes states in f

function f(int n) function g(int n)
if n > 100 then return n—10; int ret ;= f(n);

int temp := g(n + 11); return ret;
return g(temp);

Figure 2.1: An implementation of the McCarthy-91 program [31].

itself, but does not include states in recursive calls to f or in other functions
that f calls. An example of a computation 7 and its corresponding 7! is
given in Fig. 2.2. Let calls(n!) denote the set (not a multiset) of function-
call statements found in 7!, or, formally:

calls(m) = {(g,in,) | g(in,) is called in 7'} . (2.3)

For example, for 7 given in Fig. 2.2, calls(r') = {(g,110), (g, 100)}. We use
the set calls to define:

Definition 2.2.3 (Call-equivalence of functions). Functions f and f’ are
call-equivalent if and only if

Vin,in' in =in’ — V1 € [f(in)], 7 € [f'(in')]. calls(z') = calls(z'") .
(2.4)

Denote by call-equiv(f, f') the fact that f and f’ are call-equivalent. It
is undecidable to determine call-equiv(f, f'). We, therefore, abstract the
callees as explained next.

2.2.3 Function isolation.

With each function g, we associate an uninterpreted function U F, such that
g and UF, have the same prototype and return type. This definition is
generalized naturally to cases in which g has multiple outputs owing to global
data and arguments passed by reference. An uninterpreted function returns a
non-deterministic value, but is constrained to return the same value if called

10

g(110 .r—J I 9(100)
sa—— fao,——
g1 ——

fin,——

Figure 2.2: An illustration of a computation 7 € [f(99)], where f is defined
in Fig. 2.1. 7! is highlighted with gray shading.

multiple times with the same inputs. In Sec. 3 we will describe how we
model this function in a standard programming language. For now it is only
important to know that it does not contain function calls or unbounded loops.
Let callees(f) denote the set of the functions called in f. We emphasize that
callees(f) is defined syntactically, i.e., it contains the functions that appear
in the code of f, regardless of whether they are actually called with any
particular input. We now define:

U = flg(exprin) < UF,(expri,) | g € callees(f)] , (2.5)

where expr;, is the expression(s) denoting actual argument(s) with which
g is called. fUF is called the isolated version of f. By construction it has
no loops or function calls, except for calls to uninterpreted functions, which,
recall, in themselves do not call functions or have unbounded loops. For this

reason call-equiv(fUF, f'VF) is decidable.

The definition of fUF" requires all function calls to be replaced with un-
interpreted functions. A useful relaxation of this requirement, which we will
later use, is that it can inline non-recursive functions. Clearly, the result is
still nonrecursive. Therefore, we still refer to this as an isolated version of f.

11

2.2.4 Partial equivalence.

The following definition will be used for specifying which functions are asso-
ciated with the same uninterpreted function, when isolating their callers:

Definition 2.2.4 (Partial equivalence of functions). Two functions f and f
are partially equivalent if and only if any two terminating computations of f
and f’ starting from the same inputs, return the same value.

Denote by p-equiv(f, f') the fact that f and f’ are partially equivalent.
We enforce that

UF,=UFy; — ({g,¢") € mapr A p-equiv(g,g')) (enforce-1), (2.6)

i.e., we associate g and ¢’ with the same uninterpreted function only if
(9,9") € mapr, and g, g’ were proven to be partially equivalent. The list
of pairs of functions that are proven to be partially equivalent is assumed to
be an input to the mutual termination algorithm.

12

Chapter 3

Proof rules

A rule for proving mutual termination of individual ‘leaf’ functions (i.e.,
that do not call functions other than themselves) appears in [21]. Here we
strengthen that rule by making its premise weaker, and consider the more
general problem of proving mutual termination of any pair of functions (in-
cluding mutually recursive ones), which enables us to consider whole pro-
grams.

Given a call graph of a general program, a corresponding directed acyclic
graph (DAG) may be built by collapsing each maximal strongly connected
component (MSCC) into a single node. Nodes that are not part of any cycle
in the call graph (corresponding to non-recursive functions) are called trivial
MSCCs in the DAG. Other MSCCs correspond to either simple or mutually
recursive function(s). Given the MSCC DAGs of the two input programs,
denote by mapn a map between their nodes, which is consistent with mapx.
Namely, if (m, m') € mapp, f is a function in m, and (f, f’) € mapz, then
1" is a function in m’ (and vice-versa).

Consider, then, two nontrivial MSCCs m, m/ such that (m,m’) € mapu,,
that are leaves in the MSCC DAGs. A projection of mapr to an MSCC m
(regardless of whether m is a leaf or not) is defined in the natural way:

mapr(m) = {(f, ') [{f,[') € mapz, f € m} . (3.1)

Our goal is to prove mutual termination of each of the pairs in mapxz(m).

13

The following proof rule gives us a way to do it by proving call-equivalence
of each of these pairs:

V<f7 f/> € mapf(m). call—equiu(fUF7 f/UF>
Y{f, ") € mapzr(m). m-term(f, f')

(M-TERM) (3.2)

Its soundness will be proven in Sect. 3.4.

The premise of (3.2) is weaker than (hence, the rule itself is stronger than)
the one suggested in [21], because the latter required the compared functions
to be partially equivalent. Furthermore, whereas [21] refers to leaf MSCCs
only, later on in this chapter we will generalize (3.2) so it also applies to
non-leaf MSCCs, and, hence, tackles the general case.

3.1 Incompleteness

The abstraction of calls using uninterpreted functions is a major source of
incompleteness. Two examples of incompleteness are:

o call-equiv(fUF, f'VF) may be false, but the counterexample may rely
on values returned by an uninterpreted function that are different than
what the corresponding concrete function would have returned if called
with the same arguments.

e The concrete versions of a function do not terminate, but their abstrac-
tions terminate and are followed by different function calls on the two
sides, which leads to call equivalence not being true.

We continue this chapter by discussing how the premise of (M-TERM) can
be checked (Sec. 3.2) and how this rule can be generalized to whole programs
(Sec. 3.3). Finally, in Sec. 3.4, we prove soundness.

3.2 Checking the premise

We check the premise of (3.2) by building a loop- and recursion-free program
for each pair of functions that we want to prove call equivalent, which includes

14

function f(int a) function f'(int a’)
int even := 0, ret := 0; int t',odd' := 0, ret’ := 0;
if a > 1 then if o’ <1 then return ret’;
if =(a % 2) then > even t=d/2;
a:=a/2; if @'%2 then > odd
even = 1; a =6t +4;
else a := 3a + 1; odd =1,
ret ;= even + f(a); else ¢’ :=1/;
return ret; ret' = odd' + f'(d);
return ret’;

Figure 3.1: Two variations on the Collatz (“3z + 1”) function that are mu-
tually terminating. f (f’) returns the total number of times the function
was called with an even (odd) number. We use the convention that % is the
modulo operator, :=’ is an assignment and ‘=" is equality. Note that when
a' is odd, a'/2 = (a/ — 1)/2, and, hence, 6(a’/2) +4 = 3d' + 1.

an assertion whose validity proves the premise. Checking the validity of
assertions in such programs is decidable for programming languages with
finite types such as C, and indeed our implementation uses the software
model checker CBMC [9] for this purpose. Here we describe the construction
informally, and only for the case of simple recursion at the leaf functions. We
will consider the general case in a more formal way in Chapter 4.

Let f, f" be simple recursive functions that only call themselves. We as-
sociate a set of call instructions with each called function. For example, in
f only f itself is called, and, hence, we maintain a set of call instructions to
f. We then build a program with the following structure: main assigns equal
non-deterministic values to the inputs of f and f’. It then calls an implemen-
tation of fUF and f'YF, and finally asserts that the sets of call instructions
are equal. The example below (hopefully) clarifies this construction. From
now on, we use the convention in pseudo-codes by which % is the modulo

“=’is an assignment and ‘=" is equality.

operator,
Example 3.2.1. Consider the two variants of the Collatz (“3z + 1”) pro-

15

function fUF(int a)
int even := 0, ret := 0;
if a > 1 then
if =(a % 2) then
a:=a/2;
even = 1;
else a :=3a + 1;

> even

function f'VF(int o)
int ¢, odd' := 0, ret’ := 0;
if ¢’ <1 then return ret’;
t=d /2
if ’%2 then
a =6t +4;
odd = 1;

> odd

else o' :=1t/;
ret' :=odd + UF(f',d');

return ret’;

ret := even + UF(f,a);
return ret;

Figure 3.2: The isolated versions of the two given functions of Fig. 3.1.

gram [19] in Fig. 3.1, which return different values (see explanation in the
caption of the figure). The Collatz program is a famous open problem in ter-
mination: no one knows whether it terminates for all (unbounded) integers.
That’s why the question whether call equivalence can be proven is partic-
ularly interesting. Indeed, proving mutual termination of the two variants
given here is easy.

The definitions of fUF, f'UF appear in Fig. 3.2. Note that in this case
f, f" are not partially equivalent, and, therefore, according to (2.6) we replace
the recursive calls with different uninterpreted functions. Indeed, we call
UF above with two different function indices (f and f’), which means that
on equal values of a and o' they do not necessarily return the same non-
deterministic value.

A proof-theoretic method for establishing call-equiv(fUF, f'F) formu-
lates a verification condition which is valid only if the two functions are
call-equivalent. For this purpose we need to represent the transition relation
of the two functions Tyur, T ur, which can be easily done with the help of
the static single assignment form [5, 36], e.g., we use ag, ay, ... for the different
versions of a. Fig. 3.3 presents Trur and Tpur. In this case the verification

16

eveng =0 A to=0A

reto =0 A oddy =0 N
a; = ap/2 A rety, =0 A
even; = 1 A L=a/2 N
as =3ap+1 A a) =6t +4 A
az = —(ap%2) 7 ay : as A odd), =1 A

eveng = —(ag%2) 7 eveny : eveng A | ay =1t} A
rety = ag > 17 eveny + UF(f, a3) aly = al %27 d :dy A

: rety oddy = a{%2 7 oddy : oddy N
ret) = —(ay < 1) 7 oddy + UF(f', a})
s rety,
TfUF Tf/UF

UF
fUT and f77,

Figure 3.3: Transition relations Tjvr and T'ur derived from and
respectively. The definitions of fUF and fY appear in Fig. 3.2. The static
single-assignment form [36] is used, e.g., ag,ay, ..., stand for the different

versions of a.

condition is:

(Tyor A Tpor A ag=ay) — > given the same inputs

(((ap > 1) < =(ap <1)) A > equal guards (3.3)

((ap >1) — > if called, then '
(az = dj))) - > equal arguments

This is easy to validate using a decision procedure for linear arithmetic and
uninterpreted functions [28].

In this case we are able to prove termination without partial equiva-
lence, because the return values of UF; and UF7, affect neither the guarding
conditions nor the input arguments of other function calls. We defer the

17

function UF(function index g, input arguments in)
if in € args|g] then return the output of the earlier call UF(g, in);

argslg) = args[g] U in;
return a non-deterministic value;

function MAIN
for each (g,¢') € mapr do args|g| := args[g'] .= 0;
in := nondet(); fUF(in); fVF (in);
assert(args|f] = args[f']); > checks call equivalence

Figure 3.4: The flat program that we generate and then verify its assertion,
given the two functions of Fig. 3.1. Note that in the pseudo-code above,
UF(g,4n) represents UF,(in) in the main text of the thesis. The definitions
of fUF and f'VI" appear in Fig. 3.2.

presentation of the case in which the functions are known to be partially
equivalent to Chapter 4.
O

In stark contrast to the corresponding termination problem (recall that
termination of the Collatz program is not known), the demonstrated proof-
theoretic method proved call-equivalence (and thus mutual termination by
(M-TERM)) in Ex. 3.2.1 even when the variable types were infinite. Its major
disadvantage is that this method requires a program analysis in order to
derive the conditions. So we choose instead a model-theoretic method because
it is supported by the tool we use. The model-theoretic method delegates
most of the analysis to an off-the-shelf model checker. Instead of analyzing
the code to derive a general formula expressing the conditions of calls and
the actual arguments, derived programs are generated that would record
all arguments to the relevant functions. These programs are never actually
executed. Instead, an assertion of equivalence between the sets of arguments
with which the functions are called is model-checked, showing it true in every
possible computation, and thus automatically detecting call-equivalence.

Fig. 3.4 demonstrates an example of such a generated program for the
two variations on the Collatz functions of Ex. 3.2.1. The top of Fig. 3.4 shows

18

an implementation UF of the uninterpreted functions. It receives a function
index (abusing notation for simplicity, we assume here that a function name
represents also a unique index) and the actual arguments. It records the set
of call instructions in the array args.

The assertion in MAIN, shown in the bottom of Fig. 3.4, is verified by a
model-checker. The model checker we use is CBMC [9]. We will elaborate
on this method in Chapter 4. Although the comparison between the proof-
theoretic and model-theoretic methods is not fair, because the latter assumes
finite types, our choice of the model-theoretic approach is sufficiently sound
as we target C programs. CBMC is able to reason about C programs, in
which variables are of finite types.

What if there is no bijective map mapz, or if some of the pairs of functions
cannot be proven to be mutually terminating? It is not hard to see that it
is sufficient to prove mutual termination of pairs of functions that together
intersect all cycles in m, m’, whereas the other functions are inlined. The
same observation was made with regard to proving partial equivalence in a
technical report [22]. This observation can be used to improve completeness:
even when there is no bijective mapping or when it is impossible to prove
mutual termination for all pairs in m, m/, it is still sometimes possible to
prove it for some of the pairs. The algorithm that we describe in Chapter 4
uses this observation.

We continue in the next section by generalizing (M-TERM) to the case in
which there are calls to functions that are defined outside the MSCCs.

3.3 Generalization

We now generalize (M-TERM) to the case that m, m’ are not leaf MSCCs.
This means that there is a set of functions C'(m) outside of m that are called
by functions in m. C(m') is defined similarly with respect to m’. The premise
now requires that these functions are mutually-terminating:

19

Y{f, f') € mapr(m). call-equiv(fUF, f'VF) A
(V(g,9') € mapr. ((9 € C(m)Ag' € C(m)) = m-term(g,q'))
Y{(f, ") € mapzr(m). m-term(f,)

(M-TERM™) .
(3.4)

Recall that (2.5) prescribes that calls to functions in C'(m) and C(m’) are

replaced with calls to uninterpreted functions in fUF, f/VF,

We continue in the next section with soundness proofs.

3.4 Soundness proofs for (M-TERM) and (M-
TERM™)

We begin by defining, for a given a computation 7:
n'" = wlg(ing) + UF,(iny) | (g, in,) € calls(n")] , (3.5)

namely, we replace the function calls with calls in 7! to their respective
uninterpreted functions, with the same arguments. It is not hard to see that

7 € [f(in)] A term(r)
mUF e [fUF (in)]

(3.6)

When 7 is infinite, on the other hand, there may be statements in f that
would be executed if the non-terminating call would have returned. Since the
call is replaced by an uninterpreted function that does return, those state-
ments will be executed in fU%. In such a case there must exist a computation
7 in [fUF(in)] that extends 7V, In other words, 7V is a prefix of #. More
formally, letting pre fiz(xV") denote that 7V% is a prefix of #, we have

7€ [f(in)]
dr € [fUF(in)]. prefix(xVF, 7)

(3.7)

Lemma 3.4.1. For any given pair of functions (f, f') € mapz, function ¢,

20

and inputs in, ing, the following inference is sound for any 7 € [f(in)]:

term(m) A call-equiv(fUF, /77 A3’ € [f'(in)]. (¢, in,) € calls(t'")
dg. ({9, 9') € mapr A (g,ing) € calls(m!))

(3.8)

Proof. Let (f, f’) € mapg, input in, function ¢’ and input én, satisfy the
premise. The bijectivity of mapr ensures existence of a function g such that
(9,9') € mapgr.

