
 

 

 

 A Theory-Based Decision Heuristic for 
Disjunctive Linear Arithmetic 

 

 

 

Dan Goldwasser 
 

 

 

 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE MASTER DEGREE 

 

 

 

 

University of Haifa 

Faculty of Social Science 

Department of Computer Science 

 

 

 

 

June, 2008 

 

 

 

 

 

 

 

 

 

 

 



 

A Theory-Based Decision Heuristic for 
Disjunctive Linear Arithmetic 

By:  
Dan Goldwasser 

 

Supervised by:   
Dr.Ronen Shaltiel (University of Haifa) 

Dr. Ofer Strichman (Technion) 

Dr. Shai Fine (IBM, Haifa Research Lab) 

 

 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE MASTER DEGREE 

 

University of  Haifa 

Faculty of Social Science 

Department of Computer Science 

 

 

June, 2008 

 

 

Approved by:  ____________________________    Date: ___________________ 

                                      (Supervisor) 

 

Approved by:  ___________________________     Date: ___________________ 

                                      (Supervisor) 

 

Approved by:  ___________________________     Date: ___________________ 

                                      (Supervisor) 

 

Approved by: ____________________________     Date: ___________________ 

                         (Chairperson of  M.A Committee) 

  

  



Acknowledgments

This work summarizes an intensive research process, spanning over several years and

covering several research fields. The successful result of this effort was possible due to

the help and efforts of several people, I would like to take the opportunity to show my

appreciation for their efforts.

First and foremost, I would like to thank my thesis advisors Ofer Strichman, Shai Fine

and Ronen Shaltiel for the help and guidance they provided throughout this time.

I would especially like to express my deep appreciation and gratitude to Ofer Strichman,

whose endless patience and commitment made the completion of this research work

possible.

I would like to thank the Department of Computer Science at the University of Haifa,

the Caesarea Edmond Benjamin de Rothschild Foundation Institute for Interdisciplinary

Applications of Computer Science (C.R.I.) and Akavia family for the help and financial

support they provided.

1



Abstract

This work studies the decision problem of Disjunctive Linear Arithmetic over the Reals

from the perspective of computational geometry.

Given a formula, the geometric search space can be defined as the set of d -cells in a linear

hyperplane arrangement induced by the formula’s predicates. We show that traversing

this space, rather than the Boolean space as done by current approaches, may have an

advantage when the number of variables is smaller than the number of predicates (as

it is indeed the case in the standard SMT-Lib benchmarks used for evaluation by the

research community). We then continue by showing a branching heuristic that is based

on approximating T -implications, based on a geometric analysis. We achieve modest

improvement in run time comparing to the commonly used heuristic used by competitive

solvers.
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1 Introduction

The Satisfiability problem has long been recognized as one of the fundamental problems

of computer science. Phrased simply as deciding whether a given formula has an assign-

ment that makes the formula evaluate to true, this problem poses some of the greatest

challenges to both theoretical and applied computer science research communities.

The practical difficulty of solving the satisfiability problem is determined by the logical

theory in which the formula is defined; for example the famous propositional satisfiability

problem, although perhaps the most famous NP-complete problem, can in practice be

efficiently solved in many cases. Other theories cannot be decided efficiently and some

are even undecidable. The research field investigating the different satisfiability problems

is usually referred to as Satisfiability Modulo Theory (SMT). In recent years considerable

progress has been made in this field, much of this progress can be attributed to the SMT-

LIB initiative (Satisfiability-Modulo- Theory Library), which coordinates the research

effort in this field.

This dissertation discusses Disjunctive Linear Arithmetic, also known as Quantifier-

free Linear arithmetic over the reals in the terminology of the SMT community (abbre-

viated as QF LRA or LRA for short), which is arguably the most important decidable

first-order theory in verification, other than propositional logic, and a subject for re-

search [11] and annual competitions in the SMT community [3].