By (3.7) 7'" is a prefix of some 7' € [f'V" (im)]. Note that (UF,,in,) €
calls(m'""), which implies (UF,,in,) € calls(#'). Hence, call-equiv(fUF,
YF) implies:

vi € [fYF(in)]. (UF,,in,) € calls(7) . (3.9)

The premise of (3.6) holds, which implies 7/ € [fUF(¢n)]. Thus (3.9)
implies (UF,,in,) € calls(rVF). The construction of 7V implies (g,in,) €
calls(ml). H

Given a computation w € [f(in)], let S(7) denote the set of call-stacks
appearing during m, and for s € S(m) let |s| be the number of frames
in s (possibly infinite). Let S,,(m) denote the subset of stacks in S(m)
that consist solely of functions in a given MSCC m. Given a call-stack
s € S(7'), let mapped(s’) denote a call-stack which holds the following:
for each i € N, f/(in;) is the i-th call in §' if and only if the i-th call in
mapped(s’) is fi(in;) such that (f;, f/) € mapz(m). Obviously, s’ € S, (1)
implies that mapped(s’) consists solely of calls of functions from m such that
(m,m’) € mapp. Further, given a function call f(in), let [f(in)] denote
the stack-frame of this call; for brevity, we also let [f(in)] denote a call-stack
which consists of this only frame. Given a non-empty finite call-stack s,
let s [g(ing)] denote the call-stack resulted right after calling g(ing) from
the bottom frame of s.

The next lemma addresses call-stacks consisting of calls of mutually re-
cursive functions belonging to the same MSCC, i.e., call-stacks without outer
calls. It briefly states that given call-equivalence between all the abstractions,
if some finite call-stack appears in a computation of one side, then its cor-

21

responding mapped call-stack appears in all finite computations of the other
side.

Lemma 3.4.2. For any given (f, f') € mapz(m), input in, finite call-stack
s', and computation m € [f(in)]:

term(m) AY(h, h') € mapyr(m). call-equiv(hVF, h'YF) A
In’ € [f'(in)]. s’ € S (7))

mapped(s’) € S, () (3.10)

Proof. Consider (f, f') € mapz(m), input in, finite call-stack s, and com-
putation 7 € [f(¢n)] which satisfy the premise. Since s’ is finite, there is
some value d such that |s'| < d. The proof is by induction on the bound d.

Base: For d = 1, the only call-stack of size 1 in any «’ € [f'(in)] is
[f'(in)]. Analogously, the only call-stack of size 1 in any 7 € [f(in)] is
[f(in)]. Note that mapped([f'(in)]) = [f(én)]. Further note that f € m,
which implies mapped([f'(in)]) € Sp().

Step: Assume that the rule holds up to a given d and the premise holds
at d+ 1 for a call f'(én). Consider a call-stack ' such that 1 < |¢/| < d+ 1.
Let 7" € [f(in)] be a computation which satisfies ' € S,,/(7"). We now
prove that the consequent of the rule is true for d 4 1, i.e.,

mapped(s') € Sp,(m) . (3.11)

Assume that the bottom frame of s is [¢'(iny)]. Consider a call-stack s},
such that s' = s, [¢'(iny)]. Assume that the bottom frame of s}, is [A'(i1p)].
This implies that h/(iny) directly calls ¢'(ing) in 7', ie.,

I, € [W(in)]. (¢, ing) € calls(x)") . (3.12)
Thus the premise of (3.8) holds. Hence, Lemma 3.4.1 implies:

v, € [h(ing)]. (term(m) — 3g. ({g,9') € mapr A {g,in,) € calls(m,'))) .
(3.13)

Since |s,| < d, the induction hypothesis, (3.10) holds up to d, and
therefore, mapped(s)) € S,v(7'). Hence, the bottom frame of mapped(s),) is

22

[h(tnp)]. The subcomputation of 7 which starts from this call h(iny,) is finite
owing to term(r), also implied by the induction hypothesis. (3.13) implies
that in this subcomputation, h(ény) must call g(ing). Hence, mapped(s,) -
[g(ing)] € S(m). Now note that the call ¢'(iny) is found in s € S, (7'),
which implies ¢ € m’. In combination with {g,¢’) € mapr, implied by
(3.13), the latter means g € m. Consequently, mapped(s,) - [g(ing)] € S, ()
by (3.11).

It is just left to note that mapped(s,) - [g(ing)] = mapped(s’). Thereby,
mapped(s') € S,,(m) holds. O

The rest of our proofs in this chapter rely on the following observations:
term(mw) <> 3Id € ZT. Vs € S(7). |s| < d, (3.14)

and:
vr', s € S(r'). |§'| = |mapped(s')| . (3.15)

An immediate consequence of (3.14) is:

—term(m) <> Vd € Z*. 3s € S(7). |s| > d . (3.16)

Also observe that for a leaf MSCC m, S,,(7) = S(7).

Lemma 3.4.3. For any given (f, f') € mapz(m), input én, and computa-
tions m € [f(in)], 7’ € [f'(in)]:

Y(h, W) € mapr(m). call-equiv(hUF WYEY) A
Vde Z*t. 35" € S (n'). |8’ > d

—term(m) (3.17)

Proof. Consider (f, f') € mapr(m) called with the same argument in. As-
sume that the premise of (3.17) holds for given computations 7 € [f(in)]
and 7’ € [f'(in)]. Falsely assume term(w). By (3.14) term(n) implies that
there is some finite value d for which

Vs € Spu(m). |s| < d (3.18)

23

holds. On the other hand, the premise of (3.17) guarantees:
s € Sy (). || > d . (3.19)

The premise of (3.10) holds. This implies mapped(s’) € S,,(7) by Lemma 3.4.2.
(3.15) and (3.19) imply |mapped(s’)| = |s'| > d, which contradicts (3.18).
Hence, the assumption term(mw) was wrong, i.e., 7 must be infinite. O

Theorem 3.4.1. (M-TERM) is sound.

Proof. Assume that the premise of rule (M-TERM) holds. Consider (f, ') €
mapx(m) called with the same argument in. Falsely assume —m-term(f, f’).
Without loss of generality, consider a finite computation 7 € [f(in)] and an
infinite computation 7" € [f/(¢n)]. (3.16) implies:

VdeZt. 35 € S,u(r'). |8 > d .

The premise of (3.17) now holds. Hence, by Lemma 3.4.3, —~term(m) holds,
in contradiction to the assumption that 7 is finite.

The same argument would hold if we reversed the roles of f and f’. Hence,
m-term(f, f') must hold. O

3.4.1 Proof of (M-TERM")

We continue towards proving the soundness of (M-TERM™). The following

lemma extends (3.16) to cases in which there are mutually-terminating calls
outside the MSCC.

Lemma 3.4.4. The following inference rule holds for any computations 7
and 7'

Y(h, W) € mapr(m). call-equiv(hVF, WYFY) A
Y{(g,9') € mapr. ((g € C(m) A g € C(m')) = m-term(g,g’)) A
A(f, [€ mapr(m),in. (x € [f(in)] A term(m) Ax" € [f'(in)] A —term(n’))

s € Sy (). Yd € ZF. |s'| > d
(3.20)

24

Note that the premise simply strengthens the premise of rule (M-TERM™T)
with the third line.

Proof. Assume that given computations 7 and 7’ satisfy the premise of the
rule. (3.16) implies:

Is' € S(n'). vd e Z*. |s'] > d. (3.21)

Proving that s' in (3.21) must belong to S, (7'), i.e., s € S, (7'), but
s ¢ S(n')\ S (7’), amounts to validating the following:

-35 € S(7)\ S (7). Vd € ZT. |3'| > d . (3.22)
Falsely assume that such unbounded call-stack §’ exists, i.e., it satisfies
§eSm)\Su(r)AVdeZ". |5 >d. (3.23)

The call-stack § consists of two non-intersecting parts: the finite prefix 3}
which consists solely of functions in m’ and the unbounded suffix 3, which
consists solely of functions ouside of m/. Assume that the bottom frame of 3}
is [A/(iny,)] and that the top frame of & is [¢'(¢n,)]. Note that ¢’ € C'(m’) and
8y € Sy (') hold. The latter implies mapped(s;) € S, (7). The premise of
(3.8) holds. Therefore, by Lemma 3.4.1, in 7 the bottom frame of mapped(s)),
which is [h(ing)], directly calls g(in,), where (g,¢') € mapr and thus
g € C(m). This call must return because of term(w). Hence, m-term(g, g’)
implies that the call ¢'(in,) in 7’ must return. It is a contradiction to the
assumption that § is an unbounded call-stack (see (3.23)), in which no call
returns. Hence, such § cannot exist.]

Now we can prove the soundness of (M-TERM™).
Theorem 3.4.2. (M-TERM™) is sound.

Proof. Assume that the premise of rule (M-TERM™) holds. Consider (f, f') €
mapz(m) called with the same argument ¢n. Falsely assume —m-term(f, f’).
Without loss of generality, consider a finite computation 7 € [f(¢n)] and an

25

infinite computation 7’ € [f’(in)]. Lemma 3.4.4 implies:
VdeZ". 35" € S (n'). |§'] > d .

The premise of (3.17) now holds. Hence, by Lemma 3.4.3, —~term(m) holds,
in contradiction to the assumption that = is finite.

The same argument would hold if we reversed the roles of f and f’. Hence,
m-term(f, f') must hold. O

26

Chapter 4

A decomposition algorithm

In this chapter we present an algorithm for proving mutual termination of
full programs. As mentioned in Chapter 3, the call graph of a program can
be viewed as a DAG where the nodes correspond to MSCCs. After building a
mapping between the MSCCs of the two call graphs, the algorithm traverses
the DAG bottom-up. For each mapped pair of MSCCs m,m/, it attempts
to prove the mutual termination of their mapped functions, based on (M-
TERM™).

The algorithm is inspired by a similar algorithm for verification of partial
equivalence, which is described in a technical report [22]. The algorithm here
is more involved, however, because it handles differently cases in which the
checked functions are also partially equivalent (recall that this information,
i.e., which functions are known to be partially equivalent, is part of the
input to the algorithm). Furthermore, the algorithm in [22] is described with
a non-deterministic step, and here we suggest a method for determinizing it.

The preprocessing and mapping are as detailed in Sect. 2.1. Hence the
program is loop-free, globals accessed by a function are sent instead as ad-
ditional inputs, and there is a (possibly partial) mapping mapz between the
functions of P and P’.

4.1 The algorithm

Table 4.1 contains the labels we use in the decomposition algorithm (Alg. 1).

27

Predicate label | What is labeled | Meaning

m_term (f, [Ye mapr The mapped functions f and f’
are mutually terminating

part_eq (f, fYe mapx The mapped functions f and f’
are partially equivalent

covered (m, m'Ye mapr; | The MSCC pair has been pro-
cessed.

Table 4.1: Predicate labels used in the decomposition algorithm.

The input to Alg. 1 consists of P, P’, a (possibly partial) mapping mapz
between their functions, and (implicitly) those paired functions that are
known to be partially equivalent. Its output is a set of function pairs that
are marked as m_term, indicating that it succeeded to prove their mutual
termination based on (M-TERM™). We now describe the three functions used
by this algorithm.

PROVEMT.

This entrance function traverses the call graphs of P, P’ bottom-up,
each time focusing on a pair of MSCCs. In line 2 it inlines all non-
recursive functions that are not mapped in mapr. In line 3 it uses
renaming to resolve possible name collisions between the globals of the
two input programs. The next line builds the MSCC DAGs M D and
M D' from the call graphs, as explained in Sect 3. Line 5 attempts to
build mapp (defined in page 13), only that it must be bijective. If such
a bijective map does not exist, the algorithm aborts. In practice one
may run the algorithm bottom-up until reaching non-mapped MSCCs,
but we omit this option here for brevity.

The bottom-up traversal starts in line 6. Initially all MSCCs are un-
marked. The algorithm searches for a next unmarked pair (m, m') of
MSCCs all of whose children pairs are marked. If m, m’ are trivial (see
page 13 for a definition), then line 10 simply checks the call-equivalence
of the function pair (f, f’) that constitutes (m, m’), and marks them
accordingly in line 10. Note that even if the descendants of m, m’ are
mutually-terminating, m, m’ are not necessarily so, because they may

28

Algorithm 1 Pseudo-code for a bottom-up decomposition algorithm for
proving that pairs of functions mutually terminate.

1: function PROVEMT (Programs P, P, map between functions mapy)
2: Inline non-recursive non-mapped functions;

3: Solve name collisions in global identifiers of P, P’ by renaming;

4: Generate MSCC DAGs M D, M D' from the call graphs of P, P’;

5: If possible, generate a bijective map mapa, between the nodes of M D
and M D’ that is consistent with mapr®, Otherwise abort;

6: while 3(m,m’) € maprs not marked covered but its children are, do

7 Choose such a pair (m, m’) € mapy, and mark it covered;

8: if m,m’ are trivial then

9: Let f, f' be the functions in m,m/, respectively:;

10: if CALLEQUIV (1ISOLATE(f, f,0)) then mark f, f" as m_term;

11: else

12: Select non-deterministically S C {(f, f') | (f, f') € mapr(m)}

that intersects every cycle in m and m/;

13: if V(f, f') € S. CALLEQUIV (ISOLATE(f, f’,S)) then

14: for each (f, f') € S do mark (f, f') as m_term;

15: else mark the ancestors of m, m’ as covered,

16: function 1SOLATE(functions f, f’, function pairs) > Builds fUF, f/VF
17: for each {(g,¢') € mapr | g, ¢ are reachable from f, f'} do

18: if (g,¢") € S or (g,¢') is marked m_term then

19: Replace calls to g(expr;,) with calls to UF(g, expri,);
20: Replace calls to ¢'(expry,) with calls to UF'(g’, expri);
21: else inline g, ¢’ in their callers;

22: return (f, f');

23: function CALLEQUIV(A pair of isolated functions (fUF, f'VF))
24: Let 6 denote the program:

> here add the definitions of UF() and UF’() (see Fig. 4.1).

in = nondet(); fUF (in); 7 (in);

for each {(g,¢') € mapr | g € callees(f) V ¢ € callees(f')} do
assert(argslg] C args[d]);

25: return CBMC(6);

Tt is desirable but not necessary to add pairs of trivial nodes to mapag.

29

call their descendants with different parameters. Also note that if this
check fails, we continue to check their ancestors (in contrast to the case
of non-trivial MSCCs, listed next). The reason is that even if (f, f’)
are not mutually terminating for every input, their callers may still
be, because they can be mutually terminating in the context of their
callers. We can check this by inlining them, which is only possible
because they are not recursive.

Next, consider the case that the selected m, m’ in line 7 are not trivial.
In line 12 the algorithm chooses non-deterministically a subset S of
pairs from mapr(m) that intersects all the cycles in m and m’. In
graph-theoretic terms, the functions in S constitute a feedback vertex
set [15] of both m and m'. This guarantees that we can always inline
the functions in m, m’ that are not in S. Determinization of this step
will be considered in Sect. 4.2. If CALLEQUIV returns TRUE for all
the function pairs in S, then all those pairs are labeled as m_term in
line 14. Otherwise it abandons the attempt to prove their ancestors
in line 15, by marking them as mscc_covered in line 15: it cannot
prove that mapped functions in (m,m’) are mutually terminating, nor
can it inline these functions in their callers, so we cannot check all its
ancestors.

Regardless of whether (m, m') are trivial, they get marked as
mscc_covered in line 7, and the loop in PROVEMT continues to another
pair.

ISOLATE.
The function ISOLATE receives as input a pair (f, f’) € mapr and a set
S of paired functions which, by construction (see line 12), contains only
pairs from the same MSCCs as f, f’, i.e., if f € m and f/ € m/, then
(g9,9'y € S implies that ¢ € m and ¢’ € m/. As output, it generates
fUF and f'YF, or rather a relaxation thereof as explained at the bottom
of page 11. We will occasionally refer to them as side 0 and side 1.
These functions do not have function calls (other than to uninterpreted

30

1: function UF(function index g, input parameters in) > Called in side 0

2: if in € params|g] then return the output of the earlier call UF(g, in);
3: params|g] := params|g] | in;

4: return a non-deterministic output;

5: function UF’(function index ¢/, input parameters in’) > Called in side 1
6: if in’ € params[g’] then return the output of the earlier call UF’(¢’, in’);
7: params(g’] := params|g’] | in’;

8: if in’ € params[g] then > (g,9') € mapr
9: if (g,¢’) is marked part_eq then

10: return the output of the earlier call UF(g, in’);

11: return a non-deterministic output;

12: assert(0); > Not call-equivalent: params[g’] Z params[g]

Figure 4.1: Functions UF and UF’ emulate uninterpreted functions if instan-
tiated with functions that are mapped to one another. They are part of the
generated program 9§, as shown in CALLEQUIV of Alg. 1. These functions
also contain code for recording the parameters with which they are called.

functions, see line 19), but may include inlined (non-recursive) callees
that were not proven to be mutually terminating (see line 21). ISOLATE
should be thought of as working on a new copy of the original programs
in each invocation®.

The implementations of UF and UF’ appear in Fig. 4.1, and are rather
self-explanatory. Their main role is to check call-equivalence. This
is done by checking that they are called with the same set of inputs.
When (g, ¢') is marked part_eq, UF and UF’ emulate the same uninter-
preted function (i.e., to return the same output given the same input),

!There is some redundancy in the listing of this algorithm, as demonstrated by the
following case: f calls g, and g calls h (assume that g is the only function to call k), where
h is inlined in line 21, but then g is replaced with an uninterpreted function in line 19,
which makes the former inlining redundant. Our implementation avoids such cases by
reaching the same result by only considering functions for inlining if their callers have
already been dealt-with.

31

formally:
Vin. UF(g,in) = UF’(¢,in) .

When (g, ¢’) is not marked part_eq, UF and UF’ emulate two different
uninterpreted functions.

CALLEQUIV.

Our implementation is based on the C model checker CBMC [9], which
enables us to fully automate the check for call-equivalence. CBMC is
complete for bounded programs (i.e., loops and recursions are bounded),
and, indeed, the program § we build in CALLEQUIV is of that nature.
It simply calls fUF, f'YF (which, recall, have neither loops nor func-
tion calls by construction), with the same non-deterministic value, and
asserts in the end that the set of calls in f is included in the set of calls
in f" (the other direction is checked in lines 8, 12 of UF’). Examples
of such generated programs that we checked with CBMC are available
online in [1].

4.1.1 Examples

The following example demonstrates how Alg. 1 works.

Example 4.1.1. Consider the call graphs in Fig. 4.2.

Assume that (f;, f/) € mapz for i = 1,...,5, and that the functions rep-
resented by gray nodes are known to be partially equivalent to their coun-
terparts. Line 4 generates the following nodes of the MSCC DAGs (listed
bottom-up, left-to-right):

o MD = {{fs}, {f3}, {f, fa}, {f1} };
e MD' = {{fé}a {fé}; {fé7fiafé}7 {f{}}

The MSCC mapping mapn, in line 5 is naturally derived from mapr:

32

(% (%
®)

s f5

Figure 4.2: Call graphs of the programs discussed in Ex. 4.1.1. Partially
equivalent functions are marked gray.

{fs}, {f51),
{fs}, {fs1),
{f2af4}7 {féafziafé}>>
{hh A

The only leaf MSCC pair ({f5}, {f¢}) is chosen in line 7. It is shown
in Fig. 4.3. This is a case of simple recursion. In line 12 the only possible

{
—_
{

Figure 4.3: A mapped pair of MSCCs. Each one consists of a simple recursive
function.

33

Figure 4.4: Call graphs of the isolated versions of f5 and f5. UFy, and UFy:,
which have replaced the calls to f5; and fi, respectively, emulate the same
uninterpreted functions and are marked gray.

S is (fs, fi). ISOLATE replaces all recursive calls to fs(ém), fi(in') with
UF(f5, in), UF’(fi, in’), respectively, which emulate the same uninterpreted
functions. The constructed pair of isolated functions (fsU%, f2V*) is shown
in Fig. 4.4. Assume that CALLEQUIV returns TRUE. Line 14 marks (fs, fi)
m_term.

The next available MSCC pair chosen in line 7 is ({fs3}, {fi}). This is
a case of a pair of trivial MSCCs, which is handled in lines 8-10. ISOLATE
replaces all calls to f5(én) and fi(in') with calls to UF(f5, ¢n) and UF’(f!,
in’), respectively, which emulate the same uninterpreted functions. The con-
structed pair of isolated functions (f3UF, f;Y") is shown in Fig. 4.5. Assume
that CALLEQUIV returns FALSE. The algorithm cannot assign label m_term
to (f5, fi) in line 10, i.e., it cannot prove their mutual termination in a general
context. However, since this is a pair of trivial MSCCs, the algorithm can
try to establish their mutual termination under the context of their calling
functions.

So the algorithm proceeds to the upper MSCC pair ({ fa, f1}, {f5, f1, [6})-
This is a case of mutually recursive functions. Assume that line 12 chooses
S ={{fa, 1), {fs, f1)}- The algorithm is to check CALLEQUIV (ISOLATE(f,
15, S)) and CALLEQUIV (ISOLATE(fy, fi, S)) in line 13. Assume that first
it checks call-equivalence for (fs, f5).

ISOLATE(fo, f4, S) inlines calls to f3 in fo, and then it replaces calls to f4

and f5 with calls to UF (distinguished as calls to U Fy; and U Fy, respectively,

34

&G
&

Figure 4.5: Call graphs of the isolated versions of f5 and fi. Partially equiv-
alent U Fy, and U Fy,, which have replaced the calls to f5 and f;, respectively,
are marked gray.

&?
9?

Figure 4.6: Call graphs of the isolated versions of f, and f;. Partially equiv-
alent UF, UF’, which respectively replace calls to f5, fi and fy, fi, are distin-
guished as UFy, ,UFy, and UFy,, U FYy;, respectively, for better understanding.

in Fig. 4.6 for better understanding). In fJ calls to f} and f are inlined,
and then calls to f} and f are replaced with calls to UF’. Each replacing
uninterpreted function pair emulates a pair of the same functions. These
replacements are shown in Fig. 4.6. Assume that CALLEQUIV returns TRUE.
However, the algorithm cannot yet mark (fo, f5) with label m_term. It needs
yet to check call-equivalence for (fy, f1).

Fig. 4.7 shows the function-call replacements made by ISOLATE(fy, f1, S).
It has no calls to inline, but there are calls fy(¢n) in f; which are replaced
with calls to UF(fs, ¢n). Similarly, calls to fj(¢n’) in f] are replaced with

35

Figure 4.7: Call graphs of the isolated versions of f; and f;. UF and UF’,
which replace calls to f, and f;, respectively, are distinguished with UFY,
and UFy,, respectively, for better understanding. They emulate different
uninterpreted functions.

Figure 4.8: Call graphs of the isolated versions of f; and f{. Two differ-
ent uninterpreted functions UF and UF’, which replace calls to f and fJ,
respectively, are distinguished as UFY, and UFy;, respectively, for better un-
derstanding. The same uninterpreted functions UF and UF’, which replace
calls to f; and f}, respectively, are distinguished as UFY, and UF},, respec-
tively.

calls to UF’(fs, in’). Note that in this case UF and UF’ emulate different
uninterpreted functions. Assume CALLEQUIV returns TRUE. Line 14 of the
algorithm marks both (fs, f}) and (fy, f1) with label m_term.

The last MSCCs pair to check is ({f1}, {fi}). This is again a case of
a pair of trivial MSCCs. ISOLATE replaces all calls to fo(in) and fi(in')
with calls to UF(fy, ¢n) and UF’(f}, in’), respectively, which emulate two
different uninterpreted functions. Calls to fy(in) and fj(in’) are replaced
with calls to UF(fy, ¢n) and UF’(f}, in’), respectively, which emulate the
same uninterpreted functions. The constructed pair of isolated functions
(fsUF, £5U7) is shown in Fig. 4.8. Assume that CALLEQUIV returns TRUE.

The algorithm marks (fs, fi) m_term in line 10, i.e., it has proven their

36

MSCCs Checked

functions

Description

Res.

{fst {f5} | (Fs, 5

In line 12 the only possible S is (fs, ft). 1SO-
LATE replaces the recursive call to f5, fi with
UF, UF’, respectively (T). Assume CALLE-
QUIV returns TRUE. (fs, f7) is marked
m_term in line 14.

{f3}, {f3} | (fs, f3)

This is a case of trivial MSCCs, which is han-
dled in lines 8-10. ISOLATE replaces the calls
to fs, fi with UF, UF’, respectively (). As-
sume CALLEQUIV returns FALSE.

{f27 f4}a

In line 12 let S = {(fo, f3), (fa, f1) }-

{févfz/bfé} <f27f£>

In f5 calls to f3 are inlined, and calls to fi, f5
are replaced with calls to UF. In f] calls to fj,
fé are inlined, and calls to f}, fi are replaced
with calls to UF’ (). Assume CALLEQuUIV
returns TRUE.

\/C

(fa, [2)

In fy, f; calls to fy, f} are respectively re-
placed with calls to UF, UF’ (7). Assume
CALLEQUIV returns TRUE. Now (fs, f5) and
(f1, f1) are marked m_term in line 14.

(A ARy |

Again, a case of a trivial MSCC. Calls to fo,
f4 are respectively replaced with UF, UF’ (7).
Calls to fy, f; are replaced with UF, UF’ (7),
respectively. Assume CALLEQUIV returns
TRUE. ({f1},{f1}) is marked m_term.

Table 4.2: Applying Alg. 1 to the call graphs in Fig. 4.2 under the assump-
tions made in Ex. 4.1.1 about the results of CALLEQUIV. The following
notations are used in the table:

‘v"7 means that the pair is marked m_term,
‘v'“ means that it is marked conditionally (it becomes unconditional once
all other pairs in S are marked as well), and
‘X’ means that it is not marked m_term;
‘()" denotes that UF and UF’ emulate the same uninterpreted functions,

while

“(7)” denotes that they emulate different uninterpreted functions.

37

Figure 4.9: Call graphs of the isolated versions of f; and f; when (fs, f5)
¢ S. The same UF, UF’, which respectively replace calls to f5, fi and fy,
[f1, are distinguished as UFy,, UFy, and UF},, UFy;, respectively, for better
understanding.

mutual termination in a general context.

The output of the algorithm, based on the aforementioned assumptions
about the results of the checks for call equivalence, is that the following pairs
of functions are marked as m_term: (fi, f1), (fa, f3), {fa, f1), and (fs, f2).
Since functions f; and f{ are main in the compared programs, those whole
programs are mutually terminating. The overall progress of the algorithm in
this example is summarized in Table 4.2.

O

In the previous example only maximal feedback vertex sets were chosen.
The following example demonstrates how the algorithm proceeds when a
chosen feedback vertex set S is not maximal.

Example 4.1.2. Consider again the call graphs in Fig. 4.2. Suppose that
the algorithm has processed MSCC pairs ({f5}, {fi}) and ({f3}, {fi}) as
described in the previous example. Now the algorithm is proceeding to MSCC
pair ({ fo, fa}, {f3, f1, f6}). Assume that line 12 chooses S = {(fs4, f1)} having
left (fo, f3) outside of S. The algorithm is to check CALLEQUIV (ISOLATE(fy4,
f1,S)) in line 13.

ISOLATE(f4, f1, S) inlines calls to fs3 in fo, inlines calls to fs in fy, and
then it replaces calls to f4, f5 with calls to UF (distinguished as calls to U Fy
and UF}, respectively, in Fig. 4.9 for better understanding). On side 1, calls

38

Figure 4.10: Call graphs of the isolated versions of f; and f{. The same unin-
terpreted functions UF and UF’, which replace calls to f; and f}, respectively,
are distinguished as UFy, and UFYy, respectively, for better understanding.
The same uninterpreted functions UF and UF’, which replace calls to f5 and
[3, respectively, are distinguished as U Fy, and UF};, respectively.

to f4 and f are inlined in f3, calls to f; are inlined in f}, and then calls to f;
and fi are replaced with calls to UF’. Each replacing uninterpreted function
pair emulates a pair of the same functions. These replacements are shown
in Fig. 4.9. Assume CALLEQUIV returns TRUE. Line 14 of the algorithm
marks only (fy, fi) with label m_term, while (f, f) remains unmarked.
As a result, in the last iteration of the algorithm (for the uppermost MSCC
pair), ISOLATE(f1, fi, ...) will not replace the calls to fo (f5) with calls to
UF (UF’) because (f2, f5) is not marked m_term. Instead, in line 21, those
calls will be inlined. The call graphs of the program generated by ISOLATE
are shown in Fig 4.10.

Assume that the check of call equivalence for (f1, f{) succeeds. Then the
output of the algorithm, based on the aforementioned assumptions about
the results of the checks for call equivalence, is that the following pairs of
functions are marked as m_term: (f1, f1), (fs, f1), and (fs, fi). Consequently,
those whole programs are mutually terminating. The overall progress of the
algorithm in this example is summarized in Table 4.3.

39

MSCCs

Checked

functions

Description

Res.

{f5}7 {fé}

<f57 fE,,>

In line 12 the only possible S is (fs, ff). 1SO-
LATE replaces the recursive call to f5, fi with
UF, UF’, respectively (7). Assume CALLE-
QUIV returns TRUE. (fs, ff) is marked
m_term in line 14.

{fs}, {fs}

(f3, f3)

This is a case of trivial MSCCs, which is han-
dled in lines 8-10. ISOLATE replaces the calls
to fs, fi with UF, UF’, respectively (7). As-
sume CALLEQUIV returns FALSE.

{f27 f4}7
{3, 14, 16}

In line 12 let S = {(f4, f1) }-

(f1, f1)

Calls to f3 are inlined in f5, calls to which are
inlined in fy, and calls to f;, f5 are replaced
with calls to UF. On the other side, calls to fj,
fé areinlined in f3, calls to which are inlined in
f1, and calls to f;, fi are replaced with calls to
UF’ (7). Assume CALLEQUIV returns TRUE.

{f1}7 {f{}

<f17f1,>

Again, a case of a trivial MSCC. Calls to fo,
f4 are respectively replaced with UF, UF’ (7).
Calls to fy, f; are replaced with UF, UF’ (%),
respectively. Assume CALLEQUIV returns
TRUE. ({fi},{f1}) is marked m_term.

Table 4.3: Applying Alg. 1 to the call graphs in Fig. 4.2 under the assump-
tions made in Ex. 4.1.2 about the results of CALLEQUIV. The following
notations are used in the table:

‘v"7 means that the pair is marked m_term,
‘X’ means that it is not marked m_term;
‘(T) denotes that UF and UF’ emulate the same uninterpreted functions,

while

“(7)” denotes that they emulate different uninterpreted functions.

40

4.2 Choosing a vertex feedback set determin-
istically

The choice of the set S in line 12 of Alg. 1 is non-deterministic. In RVT,
however, we determinized the choice. The deterministic version of the al-
gorithm tries various choices for such sets until it detects a successful one.
In the worst case this amounts to trying all sets, which is exponential in
the size of the MSCC. Observe, however, that large MSCCs are rare in real
programs and, indeed, this has never posed a computational problem in our
experiments.

The determinized version of the decomposition algorithm is presented in
Alg. 2. The differences versus the non-deterministic version are:

e lines 12-15 of PROVEMT of Alg. 1 are replaced in Alg. 2 with a call
to function PROVEMT _NONTRIVIAL, defined in lines 12-22, and

e line 25 of CALLEQUIV of Alg. 1 is replaced in Alg. 2 with lines 32-35.

The changes in CALLEQUIV will be explained in Sect. 4.2.1. Here we describe
the function PROVEMT _NONTRIVIAL.

PROVEMT _NONTRIVIAL.
The loop in lines 14-21 tries various subsets of pairs from mapz(m)
that intersect every cycle in m and m’ until one is discovered all of
whose function pairs are found call-equivalent and thereafter marked
as m_term in line 20. If no such subset is discovered, the ancestors of
the current MSCC pair (m, m’) are doomed (line 22).