The problem of deciding LRA can be formally defined as follows – given a Boolean

combination of predicates of the form
∑n

i=1 ai ·xi ./ a0, where ./∈ {≤, <,≥, >, =, 6=} and

ai, xi ∈ R, does a satisfying assignment exist?

Most approaches to this problem combine a decision procedure for a conjunction of

linear arithmetic predicates (referenced as DPT ) and a SAT solver implementing the

DPLL algorithm [7, 8]. The DPLL algorithm can be thought of as a search procedure

over a binary tree representing the space of possible assignments; in this tree an internal

node represents a partial assignment and a leaf-node represents a full assignment. Given

an LRA formula, it is first converted into a propositional formula by replacing every

linear predicate with a propositional variable, the new formula is the Boolean−skeleton

of the original formula. Although the Boolean skeleton can be solved by a SAT solver,

the result can not be directly used as the Boolean skeleton does not capture the de-

pendencies between predicates induced by the underlying theory; these dependencies are

incrementally added as the search over the propositional space progresses. The added

dependencies are encoded as propositional clauses. Consider first the following basic

procedure, implemented in the previous generation of systems, such as CVC [24] and an
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early version of MathSat [1]:

1. Encode each predicate with a new propositional variable.

2. Solve the resulting abstract formula with a SAT solver. If it is unsatisfiable – abort

and declare the formula unsatisfiable.

3. Otherwise check with DPT if the assignment, denoted α, is consistent in T . That is,

whether the conjunction of the formula’s predicates, each in the polarity assigned

to it by α, is T -satisfiable. If yes – abort and declare the formula satisfiable.

4. Otherwise, add to the propositional abstraction a lemma in the form of a propo-

sitional clause, which rules out α (this will force the SAT solver to backtrack and

find another assignment).

5. Return to step 2.

This procedure describes a simple protocol between the DPLL search framework

and DPT ; the Boolean search continues until a complete assignment satisfying Boolean

skeleton is found, only at that point is DPT applied to validate the assignment.

In recent years a new line of solvers emerged, implementing the DPLL(T ) frame-

work. DPLL(T ) is a generalization of DPLL for solving a decidable first-order theory T ,

assuming the existence of a decision procedure DPT for a conjunction of T predicates.

It first appeared in abstract form in a paper by Tinelli [25] and later materialized into

the award-winning SMT solver Barcelogic [15]. All competitive SMT solvers, including

Yices [11], Z3 [9], ArgoLib [19], MathSAT [1] and CVC-3 [4], to name a few, decide LRA

by instantiating the DPLL(T ) framework [25, 15] with general simplex, as introduced by

Dutertre and de Moura in [11, 12].

DPLL(T ) improves the basic procedure presented above in several dimensions. First,

it calls DPT after every partial assignment. This means that it cannot just abort with

a ‘Satisfiable’ answer when DPT returns true. One possibility is that it would simply

return the control to the SAT solver, but instead it applies theory propagation, which

means that it finds predicates that are implied by the theory. Such predicates are said

to be T -implied. For example, if x = y and y = z are two predicates assigned true by

the SAT solver, the theory solver can deduce that the predicate x = z must be true as

well, and report this information to the SAT solver (assuming such a predicate exists.

Typically solvers in this framework refrain from adding new predicates). A more formal

description of DPLL(T ) is given in Sect. 3.
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Figure 1: A two dimensional linear arrangement of hyperplanes induced by a set of
constraints. Each cell Pi can be mapped to a full assignment of these constraints – a
mapping of some of the cells appears on the right side of the figure.

The potential of theory propagation in the case of LRA, that is, the average number

of implications given a partial assignment, can be estimated using a theoretical result in

computational geometry by Haussler and Welzl [16]. Geometrically, each linear constraint

is a hyperplane, and the geometrical representation of these hyperplanes in d dimensions,

where d is the number of variables in the input linear system, is called a hyperplane linear

arrangement [13]. Fig. 1 demonstrates a linear arrangement in two dimensions. Each

cell (i.e., a convex polytope) in a linear arrangement contains exactly the infinite set of

points that evaluate all the linear predicates in the same way. Hence, there is a 1-1 (but

not onto) mapping from cells to 2n, where n is the number of constraints. The number

of cells is bounded by O(nd), which, note, can be much smaller than 2n. Hence, many

combinations of predicates do not correspond to a cell. This is exactly the case that the

T -solver declares an assignment as being inconsistent.

In a series of papers, Haussler and Welzl [16] and Clarkson [5], suggested that for a

n×d linear system, if r constraints are randomly selected, such that d ≤ r < n, and build

a linear arrangement, then with high probability – a probability of (1 − 1/rc), where c

is a constant – the interior of any cell in the new arrangement is intersected by at most

O((n log r)/r) of the remaining n − r constraints. (This result refers to the number of

variables d as a constant. See [14] for a more detailed explanation, and for an explicit

proof of this property).

The relevance of this result to theory propagation is clear: if the current partial

assignment is T -consistent, it corresponds to a cell, and the value of any unassigned

linear constraint that does not intersect this cell is implied. The value r in our case is

simply the number of assigned predicates in the current partial assignment.

3



Since theory propagation is a measure of efficiency, not of correctness, the question

of how much such propagation should be done depends on the efficiency of the algorithm

that deduces this information and perhaps also on the investigated formula. In the

case of LRA exhaustive theory propagation, i.e., learning all possible T -implications, and

sometimes even learning one such implication, is not cost-effective.

This work initially suggests an algorithm searching the assignments space defined by

an arrangement of the linear constraints appearing in the input formula. This algorithm

relies on exhaustive theory propagation for the search to converge quickly. As it can

be expected the computational cost of applying exhaustive theory propagation makes

this algorithm extremely inefficient compared to the standard DPLL(T) algorithm when

applied to SMT benchmarks. In a second approach, we do not attempt to solve this

problem, but rather to show a method in which some information from the theory can

still be obtained in a cost-effective manner. Specifically, this work presents a method to

get approximated T -implications and how to integrate them in the solving process without

jeopardizing soundness. The approximated information is affecting the decision heuristic:

the decision variable is still chosen using the SAT solver’s normal considerations, while

the variable’s value is decided using theory related considerations. This is in contrast

to the current practice in which decisions are made solely by the SAT solver, and are

affected by the theory only indirectly, via the lemmas added by the solver.

The rest of this work is structured as follows – First some preliminary definitions are

introduced, followed by a description of the DPLL(T ) framework and general simplex

in Sect. 3. Section 4 presents a geometric interpretation of the search space and how

it can be used for identifying implications that can help the search process. Section 5

describes a search algorithm based on a hierarchical decomposition of the search space.

Section 6 describes our method for approximating geometric implication and presents

some experimental results for this method. Sect. 7 concludes this work, with some

thoughts on possible future uses of the observations presented in the work.
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2 Preliminaries

2.1 Geometric Definitions

In this section the geometric terms used throughout this thesis work are defined and

explained. The main geometric concepts explained in this section are Hyperplane Ar-

rangements and their properties; which are essentially geometric data structures, wildly

discussed in the computational geometry field. Informally put, given a finite collection

H of hyperplanes in Rd, a hyperplane arrangement is the decomposition induced by H

of Rd into connected cells. A natural measure for the complexity of the arrangement is

the number of cells induced by the arrangement. The rest of this paragraph provides a

formal definition of hyperplane arrangements.

Definition 1 (Hyperplane) A hyperplane h is defined by a linear equation of the form

f(x) = b , where f is a linear mapping Rd →R, x ∈ Rd and b is a constant.

Definition 2 (Hyperplane Arrangement) A hyperplane arrangement A is a collec-

tion of hyperplanes in Rd . A hyperplane arrangement induces a decomposition of Rd

into connected cells.