The objective is that a mazimal set S of function pairs would be tried
each time, because the larger the set is, the more functions are declared
to be mutually terminating in case of success. Further, larger sets imply
fewer functions to inline, and, hence, the burden on CALLEQUIV is
expected to be smaller. Line 14 of Alg. 2 delegates the optimization
problem of finding such a maximal set to function CHOOSES, detailed
later in this section. Since CHOOSES needs to know for which function
pairs the recent call-equivalence checks have failed, every such function

41

Algorithm 2 Determinization of Alg. 1.

1: function PROVEMT (Programs P, P’; map between functions mapr)

2: Inline non-recursive non-mapped functions;

3: Solve name collisions in global identifiers of P, P’ by renaming.

4: Generate MSCC DAGs M D, M D’ from the call graphs of P, P’;

5: If possible, generate a bijective map mapa, between the nodes of M D
and M D' that is consistent with mapr; Otherwise abort.

6: while 3(m, m’) € mapy not marked covered but its children are, do
T: Choose such a pair (m, m') € mapy, and mark it covered;

8: if m, m’ are trivial then

9: Let f, f/ be the functions in m,m’, respectively;

10: if CALLEQUIV (ISOLATE(f, f/,0)) then mark (f, ') as m_term;
11: else PROVEMT _NONTRIVIAL({m, m'));

12: function PROVEMT _NONTRIVIAL(A pair of MSCCs (m, m’})
13: failed_pairs == S := ();

14: while (S := CHOOSES({m,m), failed_pairs, S)) # 0 do
15: failed_pairs := (;

16: for each (f, f') € S do

17: if ~CAaLLEQuUIV (ISOLATE(f, f', S)) then

18: failed_pairs := failed_pairs U {(f, f") };

19: if failed_pairs = () then > Every check has succeeded
20: for each (f, f') € S do mark (f, f') as m_term;

21: return ;

22: mark the ancestors of m, m' as covered;

23: function 1ISOLATE(Functions f, f’; function pairs) > Builds fUF, f/UF
24: for each {(g,¢') € mapr | g,¢" are reachable from f, f’'} do

25: if (9,¢') € S or (g, ¢’) is marked m_term then

26: Replace calls to g(expr;,) with calls to UF(g, expri,);

27: Replace calls to ¢'(expry,) with calls to UF’(g’, exprin);

28: else inline g, ¢’ in their callers;

29: return (f, f';

30: function CALLEQUIV(A pair of isolated functions (fUF, f/VF))
31: Let § denote the program:
> here add the definitions of UF() and UF’() (see Fig. 4.1).
in = nondet();
fUr (in);
;7 (i)
for each {(g,¢') € mapr | g € callees(f)V ¢ € callees(f')} do
assert(params|g] C params|q']);
32: if WASPROVEN(proven, (fUF, f/VF)) or®* CBMC($) then

33: proven := proven U {{(fUF fVF)}.
34: return TRUE;
35: return FALSE 42

%The second condition is evaluated only if the first condition has been evaluated as false.

Algorithm 3 Pseudo-code for function CHOOSES, which finds a feedback
vertex set over a given pair of MSSCs while blocking previously failed solu-
tions.
1: function CHOOSES(A pair of MSSCs: (m,m/),
sets of function pairs: failed_pairs, Staiieq)
> failed_pairs C Staited

2: if failed_pairs = () then
3: o=
4: else
ot U::UU{{f | <f> f/> € Sfailed}};
6: Let 8 denote the pseudo-Boolean formula:
maximize S: max Z Vg,
gemapped (m)
where mapped(m) denotes the set of functions in m that are mapped in mapzr,
v,y is a Boolean variable associated with a function node g in M =m U n?/,
subject to the following constraints for M:
i. Banning unmapped Vg € (M \ mapped(M)). —w,
nodes from S:
ii. Defining the edges: V{f,g| (f,g)is an edge in M}.
L A i S
iii. Transitive closure of edges: Vf,g.h € M. eg Neg, — egp
iv. Forbidding self loops: Vg € M. —egy,
v. Enforcing mapping mapz: V{(g,4¢") € mapr(m). v, <> vy
vi. Blocking the failed solutions: A, c,(V e, 70g) ;
6 $ 1= MINISAT(f3); > MINISAT returns () if 3 is unsatisfiable

s return {(f. ') | v; € s A([.[") € mapy)

43

pair (for which the call-equivalence check has failed) is recorded into a
set failed_pairs in line 18 of Alg. 2.

CHOOSES.
Function CHOOSES, presented in Alg. 3, solves the above optimization
problem for a given pair of mapped MSSCs (m, m’) via a reduction to
a 0-1 ILP problem (equivalently, a pseudo-Boolean formula). Each
function node g (¢’) in m (m') is associated with a Boolean variable v,
(vy) in that formula, indicating whether it is a part of S. The objective
is thus to maximize the sum of those variables that are mapped (those
that are unmapped cannot be in S anyway). In addition, there is a
variable for each edge in m Um’ (e.g., ey, for edge (g, h)), which is set
to true if and only if neither of the vertices of the edge is a function
in S. By enforcing a transitive closure, we guarantee that if there is
a cycle of edges set to true (i.e., a cycle in which none of the nodes is
in S), then the self edges (e.g., e,,) are set to TRUE as well. We then
prevent such cycles by setting them to FALSE. The problem formulation
appears in line 6 of Alg. 3, and is rather self-explanatory. The generated
pseudo-Boolean formula 3 is then solved by MINISAT+ [13] (see line 7).
Once a solution s to this problem is found, the last line returns the set

S={{ 1) [vp€s,(f, [') € mapF}.

If the returned set fails (i.e., one of the pairs in it cannot be proven
to be call-equivalent), CHOOSES will be called again for the current
MSCC pair (m, m'). From now on, by left side of a set of pairs we
mean the set of the elements found in the left side of the pairs. In that
repeated call, in line 5 the left side of the failed set Stqieq Will be added
to 0. Thus Sfaiea Will be removed from the solution space owing to
constraint #vi in line 6 of Alg. 3. When there are no more solutions
available, the repeated call will return an empty set.

Note that argument failed_pairs is unused in the current version of
CHOOSES, but its presence in the function interface enables compat-
ibility with the final version of CHOOSES, which will be presented in
Sect. 4.2.2.

We have implemented three optimizations in RVT. The rest of this chap-

44

ter will elaborate on them.

4.2.1 Recycling proofs

The first optimization that we have implemented is the following. Searching
for a vertex feedback set as explained above amounts to solving an opti-
mization problem for various subsets of vertices. We may save some effort by
analyzing the cause of failure. Specifically, when failing with a set Sy, we save
the strict subset sy C Sy for which we were able to prove call-equivalence.
Let S; be a new set under consideration and let (g,¢’) € 51 N sg. Denote
by f&¥ the function fUF as constructed given the set S. Then the positive
result of g can be reused if g is equally or more abstract than g§”. This
condition holds if none of the functions inlined in g§* are abstracted in g§*.
The positive results are accumulated in the set proven in line 33 of Alg. 2.
Searching proven for a previous proof reusable for two given abstracted
functions fUF, f'UF is executed in a Boolean function WASPROVEN, whose
pseudo-code is not explicitly listed. WASPROVEN is invoked in line 32 and
returns TRUE if it could find isolated versions of functions f, f’ which are
equally or more abstract than fY* and f’ vE respectively. In this case a heavy
operation of checking the generated program ¢ with CBMC is skipped. Only
when nothing can be recycled, CBMC is involved (line 32). An example of
a recycled proof will be given in Ex. 4.2.1 (at the end of the next section).

4.2.2 Optimizing function CHOOSES

The two additional optimizations we have implemented concern the process
of function CHOOSES. Alg. 4 presents an optimized version of this function.
Note that its lines 1-4, 6, 8, and 9 are syntactically equal to lines 1-4, 5, 7,
and 8, respectively, in Alg. 3. Here is the description of the two optimizations:

e Generalizing counterexamples:
Recall that constraint #vi (see line 6 of Alg. 3) blocks failed solutions.
In some cases it is possible to generalize the failed solution, which
expedites convergence. Let Sfqieq denote a set with which the mutual-
termination check has failed. It is frequently possible to find a strict

45

Figure 4.11: An example of MSCC where a counterexample may be general-
ized.

subset of Sf4ieq Which is sufficient to make the proof fail. Specifically,
such a subset can consist of the set failed_pairs of the failing pair nodes
in S'tqited Plus nodes in Sfqi0q that can be reached from failed_pairs not
through any other node in Stgieq. As an example, consider the MSCC
{f,9,h} as shown in Fig. 4.11, and Syeuca = {{f. '), (9,9, (R, 1)}
such that f’, ¢’, h' are mapped with f, g, h, respectively. If (f, f’)
fails, then we must remove from Spgeq either (f,) or (g, ¢’), regard-
less of what we do with (h,h’). Hence, here we can regard the sub-
set {(f, f"),{g,¢")} as the failing set, rather than Syt q itself, which
strengthens constraint #vi. In other words, adding the negation of this
subset removes from the solution space sets that are bound to fail.

Counterexamples are generalized inside function GENERALIZECOUN-
TEREXAMPLE, which is not explicitly listed in the pseudo-code of Alg. 4.
The arguments of CHOOSES needed for this purpose are:

- Sfa'ileda and

— failed_pairs, which is the set of function pairs whose call-equivalence
checks have failed upon Sfgieq (it receives the value of the local
variable failed_pairs of the function
PROVEMT _NONTRIVIAL of Alg. 2).

GENERALIZECOUNTEREXAMPLE is called in line 5 of Alg. 4. The left
side of its output, i.e., the left side of either the generalized counterex-
ample or the originally failing Sfeeq if no counterexample could be
generalized, is added to o (line 6); then the output is removed from the
solution space owing to constraint #vi.

e Higher priority for partially-equivalent pairs:
Among equal-sized sets, it is better to give priority to sets that include

46

Algorithm 4 An optimized version of function CHOOSES presented in
Alg. 3.

1: function CHOOSES(A pair of MSSCs: (m,m/),

sets of function pairs: failed_pairs, Staiied)
> failed_pairs C Staited
if failed_pairs = () then
o =0
else
Stailed := GENERALIZECOUNTEREXAMPLE(failed_pairs, Stailed);

o =0 U{{f | (f; ') € Sjaitea}};

Let 8 denote the pseudo-Boolean formula:

maximize S: max E Vg - Wy ,
gemapped(m)

where mapped(m) denotes the set of functions in m that are mapped in mapzr,
v, is a Boolean variable associated with a function node g in M =m U n?/,
|m|+1 if (g, ¢') is marked as part_eq s.t. (g,g') € mapgr,

|m| otherwise,

subject to the following constraints for M:

and wy =

i. Banning unmapped Vg € (M \ mapped(M)). —wv,
nodes from S:
ii. Defining the edges: V{f,g9 | (f, g) is an edge in M}.
Wy AUy = ey
iii. Transitive closure of edges: Vi, g.h € M. ey Negr, — e
iv. Forbidding self loops: Vg € M. —egy
v. Enforcing mapping mapz: Y(g,9") € mapr(m). vy <> vy

vi. Blocking the failed solutions: Neico(V ges, 7V9)

5 := MINISATT (3); > MINISAT* returns) if 3 is unsatisfiable
return {(f, /') [vy € s A ([, [') € mapr}

47

a maximal number of pairs that are marked as part_eq, because there
is a better chance of success with partially-equivalent functions (recall
that these are replaced with the same uninterpreted functions). This
strategy is implemented by assigning weights in the objective which
on one hand give higher priority to partially-equivalent function pairs,
and on the other hand still ensure finding the largest set S possible.
We will prove in Proposition 4.2.1 that the following weights guarantee
these two properties:

*x |m| + 1 for functions that are maked as part_eq;

* |m| for other functions,
where m is the currently considered MSCC in side 0.

Proposition 4.2.1. Function CHOOSES in Alg. 4 returns a set with a
maximal number of function pairs subject to constraints #i-vi.

Proof. Proving this proposition amounts to validating the following
formula for any MSCC m:

Vs, s C m. vlgig|s| wi,wj € {|m[, \m| + 1}
1<j<]3]

(4.1)

El |3]
|s| > [5] = > w; > > w;.
i=1 j=1

Consider any s, 5 C m such that s is larger than 5. For § we have:
I3]
Vicj<is @y € {ml, [m| +1}. Y iy < [3]- (Im| +1) .
j=1
Since s is larger than §, i.e., || < |s| — 1, we deduce:
5] - (Im| +1) < (Js[= 1) - (jm| +1) .
But the fact that |s| < |m/| implies:

(Isl =1) - (Iml +1) <|s| - |m],

48

which means:

131
Vigj<is) @5 € {Iml, jm| + 1} Y @y < s - |m].

j=1
On the other hand, for s we have:

|s|

Vicicls| wi € {Im/, [m|+ 1} sz’ > [s] - |m] .

i=1
Hence, the formula in (4.1) is valid. O

The following example will demonstrate all the three described optimiza-
tions.

Example 4.2.1. Consider the call graphs in Fig. 4.12. Assume that (f;, f/) €
mapr for ¢ = 0,...,5,7,...,9, and that the functions represented by gray
nodes are known to be partially equivalent to their counterparts. The MSCC
mapping mapy, in line 5 of Alg. 2 is naturally derived from mapr:

{fB}) {fé}>’)
{f3}, {f3}),

{f2>f4}7 {fé?.ﬁ:?f(l)‘}%

{A1ih A,

{f77f87f9}7 {féﬂféafé’fio}%

({fok {foh) J

Suppose that Alg. 2 has processed MSCC pairs ({5}, {f:}), {fs}, {fi}),
and ({ fo, fa}, {f%, f1, f6}), and, in the same manner as in Ex. 4.1.1, found
the following mapped function pairs as mutually terminating: (fs, f), (fa,
15, (fa, f1), and (f1, f1). Now the algorithm proceeds with the MSCC pair
{fr, s fot, LS5 14 f6, flo}). When CHOOSES listed in Alg. 4 is called for
the first time for this pair, its mission amounts to solving the optimization

(

mapy =

o~ o~ o~ o~~~

problem given in Fig. 4.13. Since this is the first attempt (failed_pairs = 0),
constraint #vi is irrelevant. The solution yields the largest possible set?

2For simplicity, we will index the feedback vertex sets returned by CHOOSES, e.g.,

49

Figure 4.12: Call graphs of the programs discussed in Ex. 4.2.1. Partially
equivalent functions are gray.

50

St = {{fr, [5), (fs, &), (fo, f§) } exactly as Alg. 3 would choose if it were
running. Assume that CALLEQUIV (ISOLATE(f7, fr, S1)) and CALLEQUIV
(ISOLATE(fs, f§, S1)) return FALSE, while CALLEQUIV (ISOLATE(fo, f§, S1))
returns TRUE. This result invalidates S;. Another feedback vertex set should
be sought by CHOOSES. Now note that there is a strict subset of S; which
consists of a failing node pair (f7, f7) plus (fs, fi), which is the only pair in
Sy reachable from (f7, f7) not through any other nodes in S;. GENERAL-
1IZECOUNTEREXAMPLE reduces S; and returns Syeiea = {(f7, f2), (fs, f§)}-
Seeking a new feedback vertex set amounts to solving the same optimization
problem given in Fig. 4.13 with an additional constraint for blocking Stgizeq:

vi. Blocking the failed solutions: (—wy, V —wg,) .

If we applied the version of CHOOSES defined in Alg. 3, MINISAT+ would
yield either {f7, fo} or {fs, fo}. However, its only solution in the optimized
version of CHOOSES (defined in Alg. 4) is {f7, fo}, because f; and f, are
partially-equivalent (unlike fs, f{), and, consequently, {f7, fo} weighs more
than {fs, fo}.