Definition 3 (Position Vector) Given an arrangement A composed of a collection of

hyperplanes h1...hn, a function ui mapping a point in Rd into a relative position in the

arrangement is defined as follows:

ui(p) =





ui(p) = 1 p ∈ h+

ui(p) = −1 p ∈ h−

ui(p) = 0 p ∈ h

Where h+, h− denotes the positive and negative half spaces respectively. The vector

u(p) = (u1(p), ..., un(p)) is called the position vector of a point p.

Definition 4 (Arrangement’s Cells) Two points p and q are considered equivalent if

u(p) = u(q). The equivalent class thus defined is called faces or cell of the arrangement

A. Each cell is associated with a dimension, which is the difference between the formula’s

dimension and the number of zero values in its position vector. The term i-cell is used

to denote a cell of dimension i.

Example 1 Figure 2 depicts the decomposition of R2 into connected cells using the

position vector notation defined above. The vertex v1 is a cell in the arrangement with

a dimension of zero as its position vector contains a number of zero values equal to the

arrangement dimension.

5



Figure 2: Cells of different dimensions in an arrangement

2.2 Propositional Logic

In this section the basic definitions and terms in propositional logic are defined and

explained.

Definition 5 (Literal) Let P be a fixed finite set of propositional variables. If p∈P,

then p is an atom and p and ¬p are literals of P.

Definition 6 (Clause) A clause C is a disjunction of literals l1∨l2∨...ln . A unit clause

is a clause consisting of a single literal.

Definition 7 (CNF Formula) A (CNF) formula is a conjunction of one or more clauses

C1 ∧ C2, ...,∧Ck

Definition 8 (Truth assignment) A (partial truth) assignment M is a set of literals

such that ∀p ∈ P , ¬((p ∈ M) ∧ (¬p ∈ M)) .

A literal l is true in M if l ∈ M , is false in M if ¬l ∈ M , and is undefined in M

otherwise. The assignment M is total over P if no literal of P is undefined in M, and

partial otherwise.

Definition 9 (State of a clause under an assignment) A clause C is true in M if

at least one of its literals is true in M. It is false (also referenced as conflicting) in M if

all its literals are false in M, and it is a unit clause if only one of its literals is unassigned

in M and it is undefined in M otherwise.

Definition 10 (Satisfiability under an assignment) A formula F is true in M , or

satisfied by M , if all its clauses are true in M . In that case, M is a model of F . If F

has no models then it is unsatisfiable.

6



2.3 Propositional Satisfiability

The basic DPLL procedure can be considered as a search through a binary tree spanning

all possible assignments to the input formula, in which each internal node is mapped to

a partial assignment and the leaves represent a full assignment. The DPLL procedure,

for example as presented in Algorithm 1, progresses by choosing an unassigned variable

and deciding its value (line 4) , identifying and propagating implications of this decision

(line 6) and backtracking in case of a conflict (line 10). Each decision is associated with

a decision level, the depth of decision in the branch in the binary tree leading to the

decision. The values implied by a decision are also associated with that decision level.

The key procedures used in Algorithm 1 are briefly reviewed in the following para-

graph, a detailed description and implementation details of these procedure can be found

in [18].

• Decide

This procedure chooses an unassigned variable and a truth value for it. It returns

a false value if and only if there are no more variables to assign. There are

several heuristics for making these decisions, given the relevance to this work, some

heuristics are reviewed in more detail in section 2.3.1.

• BCP

Values implied by the current assignment can be recognized using the unit clause

rule- stating that unit clauses must be extended to satisfy the (last) unassigned

literal in that clause. This procedure identifies and propagates implied values by

a repeated application of the unit clause rule until either a conflict is encountered

or there are no more implications. It returns conflict if and only if encountered a

conflict. This repeated process is called Boolean Constraint Propagation (BCP).

BCP is applied in Line 2 because unary clauses at this stage are unit clauses.