For proving the mutual termination of the pairs in Sy = {{f7, f7), (fo, f§) },
Alg. 2 is to check the call equivalence of those pairs. In CALLEQuUIV (f¢F,

J), the previous proof of the call equivalence of (fJ'F, f37F) is recycled by
RECYCLEPROOF because f5" = fii"" and foi" = foiF. Thus CBMC is

involved only for verifying the call equivalence of (fzUF, f2VF). Assume that

it fails. CHOOSES is called again. GENERALIZECOUNTEREXAMPLE cannot
reduce the failing set S, which is blocked by updating constraint #vi:

vi. Blocking the failed solutions: (—wvy, V —wg) A (mvp V —vy,) -

Note that any feedback vertex set must cover both the self-loop of fy
and the circle between f; and fg. Therefore, the only option left is S3 =
{{fs, 13), {fo, [} }. This time CALLEQuUIV (fYF, fYF) cannot recycle the

previous proofs of the call-equivalence of (fJ'F, fiVF) because f§lF (fi7F)
contains abstracted calls to UFy, (UFY,), which is missing in fss o (féglﬁ).

Sl, SQ, etc.

51

Assume that CALLEQUIV (ISOLATE(fg, f§, S3)) returns FALSE. In this case,
CHOOSES is called one more time and returns an empty set indicating that
there no more solutions available. Alg. 2 finally gives up by marking the
main pair of MSCCs ({fo},{f}}) as covered (but not as m_term) in line 22
and ends. This is an example where we are unable to prove the mutual
termination of the main functions, but we are able to prove the mutual
termination of some of their descendants.

O

52

max Z Vg - Wy ,
ol f7, f5: fo}

where wy, = 4 and wy, = wy, = 3,
subject to the following constraints for { f7, fs, fo, fo, f&, fo, fio}:

i. Banning unmap- mUe
ped nodes from S:
1. Deﬁning the Wy, A U fg — €frfs _|Uf§ AN _'Ufé — eféfé
edges: W N Vg = €ty S N g = gy
TUfs N Vg > g g N TR g
Tf N TV = €yt g N T = Epy
TWfy N Wiy > oy T N TR T ef g
iii. Transitive €prfs N Cfsfo = €fafo efrp Neprp — e
closure of €fifo N\ Cfofr —> Efrfy EfLfL VAN Cfifly " CfLfl,
edges: Cfsfo N\ Cofr = Cfsfr €ffio N €fiots — €111
Cfsfr N Crfs = Cfsfs €ifio N Cfiots — E1LL
Cafr N €frfs — Cfofs ity Nery = €fyf
Cfofr N\ €frfo = €fofo €rafe Nesiry = €fsf
eféfé/\eféfé _>€féfé
€ffy N el = €t
Cflofs NEfLEE 7 €l R
Crioft N EFLEL 7 Efiots
€fioft N €t ™ €floflo
iv. Forbidding —ef. £ e
self loops: €y fi e g
TCfo fo e
€0 fio
v. Enforcing Vp, £ Vg
mapping mapr: Vf <> Uy
Ufa 7 Vg

vi. Blocking the
failed solutions:

Figure 4.13: A pseudo-Boolean formulation of the optimization problem
of finding the largest set of function pairs intersecting all cycles in both
{f7, fs, fo} and {f%, f&, f3, fio}. The list of the transitive closure constraints
(iii) is not full as floccinaucinihilipilificated constraints are omitted here.

53

Chapter 5

Improving completeness

No sound method of proving mutual termination can be complete because
this problem is undecidable, but we should strive to improve the completeness
of our approach. The two major reasons of its incompleteness were mentioned
in Sect. 3.1. They are related to the overapproximation of the real behavior
caused by replacing recursive calls with uninterpreted functions. Refining our
uninterpreted functions can solve a few of overapproximation-related issues.
For example, enforcement (enforce-1) (see (2.6)) is found effective. Recall, it
enforces that uninterpreted functions replacing a pair of partially equivalent
functions must be the same. Additional ideas for refinements of uninterpreted
function which have not yet been implemented will be proposed in Sect. 7.1.

However, there exist other reasons for the incompleteness in our approach.
In this chapter we will address a few of them we have coped with. Some of
them are applicable to or refine the output of the decomposition algorithm
presented in a technical report [22] for verification of partial equivalence.
Such improvements are valuable for proving mutual termination too because,
as we mentioned above, knowing that some functions are partially-equivalent
can be beneficial for establishing their mutual termination.

o4

int main() { int main’() {

int y, x = 1; int x’ =1,y

while (x < 10) { while (x’ <=9) {
y =24 X; y =x + 2;
x=y+y; X' =2%*y;

¥ }

return x*2; return x’ << 1;

} }

Figure 5.1: Two versions of programs each of which contains a loop with an
uninitialized variable y (y') which is written-to before ever being read.

5.1 Reducing prototypes of loop-replacing func-
tions

Appendix C of [20] gives a detailed description of how loops are replaced
with functions. Local variables that are used inside loops are part of the
interface of the replacing function, even if they are written-to before being
read. The problem is that these variables are local and, hence, receive a non-
deterministic value and thus make the uninterpreted functions representing
the loop return different values. The following example demonstrates the
issue.

Example 5.1.1. Consider the pair of C programs listed in Fig. 5.1. Here-
after, the syntax of C is slightly violated, for instance, by ending identifiers
of side 1 with ’, in order to adhere to the notations we have used until
now. Extracting the loops into separate recursive functions results in the
two programs listed in Fig. 5.2. When partial equivalence of (main, main’)

UF main/ UF> are generated as listed in Fig. 5.3. The values

UF

is verified, (main
of y and ¢/ in (main”", main’ UF), respectively, are non-deterministic. Con-
sequently, not all the arguments passed into calls UF (Loop_main_whilel, &z,
&y) and UF’ (Loop_main_whilel’; &z, &y') are considered equal, because di-
rect pointers are considered equal if they point to equal values. Thus those

UF /UF>

calls are considered different. As a result, (main”", main are not consid-

95

int Loop_main_whilel(int *px,
int *py)
{

if (!(*px < 10)) return 0;

*py = 2 + *px;

*px = *py + *py;

return Loop_main_whilel(px, py);

int main() {
int y, x = 1;
Loop_main_whilel(&x, &y);
return x*2;

}

int Loop_main_whilel’(int *px’,

{

int *py’)

if (I(*px’ <= 9)) return 0;

*py’ = Fpx’ + %

px’ =2 % Fpy’;

return Loop_main_whilel’(px’, py’);

int main’() {

}

int x’ =1,y
Loop_main_whilel’(&x’; &y’);
return x’ << 1;

Figure 5.2: Two versions of programs from Fig. 5.1 after elimination of their

loops.

int mainV?() {
int y, x = 1;
UF (Loop_main_whilel, &z, &y);
return x*2;

}

int main'V"() {

}

int x’ =1,y
UF’ (Loop_main_whilel’, &', &v/);
return x’ << 1;

Figure 5.3: Parts of the program generated for proving the mutual termina-
tion of functions main, main’, defined in Fig. 5.2.

56

int Loop_main whilel(int *px) {
int y;
if (!1(*px < 10)) return 0;
y =2+ "px;
px =y 4y
return Loop_main_whilel(px);

int main() {
int y, x = 1;
Loop_main_whilel (&x);
return x*2;

}

int Loop_main_whilel’(int *px’) {
int y’;
if (I(*px’ <=9)) return 0;
y' = *px’ + 2;
px’ =2y’
return Loop_main_whilel’(px’);

int main’() {
int x’ =1,y
Loop_main_whilel’(&x’);
return x’ << 1;

}

Figure 5.4: Two versions of programs from Fig. 5.1 after replacement of their
loops with functions and reduction of variables y and 3’ from the argument
lists of those replacing functions. See Fig. 5.2 for a comparison.

UF /UF).

O

ered call-equivalent. Hence, RVT will fail to prove m-term(main”* , main

There is no good reason to include the variables of loop bodies that satisfy
the two following conditions, into the argument list of the functions that
replace the loop:

C1. before their values are ever read, some value is assigned into them, and
C2. they are no longer used after the body of the loop.
They may become mere local variables in the replacing functions.

Example 5.1.2. Reconsider the programs given in Fig. 5.1 and note that
variable y (y') in function main (main’) is initialized every time before be-
ing read in the loop-body. In fact, there is a single execution path in that
loop-body. Thus, y (y’) satisfies condition C1. Moreover, note that it is
not used after the end of the loop body, i.e., it satisfies C2 too. Hence,

57

py (py') may be reduced from the argument list of the loop-replacing func-
tion Loop-main_whilel (Loop-main_whilel’), and, furthermore, y (y') may
become a local variable inside it as listed in Fig. 5.4. Now m-term(main,
main') can be proven.

]

Here is a description of the procedure we apply for detecting variables
that satisfy conditions C1 and C2. Validating C1 amounts to checking that
a variable is initialized before being read in every computation path in the
loop-body block. If it passes the check, C2 shall be validated. The latter
validation is done using live-variables analysis [32]. If it establishes that the
variable has stopped being a live variable by the end of the loop body, then
C2 holds.

Two simple intraprocedural static analyses [25] aid to validate C1 in a
checked loop-body block. The first analysis, which we call Write-To (WT),
for each node of the control flow graph of that block, finds variables that
something is written to them in all execution paths leading to the node,
including writings in this node itself. The nodes of control flow graphs on
which we run our analyses are expressions in the C-language. WT is a flow-
sensitive forward [17, 38] must [33] analysis. Based on its results, the second
one, called Read-Uninitialized (RU), finds those variables that may be read
before something is written to them, i.e., detects potential reads of unitialized
variables. Those variables of the checked loop which are not listed in the
results of RU are written-to before being read in this loop-body, i.e., satisfy
Cl. RU is a flow-sensitive forward may [33] analysis. Both analyses are
formally defined in Tables 5.1 and 5.2.

The described reduction of variables from the argument lists of loop-
replacing functions can be useful for proving partial equivalence too.

5.2 Mapping functions with different num-
bers of input parameters

Recall that in Sect. 2.1 we imposed a bijective map mapr between the func-
tions of the two compared programs P, P’ as a precondition to apply our

58

kill function

Kill(BYY = 0

gen function

gen(B") = def(B)
in all other cases:
gen(BY) = 0

Data flow equations WT™

WTentry (6)

WTem’t (6)

0 if ¢ = init(S,)
(UWTeit(¢) | (¢,2) € flow(S,)} otherwise

(WT iy (0) \ Kill(BY)) U gen(B")), where B* € blocks(S,)

Table 5.1: Definition of WT analysis. This is an intraprocedural flow-sensitive
forward (F = flow(S,)) must (| | = [)) analysis. Let def(n) denote the
set of the variables updated in the control flow graph node n. See Chapter 2
of [33] for understanding the rest of the notations used here.

kill function

Kill(BY) = 0

gen function

gen(BY) = {v|veuse(B)Av & WTey(0)}

Data flow equations RU™

RUentry (6)

RUexit (ﬁ)

0 if ¢ =init(S,)
U{RUcit(¢") | (¢, 0) € flow(S,)} otherwise

((RUepniry (€) \ Kill(B)) U gen(B")), where B € blocks(S,)

Table 5.2: Definition of RU analysis. This is an intraprocedural flow-sensitive
forward (F = flow(Ss)) may (|| = |J) analysis. Let use(n) denote the
set of the variables which are read in the control flow graph node n. See
Chapter 2 of [33] for understanding the rest of the notations used here.

59

int h(int x) { int h’(int x’, int b’) {

if (b’ 1=0)
report’(“...”);
if (x <=0) if (x’ <=0)
return h(1 - x); return h’(1 - x', b’);
return x; return x’;

} }
void report’(const char *s’) {

}

Figure 5.5: Two versions of a program where functions h and h’ have different
prototypes. Nevertheless, we would like to prove m-term(h,h’).

algorithm. Furthermore, for functions f € P and f' € P, (f, f') € mapr
only if f and f” have the same prototypes. Our method requires this in order
to be able to check call-equiv(fUF, f'V"). However, we would like to extend
the definition of mutual termination so that it captures cases in which al-
though the two functions have different numbers of input parameters, they
terminate with respect to the common elements of their prototypes. The
following example demonstrates such a case.

Example 5.2.1. Consider two versions of a program listed in Fig. 5.5.
Functions h and A’ have different numbers of input arguments. However,
argument b’ does not affect the guarding conditions of recursive calls in h’.
Thus we would like to still be able to prove that h and A’ mutually terminate
regardless of the value of ¥'.

O

In Sect. 5.2.1 we will formally present a method for detecting such input
parameters as b’ in function A’ from Ex. 5.2.1. We coin input parameters
which have no influence on the termination of their function termination-
inert. But now we will describe what we do with them assuming we have
detected them.

60

Let II denote the indices of the common elements in the prototypes of
f and f’. Let in and in’ denote the actual input arguments of f and f’
respectively, and let ¢n|q, in’|; denote their respective projections to the
elements defined by II. The following definition generalizes Def. 2.2.1 to
functions with different prototypes.

Definition 5.2.1 (Generalized mutual termination of functions). Two func-
tions f and f’ are mutually terminating, if and only if

Vin,in'. in|g = in'|n — Vr € [f(in)], 7 € [f'(in')]. term(rn) <> term(x’) .
(5.1)

We continue to use the predicate m-term(f, f') to denote mutual ter-
mination of f, f’, only that now it also applies to the case that f, f* have
different prototypes, according to the definition above. Note that (5.1) gen-
eralizes (2.1), and is more difficult to prove because (5.1) has a universal
quantifier over variables that are not constrained on the left-hand-side of the
implication. For example, considering h and h’ of Example 5.2.1, we need to
prove:

Va, o' V. o =a" = Vr € [h(x)], 7 € [B (2, V)]. term(m) <> term(n') ,

that is, b’ is unconstrained.

We suggest to reduce the problem of generalized mutual termination
(Def. 5.2.1) to that of mutual termination (Def. 2.2.1) by deriving new non-
deterministic functions from f, f’ so that their inputs are restricted to the
common part [I. We call this construction hiding.

Definition 5.2.2 (Hiding function parameters). Given a function f in a
program P and a subset B of the formal input parameters of f, the hiding
of B is given by the following transformation of P:

o Let fip be f after the following transformation:

— remove B from the prototype of f;

— declare the B variables as local variables of f, and initialize them
with non-deterministic values;

61

int h/J{b/}(il’lt X’) {
int b’ = nondet();

if (b’ 1= 0)
report’(“...”);
if (x’ <=0)
return 7/ (1 - X7);
return x’;

}

Figure 5.6: Function A/ gy, derived from function A/ (see Fig 5.5) ‘hiding’ ¥/
from the parameter list (see Def. 5.2.2).

e In P, replace f with fp and all calls to f with calls to f|z.

As an example, hiding of ¢’ in Fig. 5.5 of Ex. 5.2.1 results in the function
appearing in Fig. 5.6. Functions A and h’ have different numbers of input
parameters. However, no value of parameter ¢’ can affect the guarding con-
ditions of recursive calls in A’. Thus we would like to still be able to prove
that h and A’ mutually terminate regardless of the value of v'.

Let B, B’ be the set of parameters of f, f’, respectively, outside of the
common part II, i.e., these are parameters that are not mapped to parame-
ters in the other function. Hiding these parameters results in f|p and f/ 5/,
which have the same prototype and can therefore be checked for mutual ter-
mination with the inference rules of Chapter 3. It is left to prove that mutual
termination of these transformed functions imply the mutual termination of
the original ones. In other words, we need to prove the soundness of the
following proof rule:

m-term(fig, f'|5)

m-term(f, f')

(M-TERM-II) . (5.2)

Proof. 1t is sufficient to show that fp overapproximates f and f’ overap-
proximates f’, because mutual termination of overapproximating functions
clearly implies mutual termination of the original ones. Indeed f|z overap-
proximates f because by construction, for any actual values passed to the

62

B parameters in f, the executions of f can be mimicked by f|z by choosing
the same values for the corresponding local variables (recall that they are
initialized with nondeterministic values). The same argument proves that
f'|p overapproximates f’.]

Note that the modifications that create fip (f’;z) do not necessarily
preserve the semantics of f (f’). Consequently, checking m-term(f s, f')
usually involves different uninterpreted functions.

Example 5.2.2. Reconsider functions h and b’ listed in Fig 5.5. Parameter
b’ of the prototype of A’ is a termination-inert input argument. It can be
excluded from the parameter list of A'. Function A'jqy, listed in Fig 5.6,
and h, defined in Fig 5.5, have the same prototype. Now RVT can prove
m-term(h, b\ yy) and infer m-term(h, b').

]

5.2.1 Detecting termination-inert input parameters

An algorithm for checking whether a given argument v of function f is a
termination-inert input argument of f consists of two stages. First, it builds
a System Definition Graph [26] (SDG) for program P where f is defined.

Briefly, an SDG is an extension of a Program Dependence Graph [16, 29]
(PDG) for multi-function programs. The original nodes of some function’s
PDG represent the statements of the function. The edges of the PDG repre-
sent data and control dependencies between the statements of the function
and thus define their partial order: the semantics of the function is preserved
if its statements are executed in this order.

Algorithm 5 Algorithm for checking whether an input argument is
termination-inert.

1: function ISCALLEQUIVINERT(Program P, function f, argument v)

2 Build an SDG for P;

3: for each call to f in this SDG do

4 if this call is reachable from node v = v;,, then return FALSE;
5

return TRUE;

63

Enter b/

@ report(”...”)

(=2)

@ Enter report

Figure 5.7: The System Definition Graph [26] of the sub-program starting in
function A’, defined in Fig 5.5.

64

An SDG consists of PDGs for each function of the program plus the
following additions. Each function ¢ of the program is associated with an
entrance node “Enter ¢g”. For each input argument u of this function, the
SDG contains a node of type u = u;,, and an edge entering this node and
leaving node “Enter ¢”. Each node representing a call to function g has a
leaving edge entering the entrance node of g, i.e., “Enter ¢”. In addition,
for an expression expr passed as parameter u in that call, there are a node
of type w;,, = expr with the two following edges:

e an entering edge which leaves that function-call node, and
e aleaving edge which enters the recently mentioned node of type u = ;.

The return value of g has its own dedicated node retval,. Its entering edges
leave nodes whose statements affect the return value. Its leaving edges enter
nodes whose statements depend on the return value. Fig. 5.7 demonstrates
an example of an SDG built for the sub-program starting in function A’ from
Fig 5.5.

At the second stage the algorithm checks whether any of the calls to
function f is reachable from node v = vj,,, where, recall, v is the name
of the given input argument. If none is reachable, then argument v is a
termination-inert input argument of f. The algorithm is presented in Alg. 5.

Example 5.2.3. Regard the SDG in Fig. 5.7, built for the sub-program
starting in function A’ from Fig 5.5. It has no node of a function call to

h' which is reachable from node b = ¥

in,,- Hence, b' does not affect any

guarding condition over any recursive call to h'.

5.3 Partial equivalence with respect to a sub-
set of outputs

The improvement reported in this section refines the output of the decom-
position algorithm for checking partial equivalence [22].

Recall that functions in a language such as C may have multiple outputs,
and that so far we defined partial equivalence with respect to all of them, i.e.,

65

int g(int x, int *p) { int g'(int x’, int *p’) {

if (x > 5 || p == NULL) if (x’ > 5 || p’ == NULL)
return 0; return 0;

*p=0; P =1

g(g(x + 1, p), NULL); g'(g'(x" + 1, p’), NULL);

return x; return x’;

} }

int ¢V (int x, int *p) { int ¢V (int x’, int *p’) {
if (x > 5 || p == NULL) if (x’ > 5 || p» == NULL)
return 0; return 0;
*p = 0; P =1
UF,(UF,(x + 1, p), NULL); UFg’,(UFg’,(X’ + 1, p’), NULL);
return x; return x’;

} }

Figure 5.8: (top) Functions g and ¢’ are partially equivalent with respect
to their return value, but not with respect to the other output xp, xp’. We
show that this ‘restricted’ partial equivalence is sufficient for proving mutual
termination; (bottom) the isolated versions of g, ¢'.

given the same inputs, the two functions are equivalent in all output elements
pair-wise. However, sometimes the equivalence of some of the outputs is
sufficient for proving mutual termination, as demonstrated in the following
example.

Example 5.3.1. Consider the functions listed at the top of Fig. 5.8. For-
mally, g and ¢’ are not partially equivalent because different values are as-
signed to p and p’, which are among the outputs of ¢ and ¢, respectively.
But the return values of g and ¢’ are equivalent. This fact could be useful
for establishing m-term(g, g').

Consider ¢UF and ¢'V" listed at the bottom of Fig. 5.8. The obstacle
for proving call-equiv(gU*, ¢'"") is the fact that UF, and UF, o are different
uninterpreted functions (because =p-equiv(g, ¢')). We may solve this problem
by enforcing the equivalence of the return values of UF, and UF, g’, only (but

66

not those of *p,*p’). We can do this if we are able to prove that g and ¢’
are partially equivalent with respect to their return values.
]

Let out(f) denote the list of outputs of f.

Definition 5.3.1 (Partial equivalence with respect to individual outputs).
Two functions f and [’ are partially equivalent with respect to individual
outputs (0, 0') such that o € out(f) A o' € out(f’) if and only if for all input
in and for any 7 € [f(in)], 7’ € [f'(in)] which satisfy term(7) A term(n’),
7w and 7" end with the same value for o and ¢o'.

Let p-equivi, o (f, f') denote the fact that f and f” are partially equivalent
with respect to (0, 0). We can now refine enforcement (enforce-1) (see (2.6)):

UFf =0y UFy — ((f, ') € mapr A p-equivyy(f, ') (enforce-2) ,

(5.3)
where =, is the natural restriction of = to (0,0). We refine the imple-
mentation of UF’ (see Fig. 4.1) in a manner compatible with this condition,
i.e., given the same inputs, the values of o and o’ are still non-deterministic
but forced to be the same when we are able to prove p-equiv,o(f, f’).
Otherwise, no such enforcement is made. The correspondingly refined imple-
mentation of UF’ is shown at the bottom of Fig. 5.9.

Our tool RVT is capable of proving partial equivalence of functions
with respect to individual outputs. When it is activated for checking par-
tial equivalence, it first attempts to establish p-equiv(f, f’) for each (f, f")
that it is checks. Only if it fails to have proven this, it checks the equiv-
alence of output elements one by one. For each pair of output elements
(0, 0') with respect to which partial equivalence could be proven, it as-
signs label part_eqoy to (f, f’). Thereby it finds a maximal mapping
{(0,0") | 0 € out(f) Ao € out(f) N p-equivi, e (f, f')}. This mapping can
be also useful when the outputs of f cannot be bijectively mapped with the
outputs of f’.

67

1: function UF(function index g, input parameters in) > Called in side 0

2: if ¢n € params|g] then return the output of the earlier call UF(g, in);
3: paramslg] := params[g] | in;

4: return a non-deterministic output;

5: function UF’(function index ¢/, input parameters in’) > Called in side 1
6: if in’ € params|g’] then return the output of the earlier call UF’(¢/, in’);
7: paramslg’] := params|g’] | in’;

8: if in’ € params[g] then > (g,9') € mapr
9: result := [|;

10: for each o; € out(g) do > o € out(qg')
11: if (g,4’) is marked as part_eq or as part_eqq,, ;) then

12: append the result for o; of the earlier call UF(g, in’) to result;
13: else append a non-deterministic value to result;

14: return result;

15: assert(0); > Not call-equivalent: params|¢'] € params|g|

Figure 5.9: Implementations for functions UF and UF’, where the latter takes
into consideration partial information about partial equivalence. UF and
UF’ emulate uninterpreted functions if instantiated with functions that are
mapped to one another, and form a part of the generated program 9, as
shown in CALLEQUIV of Alg. 1 or in the determinization thereof Alg. 2 (see
pages 29, 42). These functions also contain code for recording the parameters
with which they are called.

68

Chapter 6

Inference rules for proving
termination

6.1 Proof rule (TERM)

We now consider a different variant of the mutual termination problem:
Given that a program P terminates, does P’ terminate as well? Clearly
this problem can be reduced to that of mutual termination, but in fact it can
also be solved with a weaker premise. We first define:

Definition 6.1.1 (Call-containment). Function f call-contains a function f’
if and only if

Vin,in'. in = in’ = V7 € [f(in)],« € [f/(in")]. calls(x") D calls(z'") .
(6.1)

Denote by f J. f’ the fact that f call-contains f’. We now overload term
to refer to the set of computations possible in a function f with any input:

term(f) = Vin.Vr € [f(in)]. term(r) . (6.2)

We can now define the rule for leaf MSCCs m, m/:

69

m+n if p=20

0 ifn=0Ap=1
p(m,n,p) =4 1 if n=0Ap=2
m ifn=0Ap>2
gp(m,gp(m,n—l,p),p—l) Z'fn>0/\p>0
b+ 1 ifa=0
A(a,b) =< A(a—1,1) ifa>0ANb=0
Ala—1,A(a,b—1)) ifa>0Ab>0

Figure 6.1: The original Ackermann [3] function ¢ and its two-variable vari-
ation A, developed by Péter and Robinson [34].

Y{f, f') € mapr(m). (term(f) A fUF 3, f7F)
V(f, [') € mapy(m). term(f")

(TERM) . (6.3)

One can note that call equivalence (Def. 2.2.3) is simply bi-directional
call containment, which makes the premise of the new rule weaker than that
of (M-TERM) (see (3.2)) for proving mutual termination. The soundness of
(TERM) will be proven in Sect. 6.3. A generalization to non-leaf MSCCs will
be given in Sect. 6.2.

Example 6.1.1. Consider the original definition of Ackermann function [3]
and its more famous two-argument variation, developed by Péter and Robin-
son [34]. Fig. 6.1 displays the functions. The arguments of each variation are
non-negative integers. Observe that once ¢ is called with some m, passed as
the first argument, all the recursive calls of ¢ pass mg as the first argument.

70

m+n if p=20

0 ifn=0Ap=1
ol (n,p) =< 1 ifn=0Ap=2
m 1ifn=0Ap>2
UF, (UF,, (n—1p),p—1) ifn>0Ap>0
b+1 ifa=0
A" (a,b) = UFs(a—1,1) ifa>0Ab=0
UFA(CL—l,UFA(a,b—l)) ifa>0Ab>0

Figure 6.2: The isolated versions of the original Ackermann function ¢ and
its more famous two-variable variation A, developed by Péter and Robinson.

This observation allows to define function ¢,, as following:

(m+n if p=20
0 ifn=0Ap=1
Ym(n,p) =4 1 ifn=0Ap=2
m ifn=0Ap>2
[Pm(pm(n—1,p),p—1) ifn>0Ap>0

Note that ¢, (n,p) = ¢(m,n,p). Now the prototypes of ¢,, and A can
be matched:

e argument n in ¢, matches argument b in A, and
e argument p in in ¢,, matches argument a in A.

Their corresponding isolated versions are shown in Fig. 6.2.
UF,, can be called in ¢V (y,) only when both z and y are positive. In
this case the following calls take place:

o UF, (y—1,z), and

71

o UF, (UF, (y—1,2),z —1).
But given those positive z and y, the calls of UF4(y, z) in AV are:
e UFs(x,y—1), and
o UFs(x — 1,UF4(z,y — 1)).
If we are given that ¢; and A are partially equivalent, we can enforce:
Ul (y,x) = UFa(z,y) ,
and then:

e the first parameter of UF,, (UF,,(y — 1,x),x — 1) will be equal to the
second parameter of UFa(z — 1,UF4(z,y — 1)), and

e the second parameter of UF, (UF,, (y — 1,z),z — 1) will be equal to
the first parameter of UFs(x — 1, UF4(z,y — 1)).

Consequently,

Ve >0,y >0,w,z.

v1(z,w) € calls (golUF(y,a:)) — A(w, z) € calls (AUF(x,y))) (6:4)

It was previously mentioned that ¢V (y,) contains no function calls when
either = or y (or both) is not positive. Hence,

Vo,y EN(z =0Vy=0)— calls (p1""(y,z)) =0 (6.5)

The combination of (6.4) and (6.5) will imply AYF 3, ¢,YF". Having taken
in consideration that term(A) is a known fact [6], we can conclude term(p;)
according to rule (TERM), i.e., that the original version of the Ackermann
function ¢(m,n,p) terminates for m = 1.
O
The weakness of our method appears for m # 1, when ¢(m,y,z) and
A(z,y) are not partially equivalent. In this case we cannot prove
AYE 3. 0,V because we may not enforce UF,, (y — 1,z) = UFa(x,y — 1).

72

6.2 Generalized rule (TERM™)

A generalization to non-leaf MSCCs can be done in a similar way to (3.4):

V{f, f") € mapz(m).(term(f) A fUF 3. f’UF) A
Y{(g,q") € mapr. ((g € C(m)Ng € C(m)) — m-term(g,q'))

YV{f, f') € mapr(m). term(f’)

(TERMT) ,

(6.6)

where, recall, C'(m) denotes the functions that are outside of m and are called
by functions in m. A proof appears in Sect. 6.3.

The decomposition algorithm applies with the following change: in func-
tion CALLEQUIV , the statement asserting params|g] C params|g'] (line 31
in Alg. 2) should be removed. Namely, the adapted version of function
CALLEQuUIV is presented in Alg. 6. The only assertion that should be
verified is thus inside UF’ (see line 12 in Fig. 4.1 or line 15 of the refined
implementation thereof in Fig. 5.9). It checks that every call on side 0 is
matched by a call on side 1.

6.3 Soundness proofs for (TERM) and (TERM™)

The outline of the proof of (TERM) is the following:

e In Theorem 6.3.1 we will falsely assume that the premise fUF 3, fVF
for all pairs (f, f’) € mapr(m) holds, whereas there exists computa-
tions m € [f(in)] and 7’ € [f'(in)] such that term(xw) and —term(n’).

e In Lemma 6.3.2 we show that term(7) together with the premise above
implies that Vo’ € [f'(in)]. term(x’), which is a contradiction.

e To prove Lemma 6.3.2 we first prove an auxiliary lemma—Lemma 6.3.1—
that if there exists a function call g'(in,) in 7' and 7 is finite, then 7!
must contain a matching call to g(ing,) where (g, ¢') € mapr.

73

Algorithm 6 CALLEQUIV from Alg. 2 updated for proving termination of
functions.

30: function CALLEQUIV(A pair of isolated functions (fUF, f/VF))
31: Let 6 denote the program:

> here add the definitions of UF() and UF’()

> (see Fig. 4.1 or Fig. 5.9).

in := nondet();

fOr (im);
Ft in);
32: if WASPROVEN(proven, (fUF, f'F)) or® CBMC(4) then
33: proven := proven U {(fUF f'VF)1
34: return TRUE;
35: return FALSE

®The second condition is evaluated only if the first condition has been evaluated as
false.

We begin by defining, for a given a computation 7:

U = 1lg(ing) «+ UF,(in,) | (g,ing) € calls(x")] , (6.7)

namely we replace the function calls in 7! with calls to their respective un-
interpreted functions, with the same arguments. It is not hard to see that

7 € [f(in)] Aterm(r)
mUt e [fUF (in)]

(6.8)

When 7 is infinite, on the other hand, there may be statements in f that
would be executed if the non-terminating call would have returned. Since the
call is replaced by an uninterpreted function that does return, those state-
ments will be executed in fUF. In such a case there must exist a computation
7 in [fUF (in)] that extends 7V In other words, 7VF is a prefix of #. More
formally, letting prefiz(mVF,) denote that 7V is a prefix of #, we have

m e [f(in)]

Jr € [fUF(in)]. prefiz(nVF 7))

(6.9)

74

Lemma 6.3.1. For any given pair of functions (f, f’) € mapz, function ¢,
and inputs in, éng, the following inference is sound for any = € [f(in)]:

term(m) A fUF 3, fYT A 30 € [f(in)]. (¢, ing) € calls(z'")
Jg. ({9,9") € mapzr A (g,ing) € calls(r?))

(6.10)

Its proof reminds very much of that given for Lemma 3.4.1 in Sect. 3.4.

Proof. Let (f, f’) € mapg, input in, function ¢’ and input én, satisfy the
premise. The bijectivity of mapr ensures existence of a function g such that
(9,9') € mapgr.