• Analyze-Conflict

Modern solvers are conflict driven - when a conflict is encountered it is analyzed to

prune large search spaces and the search continues by Backjumping- which means

that several decisions can be undone in a single step. This is done by analyzing

the conflict to identify it’s cause - the conflict clause. This clause is added to

the original formula, and the search backjumps to the highest decision level in the

conflict clause (other than the current). Analyze-Conflict is responsible for

computing the backtracking level, detecting global unsatisfiability, and adding new

constraints on the search in the form of new clauses. It returns the decision level

7



to which the solver should backtrack to.

Algorithm 1 The DPLL framework.

1: function DPLL()
Input a CNF formula ϕ;

2: if BCP () = “conflict” then return “Unsatisfiable”;

3: while (true) do
4: if ¬Decide () then . Full assignment
5: return “Satisfiable”;

6: while (BCP () = “conflict”) do
7: btrack-level := Analyze-Conflict ();
8: if btrack-level < 0 then
9: return “Unsatisfiable”;

10: else BackTrack(btrack-level);

2

2.3.1 Decision Heuristics

The importance of choosing a variable correctly is dramatic as different decision strategies

will significantly affect the efficiency of the solver. Many different decision heuristics have

been proposed over the years. The early decision heuristics, for example Jeroslow-Wang

are essentially greedy algorithms which select variables that will maximize the number

of implications or satisfied clauses by using simple computations, such as focusing on

literals which appear in short clauses. Other heuristics are state-dependent and count

literal occurrences in unresolved clauses, this adds some cost to the decision process.

Recent heuristics are state-independent, making the heuristic computationally lighter,

and focus the solver on variables appearing in recent conflicts. In the rest of this section

the V SIDS heuristic is reviewed.

• Variable State Independent Decaying Sum (VSIDS)

This heuristic chooses variables which appeared in recent conflicts; each literal is

assigned a counter which is increased when that literal appears in a newly added

clause. Periodically all the counters are divided by a constant, focusing the heuristic

on literal which appeared in recently learnt conflict clauses. Another variation of

this heuristic, implemented in solvers such as MiniSAT, assign counters to variables

instead of literals, allowing it to select a decision variable while the truth value for

the chosen variable is decided on using a different method (usually using a default

truth value).

8



2.4 Propositional Encoding

As previously mentioned, current approaches for deciding LRA construct a propositional

abstraction of the input formula, and refine it by incrementally encoding the dependencies

imposed by the underlying theory. If these dependencies are encoded exhaustively before

attempting to decide the satisfiability of the formula, the encoding scheme is said to be

Eager, if the dependencies are encoded throughout the search then the encoding scheme

is said to be Lazy. Current decision procedures, including the state-of-the-art DPLL(T)

method presented in the following section, use the lazy encoding scheme. The rest of this

paragraph defines formally this encoding scheme.

Definition 11 Given a theory predicate p appearing in an LRA formula t, p is associated

with a unique Boolean variable e(p) called the Boolean encoder of p. e(t) denotes the

Boolean formula resulting from substituting all the theory predicates appearing in the

formula with their Boolean encoders. e(t) is known as the propositional (or Boolean)

skeleton of t.

9



3 The DPLL(T ) Framework

State-of-the-art SMT solvers follow the DPLL(T ) framework [25]. The components

of the algorithm are those of DPLL and a decision procedure DPT for a conjunctive

fragment of a theory T , such as the generalized Simplex algorithm presented in the

following section. The name DPLL(T ) emphasizes that this is a framework that can be

instantiated with a different theory T and a corresponding decision procedure. In the

version of DPLL(T ) presented in Algorithm 2 (see also Fig. 3, which is copied from [18]),

a procedure called Deduction is invoked in line 13 after no more implications can be

made by BCP. Deduction performs theory propagation: it finds T -implied literals and

communicates them to the DPLL part of the solver in the form of a constraint t, also

called a lemma. Hence, in addition to implications in the Boolean domain, there are also

implications due to the theory T .