By (6.9) 7'"" is a prefix of some 7’ € [V (in)]. Note that (UF,, ing) €
'UEY which implies (UF,,ing) € calls(#’). Hence, fUF 3. fF
implies:

calls(m

Vi € [fUF(in)]. (UF,,in,) € calls(7) . (6.11)

The premise of (6.8) holds, which implies 7V € [fY¥(¢n)]. Thus (6.11)
implies (UF,,in,) € calls(rVT"). The construction of 7V implies (g,in,) €
calls(m?t). O

We now define:
depth(m) = max{|s| | s € S(m)}, (6.12)

where, recall, S(7) denotes the set of call-stacks appearing during a given
computation 7, and for s € S(7), |s| is the number of frames in s (possibly
infinite). Fig. 6.3 illustrates depth(r), for the program listed in Fig. 2.1.

Our proofs of the lemmas in the rest of this chapter rely on the following
observations:

Ol. term(nm) <» 3d € Z*. depth(m) < d ;

02. —term(w) implies that among all function calls made in 7!, there is
exactly one which does not return, and its call-statement is the last

statement in 7!.

The next lemma addresses mutually recursive functions without outer calls,
i.e., calls to functions outside the MSCCs.

5

i |melf©9] s o /

Ty € [[g(ll())]]/ /

7y, € [f(110)]

Tgs € [[9(111)]]/ /
s, € [f(111)]

Figure 6.3: An illustration of depth(w), defined in (6.12), for a computation
7 € [f(99)], where f is defined in Fig. 2.1. For a subcomputation 7y, of 7
beginning at g (a callee of f), depth(rm,,) < depth(r).

Lemma 6.3.2. For any given (f, f') € mapz(m) called with the same input
n,

Y(h, K'Y € mapr(m). WWF 3, WY A 3r e [f(in)]. term(n)
vl e [f'(in)]. term(n’) '

(6.13)

Proof. Consider the finite computation 7 provided by the premise. By O1,
depth(m) is bounded by a finite value. Let d = depth(m). The proof is by
induction on d.

Base: For d = 1, m does not contain any call statements. Falsely assume
3’ € [f'(in)]. —term(x’), which by O2 implies that 7'' contains some call
statement ¢'(in,). Since the premise of Lemma 6.3.1 holds (fUF 3, fYF
holds owing to the premise of (6.13)), 7 must contain a matching call state-
ment g(ing), where (g, ¢’) € mapr, in contradiction to the assumption that
there are no call statements in 7. Hence, term(7’) holds.

Step: Assume that the rule holds up to a given d and the premise holds
at d + 1 for a call f(in). Let m € [f(¢n)] be a computation which satisfies
depth(m) < d+1, and hence, term(m) holds (by O1). We now prove that the
consequent of the rule is true for d + 1.

Falsely assume that there is a computation 7’ € [f'(in)], where (f, f') €
mapz(m), such that —term(7') holds. This implies that f’(é¢n) must make
some call ¢'(tny) which does not return. Since the premise of Lemma 6.3.1

76

holds, 7 contains a matching call statement g(ing,), where (g,¢’) € mapr.
Now note that depth(r) < d+ 1 implies that for any subcomputation 7, of ©
such that 7, € [g(iny)], depth(m,) < d. By the induction hypothesis, (6.13)
holds up to d and, therefore, the following is true:

v, € [¢'(ing)]. term(x)) .

Consequently, the supposedly non-terminating call of ¢'(é¢ny) in 7’ must have
returned, which is a contradiction. Hence, term(7’) holds. O

Theorem 6.3.1. (TERM) is sound.

Proof. Falsely assume that the premise of rule (TERM) holds

Y{f, f) € mapr(m). (term(f) A fUE 3, f’UF) ,

but the consequent

Y{f, [y € mapr(m). term(f")

does not. This means that there exists (f, f') € mapr(m), an input in,
and computations 7 € [f(in)] and 7' € [f'(in)] such that term(7) and
—term(n’). The former implies by O1 that depth(r) is bounded by some
finite value d. The premise of (6.13) now holds, and hence by Lemma 6.3.2,
all the computations of f’(in), including 7/, must be finite, which contradicts
our assumption that 7’ is infinite. Hence, term(f’) must hold. O

6.3.1 Proof of (TERM™T).

The outline of the proof is the following:

e In Theorem 6.3.2 we will falsely assume that the premise of (TERM™)

V{f, f) € mapr(m).(term(f) A fUF 3, f/UF) A
V{g,g') € mapr. ((g € C(m)ANg € C(m')) — m-term(g,q'))

holds, but there exists computations 7 € [f(in)] and ©’ € [f'(in)]

7

such that term(w) and —term(n’), which contradicts the consequent of
that rule.

e In Lemma 6.3.3 we show that —term(n’) can only be caused by an inner
call statement in 7' (i.e., a call to a function in m’), which does not
return.

e In Lemma 6.3.4 we prove, in contrast, that all inner calls of 7’ must
terminate if term(m) holds.

The proof is based on the following inference rule, which holds for any given
(f, f") € mapz(m) called with the same input in:

Y(h,h') € mapr(m). hWWF 3, WY A
Y{(g,q'") € mapr. (g € C(m) ANg € C(m')) — m-term(g,g') A
dr € [f(in)]. term(m)

va' € [f'(in)]. term(n’)

(6.14)

Note that the premise simply strengthens the premise of rule (TERM™) with
the third line, requiring that there exists a finite computation in f(én). In
order to show the soundness of (6.14), we need first to prove the following
lemma:

Lemma 6.3.3. Consider a pair of MSCCs (m,m’) € mappy and a pair
of functions (f, f') € mapr(m) called with an input in which satisfy the
premise of (6.14). Then

Ir’ € [f'(an)]. (f, f) € mapr(m) A —term(r’)
implies the following:
1. 7’" must contain exactly one call statement which does not return, and

2. the called function must belong to m/.

Proof. The first item is an immediate consequence of observation O2. It is
left to prove that the non-returning function must belong to m’. Let ¢'(ing,)
be this non-returning call. Falsely assume ¢’ € C(m'). This call is made in

78

f'(im). term(r) and fUF 3, f'VF imply by Lemma 6.3.1 that g(in,) is called
in 7, where (g, ¢’) € mapr A g € C(m). This call must terminate because of
term(m). The latter fact and m-term(g,¢’) imply that all computations of
g'(ing) are finite, in contradiction to the assumption that the call of ¢'(ing,)
does not return. Hence, the assumption ¢’ € C'(m’) was wrong, which implies
g em'. O

Now we can prove the soundness of (6.14). The proof follows similar lines
to those used in the proof above of (TERM). Specifically, we will extend
Lemma 6.3.2 to cases in which there are mutually-terminating calls outside
the MSCC. Correspondingly, we define

depth,(m) = maz{|s| | s € Sp(m)}, (6.15)

where, recall, S,,(7) denotes the subset of stacks in S(7) that consist solely
of functions in a given MSCC m.

Lemma 6.3.4. Rule (6.14) is sound.

Proof. For the finite computation m guaranteed by the third line of the
premise, let d = depth,, (). The proof is by induction on d.

Base: For d = 1, m does not contain any inner calls statements, i.e.,
any calls of functions of m. Falsely assume —term(n’), which implies by
Lemma 6.3.3 that 7" contains some call statement ¢’ (éng) such that ¢’ € m/'.
Since the premise of Lemma 6.3.1 holds (fUF 3. f'YF holds owing to the
premise of (6.14)), 7 must contain a matching call statement g(ing), where
(g9,9") € mapz(m), in contradiction to the assumption that there are no inner
call statements in w. Hence, term(7’) holds.

Step: Assume that the rule holds up to a given d and the premise holds
at d + 1 for a call f(in). Let m € [f(én)] be a computation which satisfies
depth,(m) < d+1 Aterm(mw). We now prove that the consequent of the rule
is true for d + 1. Falsely assume:

Ir" e [f'(an)]. (f, [') € mapr(m) A —term(x") .

Lemma 6.3.3 implies that f’(¢n) must make some call ¢'(in,), where ¢’ € m/,
which does not return. Since the premise of Lemma 6.3.1 holds, 7 contains

79

a matching call statement g(ingy), where (g, ¢’) € mapr(m). Now note that
depthy,(m) < d+ 1 and g € m imply that for any subcomputation m, of
7 such that m, € [g(ing)], depth,,(m,) < d. By the induction hypothesis,
(6.14) holds up to d and, therefore,

VW; € [¢'(iny)]. term(W;)

holds. Consequently, the supposedly non-terminating call of ¢'(ing) in =’
must have returned, which is a contradiction. Hence, term(7’) holds. O

Theorem 6.3.2. (TERM™) is sound.

Proof. Assume that the premise of rule (TERM™) holds. Consider (f, ') €
mapr(m) called with the same argument én. term(f) implies that every
computation 7 € [f(¢n)] is finite. Falsely assume —term(f’), which implies
that there is an infinite computation 7’ € [f’(in)]. The premise of (6.14)
now holds, and, hence, by Lemma 6.3.4, all the computations of f’(in),
including 7/, must be finite, which contradicts our assumption that #’ is
infinite. Hence, term(f’) must hold. O

80

Chapter 7

Experience and conclusions

We implemented Alg. 2 in RVT [1, 24], and tested it with many small pro-
grams and one real software project. Here we describe the latter.

We tested our tool on the open source project BETIK [2], which is an in-
terpreter for a scripting language. The code has 2000 — 2500 lines (depending
on the version). It has many loops and recursive functions, including mu-
tual recursion forming an MSCC of size 14. We compared eight consecutive
versions of this program from the code repository, i.e., seven comparisons.
The amount of changes between the versions varied with an average of 3—
4 (related) functions. Somewhat to our surprise, many of the changes do
not preserve termination behavior in a free context, mostly because these
functions traverse global data structures on the heap.

In five out of the seven comparisons, RV'T discovered correctly, in less
than 2 minutes each, that the programs contained mapped functions that do
not mutually terminate. Fig. 7.1 displays two versions of a function called
INT_VALUE, which receives a pointer to a node in a syntax tree. The old
version compared the type of the node to several values, and if none of them
matched it simply returned the input node. In the new code, a ‘default’
branch was added, that called INT_VALUE’ with the node’s subtype. In an
arbitrary context, it is possible that the syntax ‘tree’ is not actually a tree,
rather a cyclic graph, e.g., owing to data aliasing. Hence, there is a context in
which the old function terminates whereas the new one is trapped in infinite
recursion.

81

value_t *INT_VALUE(value_t *v) { value_t *INT_VALUE’(value_t *v') {
switch(v—type) { switch(v'—type) {
case (: case (:
v=...; V=
break; break;
case N: case N:
v=...; V=
break; break;
} default:
return v; v' = INT_VALUE’ (v = subvalue);
¥ ¥
return v’;
h

Figure 7.1: Two possibly non-mutually terminating versions of INT_VALUE.

An additional example in which mutual termination is not preserved is
the code presented in Fig. 7.2. It contains a function called PARSE_FUNCCALL
that receives a pointer to a function node and processes it according to the
function name. The newer version handles an additional option for the func-
tion name and calls a new function LIST_SET_ITEM. The latter receives a
pointer to a list, traverses it from the list head, and modifies data of some
of its items. The traversal ends upon reaching a ‘NULL’ node, but may
not terminate in an arbitrary context, e.g., when the list is cyclic. The new
function is not mapped to any function in the old code. Indeed, Alg. 1 and
Alg. 2 abort in line 5 when encountering this function.

In the remaining two comparisons RVT marked correctly, in less than a
minute each, that all mapped functions are mutually terminating.

7.1 Conclusion and future research.

Checking mutual termination for two whole programs is a crucial sub-task
in proving their full equivalence, which means that they are both partially

82

function PARSE_FUNCCALL(fcall .t *f)

{

if (Istremp(f—func_name, “env”)) {

} else if (Istremp(.. ., “len”)) {

function PARSE_FUNCCALL’(fcall.t *f”)

{

if (!stremp(f'—func_name, “env”)) {

} else if (Istremp(.. ., “len”)) {

} } else if (Istremp(. .., “set”)) {
} list_t *list' = .. ;
LIST_SET_ITEM’(list’, ...);
}
}
function LIST_SET_ITEM’(list_t *list’, ...)
{
listitem_t *item' = list’—head;
while(item’ |= NULL) {
item’ = item’ —next;
}
}
Figure 7.2 Two possibly non-mutually terminating versions of
PARSE_FUNCCALL and a newly introduced non-mapped function

LIST_SET_ITEM’.

83

equivalent and mutually terminating [30, 35]. Particularly, listing the func-
tions that changed their termination behavior owing to code updates may be
valuable to programmers. In this research several steps have been made to-
wards achieving these goals. We showed a proof rule for mutual termination.
We presented a bottom-up decomposition algorithm for handling entire pro-
grams. This algorithm calls a model-checker for discharging the premise of
the rule. Our prototype implementation of this algorithm in RVT is the first
to give an automated (inherently incomplete) tool to the mutual termination
problem.

The limitations of the tool are inherited from RVT itself, namely the fact
that it did not cover various features of C, for instance, unions, abnormal
castings, etc. It is important to note for empirical evaluation that the work
for this thesis has included a large engineering effort for fulfilling the aim of
proving the mutual termination of real programs. We have supported many
of those uncovered features, including as important ones as pointers, some
cases of casting to void * and back. Despite that at the current stage, RVT
is still not utterly robust, its quality has significantly risen.

An urgent conclusion from our experiments is that checking mutual ter-
mination under free context is possibly insufficient, especially when it comes
to programs that manipulate a global structure on the heap. Developers
would also want to know whether their programs mutually terminate under
the context of their specific program. This is not an easy modification to
our algorithm, because the decomposition is based on a bottom-up traversal,
hence ignoring the context. Perhaps, a method can be found that propagates
information down the call graphs that can restrict the context in which pairs
of functions are checked for mutual termination.

Another direction for future research is to improve the information that
is propagated upwards. Specifically, it would be nice to refine the abstrac-
tion imposed by the use of uninterpreted functions. Adding function sum-
maries [12] that provide more information about what these functions do
(thus making them more interpreted) is bound to make the method more
complete.

A third direction is to interface RVT with an external tool that checks
termination: in those cases that they can prove termination of one side but

84

not of the other, the inference rules of Chapter 6 can be useful for proving
termination in the other side. The solution suggested there can be fully au-
tomated unlike many existing approaches for proving termination that rely
on searching for well-founded sets, which can sometimes be tricky. Know-
ing that a pair of functions terminate (not just mutually terminate) can
also be beneficial because in such a situation they should be excluded from
call-equivalence checks of their callers. Also it seems plausible to develop
methods for proving termination by using the rule (M-TERMT). One needs
to find a variant of the input program that on the one hand is easier to prove
terminating, and on the other hand is still call-equivalent to the original
program.

An orthogonal direction for improving RVT is related to performance.
The current implementation checks the call-equivalence of MSSC pairs iter-
atively one after another. However, decomposition usually creates numerous
pairs whose call-equivalence checks do not require establishing mutual termi-
nation for a majority of the other pairs. RVT could execute such independent
checks as parallel tasks and thus boost its performance on modern multicore
hardware.

Finally, it seems essential to develop algorithms for proving mutual ter-
mination for multithreaded programs. This can be a tough challenge owing
to non-determinism in scheduling of threads, possibility for deadlocks, data
races, and other problems that do not occur in a single-threaded program. A
theoretical research into the related problem of partial equivalence between
multithreaded programs has recently appeared in [8].

85

Appendix

86

A.1 A proof of undecidability of the mutual

termination problem

Theorem A.1.1. The mutual termination problem is undecidable.

Proof. Falsely assume that the mutual termination problem is decidable,
i.e., it is possible to write a Boolean function CHECKMUTUALTERM, which
using only finite amount of time determines whether two given functions are
mutually terminating. Let &£ denote a function having the same prototype
as a function f and immediately terminating without computing anything.
Consider the following function:

function CHECKTERMINATION(A function: f)
return CHECKMUTUALTERM(f, &;);

Since &y is a terminating function, CHECKTERMINATION determines during
finite amount of time whether a given function f is terminating, i.e., it decides
the halting problem. But the latter problem was proven undecidable in [37].
Hence, the assumption that the mutual termination problem is decidable was
wrong. O]

87

Bibliography

[1]
2]

3]

http://ie.technion.ac.il/~ofers/rvt.html.
Available from http://code.google.com/p/betik.

Wilhelm Ackermann. Zum hilbertschen aufbau der reellen zahlen. Math-
ematische Annalen, 99:118-133, 1928.

Frances E. Allen. Control flow analysis. SIGPLAN Notices 5(7), pages
1-19, 1970.

B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of val-
ues in programs. In In Conference Record of the 15th ACM Symposium
on Principles of Programming Languages, pages 1-11. ACM, New York,
January 1988.

Clara Bertolissi. The graph rewriting calculus: properties and expressive
capabilities. PhD thesis, L'Institut National Polytechnique de Lorraine,
2005.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking
with reachability. In CAV, pages 491-504, 2005.

Sagar Chaki, Arie Gurfinkel, and Ofer Strichman. Regression verifica-
tion for multi-threaded programs. In Verification, Model Checking, and
Abstract Interpretation (VMCAI’'12), pages 119-135. Springer-Verlag,
2012.

88

9] Edmund Clarke and Daniel Kroening. Hardware verification using
ANSI-C programs as a reference. In Proceedings of ASP-DAC 2003,
pages 308-311. IEEE Computer Society Press, January 2003.

[10] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction
refinement for termination. In SAS, pages 87-101, 2005.

[11] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Proving pro-
gram termination. Commun. ACM, 54(5):88-98, 2011.

[12] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. Precise and
compact modular procedure summaries for heap manipulating pro-
grams. In PLDI, pages 567-577, 2011.

[13] Niklas Eén and Niklas Sorensson. Translating pseudo-boolean con-
straints into sat. JSAT, 2(1-4):1-26, 2006.

[14] Dima Elenbogen, Shmuel Katz, and Ofer Strichman. Proving mutual
termination of programs. In Hardware and Software: Verification and
Testing (HVC’12), pages 24-39. Springer-Verlag, May 2013.

[15] S. Even. Graph Algorithms. Computer Science Press, 1979.

[16] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The program dependence
graph and its use in optimization. ACM Trans. on Computer Systems,
9(3):319-349, 1987.

[17] C.N. Fisher and R.J.L. Blanc. Crafting a Compiler. The Benjamin-
Cummings Series in Computer Science. Benjamin/Cummings, 1988.

[18] R.W. Floyd. Assigning meanings to programs. Proc. Symposia in Ap-
plied Mathematics, 19:19-32, 1967.

[19] Lynn E. Garner. On the Collatz 3n + 1 algorithm. Proceedings of the
American Mathematical Society, 82(1):19-22, 1981.

[20] Benny Godlin. Regression verification: Theoretical and implementation
aspects. Master’s thesis, Technion, Israel Institute of Technology, 2008.

89

[21]

22]

[23]

[24]

[25]

[20]

[27]

[28]

Benny Godlin and Ofer Strichman. Inference rules for proving the equiv-
alence of recursive procedures. Acta Informatica, 45(6):403-439, 2008.

Benny Godlin and Ofer Strichman. Regression verifica-
tion. Technical ~Report 1E/IS-2011-02, Technion, 2011.
http://ie.technion.ac.il/tech_reports/1306207119_j.pdf.

Benny Godlin and Ofer Strichman. Regression verification — proving
equivalance of similar programs. Journal of Software Testing, Verifica-
tion & Reliability, 23(3):241 — 258, 2013.

Benny Godlin and Ofer Strichman. Regression verification. In 46
Design Automation Conference (DAC), 2009.

M.S. Hecht. Flow Analysis of Computer Programs. North Holland, 1977.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using de-
pendence graphs. ACM Trans. on Computer Systems, 12(1):26-61, 1990.

Ming Kawaguchi, Shuvendu K. Lahiri, and Henrique Rebelo. Condi-
tional equivalence. Technical Report MSR-TR-2010-119, Microsoft Re-
search, 2010.

Daniel Kroening and Ofer Strichman. Decision procedures — an algorith-
mic point of view. Theoretical computer science. Springer-Verlag, May
2008.

D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe. De-
pendence graphs and compiler optimizations. In Conference Record of

the Fighth ACM Symposium on Principles of Programming Languages,
pages 207-218, 1981.

D.C. Luckham, D.M.R. Park, and M.S. Paterson. On formalized com-
puter programs. J. Comp. Systems Sci., 4(3):220-249, 1970.

Zohar Manna and John McCarthy. Properties of programs and partial
function logic. Machine Intelligence, 5:27-37, 1969.

90

32]

33]

[34]

[35]

[36]

[37]

[38]

F. Nielson. Program transformation in a denotational setting. ACM
Trans. Prog. Lang. Sys., 7:359-379, 1985.

F. Nielson, H.R. Nielson, and C. Hankin. Principles of program analysis.
Springer-Verlag, Berlin, 2005.

R. Péter. Konstruktion nichtrekursiver funktionen. In Math Annalen,
volume 111, pages 42-60, 1935.

Terrence W. Pratt. Kernel equivalence of programs and proving kernel
equivalence and correctness by test cases. International Joint Conference
on Artificial Intelligence, 1971.

B.K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value num-
bers and redundant computations. In Conference Record of the 15th

ACM Symposium on Principles of Programming Languages, pages 12—
27. ACM, New York, January 1988.

C. Strachey. An impossible program. Computer Journal, 1965.

R.A. Wilhelm, D.A. Maurer, and D. Maurer. Compiler Design. Inter-
national Computer Science Series. Addison-Wesley, 1995.

91

NNAY WY ,NINIID .XIID MIMNN)N PNNNY IDRIDN TP MIXIY DIPNMIOIN ONN NYTO DMWY
MY DTN NPIY NPT PRNNY IWPNN NDN OWO MINIPN 92 NVND YN NN NOOY
PSPND

NN N YYD NOMIN L TPURT LRYIND PNY IPNN TYUNRND DD DOIVAR DN DIYINND NDNIN
D990 pwnnm RVT-v ONTD 1w .,mynon dnba nrspNaa vimdwn 1 Sy Son 1Y7pn
NN 229912 110 TN NINWY PPN MIXDIIN DNRY NT OX NPIPNA DY NPNY NPYTIY 0NN
1Y)2 M0 NN MIWA NDPIN D) ONN NPT DWY AN Awon nnon Sya TERM Y950
SY TTNN NPSYN DNDNY MYITIN MPXTANND THN MIXIYI MY NPIPND N POND
M2 NPINN HY DTN NPIYD TOYI NXID IPNND TYRND PNXND DINH DAY 1NN

.(multithreaded) ©>2°%nn

)9 192 .Y DAIVHIS 1DHN MYAPN 1 PP DY T NPEPNAN SN YW DPWINN 12w NIPHI
(MORNNA) A7) A APSPNSY MNP L1159 1Dy npna £77 /77 Hw npannnn nx p» 19 1o

DN NPV NOND MDD (partially equivalent) 250 m2Py WM mapr-1 MANIN IWN
PPN DR YT I DT NIPN .DXWYI DN PINND JPNYA DIND DXWN NT 9D DVYP

o) .3 UFy,-~y UF, mynon dnoa nyspNad mincpa von mnoapn naonn > Yy Somn
UFp =Y UF, DN AN Y12 W00 £7-) £ DW 1OPOND mM2pwn mMMINOPON ¥R

NN DY MNDIN 1HPYA PIAY DNINON DOINN NNIN ,DP¥Y DIININNDN POINN DI DY 7HN0NA
N2 DMINONN NINNND AT NVIPND YWY NMINT DY DOTTNN NPNYN NN 1YY mndy

A NN 0NN TN 9910 (G -1 Gy DN XIPI) NPINNNHN NNX I3 YWY NPSPNON P MNP 9
02597 P2 MY NDIN DMINOPDPN VN DXPYP DI HYW DIZHYN I0N DN 9 12 MINN
DX9)91H MNTA 50N NIN ,MDNN NI ON .71V TIDIND 22> PAY MIYNIN NNINN YV 9N
0’2759 N NPNAY MNINN TYUND DIWNIVN 1112 1YY DY HNN SN 19INA DN DY DY

ND 812 M2 DNINIRND m’-) m DN DIYDT NT YD 19V 92D DI YIYW NIN NPVY
D2HWNN U3 X MDY S OY .mapr-1 MMM m =) m-9 MIMVYY NPIPNA DV NN Y S Np*M

PN S NNAPNIY PTY (NNRNN) m Y m-D MWD NYSPNoN Pa osnn G-y Gpa
OO0 NRY .NNAPN DY DHLODPNIVT NPNAY NVXY DIRNND VNN .NDTHNI MONOPN

MMNNY A7-1 A NPSPNDY MNP .NPNPHN NPINNN SAWN NNX YOY PMY I871HD DNININD
:YONYTI PNV NITYNN mapr-1
:DYPNN DINIAN ONNN TNRINTNL
W, S-Dwh ' o
,YAPI D A DY DOTTINN NNYN o
; (MxNN2A) UFy -y UF, mynon xnoa nyspnNed mnoipa madmn yn
(NNRNNI) YIPNL NI 27 A5V TP DI 10, NINKR @

13y OX .S-5 TOww (MONNNI) £-1 £ Mo nrspna »t 93 Nay 7 A mvapnn ny joxa
AP8Y NPT IWND M-TERM™ pD>nn 999 NN NN D»P0 XN > ¥ap) §-9 7oww -1 1t 92
NINN NMNRA 99 MIN(NPYY NPT WNRD TERM' poonn Y95 nnan AN P99 N IN) 1710
NP NPNIY MOTYN NN 0N N .(NINY,PNINT IN) TITTN MIKIWY NPXPN HY Mt On

SV IV D55 19 1901 NAY TOTTN NVNY NIIND STNYN DMINONNIY N IV D50 i S
S5Y NINON NPYTAY AWNIND D5 NITYA PTI) DIXRNND POXIN DI DY NNIND DPP .NVIPND NINY

.CBMC owa C nn5°n nava mmon nmon

VNN .C Nava MIND NPIDN NIAY TN OPO NPYTAY 97310 DNININD DY DIV AN VYN
MPDI NMIMANY HHYD Y NNYIN NIN TOTTNN NPSYN VYA POWY INDND PYUNT NN

YIS PN D P NNTIAY DY PR NN NwY RVT owa (regression verification)
MDY PRND ARKIND NPIHXR NN OY MTTINND WND T YOTIN NIRD YPYIn vinmnin
.72y2 900 Xow C nov SW MnTpnn NN 19902 1M RVT Hv morn nx nomynwn

VPN HY MIAPIY MO NMINDI) 90N Y 1) NMVIVA NPIDIN NN Y 1 DIV AN NX NXIN
TN MPONN IOON MNIN MIAPYA WAPNNIY NMIPONT DY DXNNTH NN STPHN 1IN
DNNI .NPODN NN OYNN PN NNN TTTN NPSY NPT INDN 99OV NN MP>Tann

2

8PN

oD AWRD (mutually terminating) 72777 (79X mH2A0H MNP NPINN SNV
SY ITTNN NPNYN YA .DOVIP DM NN NINW PNYN DX P DX NN INIWUNIN
PNNN YW MAPIYN NIVHNN DT NN TY NPNYN NIV NNIYY 20T IPNN2 NN XY NN
IWPN DNN IRIPIND NPXPND DY NI NT DY TOTTH DPSY DINDIND DO DIV MM NN
NPNYN NN L,MIDIN LPNIY DY MIAPIWY MRD) SNV NI ,1722777 NPIDIN SNV NN SVHN
NPIDIND DY NOTINN NPRYD NNDIN INNND ,NHRNN ,JNIZY APYNRIN NPIPNAN IR DY DO TTIN
NYSANY DX2IYIN NITOY NNIIN DY NNNVIN NN NITTN MIXIY NNDIN SNV DR NP .)0NY
NYWN NN Y DMIYWN PNIX 199 .(well-founded set) 20°0 DD ONYD NS MIN NXININ D
0 5y AN NN INYIND NPINNNN NNNR DD ONN NYIIP IWND SUNIVIN 2IWNY NP TOP
NPNIAND NPIDN NI IOV P1DINN 19 DY DXOIPN YD OY TINYT MNINDN IPNY NPINN MNDMP

.(reactive programs)

DXYONN-XNN KOY IP) NPVDIIHIVT NPINN SNV JY FTTN OPD NNOINA DX TPHNN NN
SNITPN MW VDY MYITI T2 BWD .P; -1 Py (M2 ov»nivT-) KoY (single-threaded)

TPNMOPN NNIY MINNY MTYYAN NDON ,NT 2DY INRD .2IT NONPIY INNY YD nnn (N
PDONPI MNP NN TN DY

DY 1PONAN BIVNIAN NYIYID DIPINR NUII MIXPNAY DY) OINYN DY PPN (2
LDRNN2 ANITYNN NNT DNPNY MNP

2N YD DX PPON NN 51D NN Py Y Py DY NoSpNan YA mapr NN 1M1 ()
SV TIPN NPINNN NNN DI DY NPEPNAN P MINIPN 9N OHYNN DI NN NIV
NP PNPNON DNAY MNMIPNA (inlined) 91w PN ROV MINPN

navNN N gUF (overapproximation) Y¥1N-2Y1p TIXPND OXPTHIA NVAIN g TPNHN PPN 535
NIPI) MNNN (uninterpreted function) NYN9N YNDA MNPNAD NNMIPA /1 PIPNAD INAP D
TTIN NPSY DAY M-TERM ™ Dwa poyn Y95 oywan NRX N 111N N1 (UF), owa no
- fUF (in) ,in TPV VIP NN XD NYNT 599N NNIN -1 MNNN NPIPNA DY NN N HY
DN DY mapp~2 MANNNY NPXPNI T MBINNY MYNN SNYI NPIPNAY MNP [Y in)
(model MMON NPYTIS DMVMVIN DY NITYI NIAVNMNH NP>TLY 1N NNINN DYP .DOVINININ

SU MM 091D DN (N ,MANNN NPEPNAN SV T 95 MNay Nn»pnn NMNN OX .checkers)
TOTTN DKW NPIPNO

APRY NN NIYANN NP IYON NN N9V 910 podin 993 Sw TERM' owa naon no
£ O8PNAN D 1172 GURD NN PINN HY MNDIN DNX DY 7 7P8pNa HY (770 DD P RD)
) VYR Y30 MINW £ AYNT H9ON DNIN .VOP DI INPNL NN IVYN NI -9 NINN
oy NNMP NP UF, newman snva spnad Y (in)-a nxnp 935 in s m v vop yn»m
(MONXNN W A b - faoxo fin)-1 UF;, nwman snva mypngb DooammniN omx

,M9OMNN NPIPNON SW M 92 N2Y NNMPNN NNINN ON .map~2 MNNNY NPIPN S¥ N
DI DIV TPIDINN T MNNNHN NPIPNN 93 MIN

.DOY NPNY 5197 XY MINI NP NIV PNINN 12D YD 1IN MY PN NTTNN NPNYN 1dYa
1N 12 5910, NN NYIAVN MNDYN ORI DNDMIY YT MVLIY 190N DIYNN NMIN 1D 29 DY 9N

X

Y2 SRINY ‘9119 DY NamMwn NrNINA N0V MY N’M1N9 1NN NYYI AIPNNN
AVNNN dYTNRY NVNPOI

Sy DDA N IIN OMNONYNA NDTIN TPADIN NDNNN DY PIDVO DTN N
9901 DODNY 1952 INPPINRN PNND 2PN OV PN NTAYN ST-DY 1INV IPNn
TN SV PNYN AN PPNYNY PRV 177320 MNIN NHWNN .FA600371711-5558

LDANY MO MTIN NIYN D50 MNOYNN TN SNOVNN VIvd

NN YV 11N DO NNMN

PPN DYy NN

ANINN NOAPY MYITN DY PYN N DYO

AVNNN Y TN DYTNRD 00N

NN T

INIYD MDDV NN — JPIDVN VIDY WIN
2014 »Nn non T'YWn’n N

NN DY TN DO NNN

PIAIIN 9997