What are the restrictions on these new clauses? They have to be implied by the

input formula ϕ and restricted to the atoms in ϕ (or some finite superset thereof). Let

α denote the current assignment and T̂ h(α) the conjunction of T -literals corresponding

to this assignment. If T̂ h(α) is unsatisfiable, the lemma e(t) (where e(t) denotes t after

each predicate is replaced with its propositional encoder) has to block α. If T̂ h(α) is

satisfiable, t is required to fulfill one of the following two conditions in order to guarantee

termination:

1. The clause e(t) is an asserting clause under α. This implies that the addition of

e(t) to the current propositional formula and a call to BCP leads to an assignment

to the encoder of some literal.

2. When Deduction cannot find an asserting clause t as defined above, t and e(t)

are equivalent to true.

The second case occurs, for example, when all the Boolean variables are already assigned,

and thus the formula is found to be satisfiable. In this case, the condition in line 15 is

met and the procedure continues from line 5, where Decide is called again. Since all

variables are already assigned, the procedure returns “Satisfiable”.

As previously mentioned in the introduction, theory propagation has no influence on

correctness, rather only on efficiency, and therefore the question of how much to infer

on the theory side and propagate depends on the theory and the benchmark set. It

turns out, empirically, that exhaustive theory propagation in the case of LRA is not

cost-effective (see, e.g., [12]). Moreover, even checking for consistency of the current

partial assignment is too costly in practice. Instead, competitive solvers only do light-

10
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full
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Figure 3: The main components of DPLL(T ). Theory propagation is implemented in
Deduction.

weight theory propagation and defer the consistency check to when a full assignment is

achieved, as will be described later in Sect. 3.1.

There are other variations to DPLL(T ) that are used in competitive solvers, includ-

ing procedures for strengthening the lemmas and more aggressive invocations of DPT

(after every partial assignment rather than only after BCP). These optimizations are not

relevant to the current work, however.

3.1 General Simplex

The standard de-facto decision procedure DPT for the conjunctive fragment of linear

arithmetic over the reals is general simplex, as was introduced in [11]. This procedure

determines the satisfiability of a conjunction of linear constraints (hence, unlike the

original simplex, it does not aim to optimize the value of a linear objective function).

General simplex is now implemented in most competitive SMT solvers due to its superior

performance in the context of SMT.

Let A~x ≤ ~b be the input linear system, where A is a n × d coefficient matrix, ~x is a

vector of d variables, and ~b is a vector of constants. General simplex begins by trans-

forming this system into general form, which consists of two types of linear constraints:

equalities of the form
∑

i aixi = 0 and constrains of the form xi ≥ li or xi ≤ ui, where

li and ui are constants. The transformation is done as follows: given a constraint of the

11



Algorithm 2 The DPLL(T ) framework.

1: function DPLL(T )
2: AddClauses (cnf (e(ϕ)));
3: if BCP () = “conflict” then return “Unsatisfiable”;

4: while (true) do
5: if ¬Decide () then . Full assignment
6: return “Satisfiable”;

7: repeat
8: while (BCP () = “conflict”) do
9: btrack-level := Analyze-Conflict ();

10: if btrack-level < 0 then
11: return “Unsatisfiable”;
12: else BackTrack(btrack-level);

13: t :=Deduction (T̂ h(α));
14: AddClauses (e(t));
15: until t ≡ true

form Σaijxj ≤ bi, it replaces it with the two constraints

∑
aijxj − si = 0

si ≤ bi ,

where si is a new variable, which is called a bound variable. The new bound variables

constitute the initial set of what is called the basic variables, whereas the other variables

constitute the initial set of nonbasic variables. The basic variables are also called the

dependent variables, reflecting the fact that their value is determined by the values of the

nonbasic variables. The partitioning of the variables to these two sets change throughout

the algorithm.

In addition to these two sets, the algorithm also maintains an assignment β to all

variables. Two invariants are maintained during the run of the algorithm:

1. The assignment β satisfies all equalities (i.e., it satisfies A~x = 0), and

2. β satisfies those bound variables (the new si variables) that are currently in the

nonbasic set.

Initially the assignment is 0 to all variables. This satisfies the first invariant trivially,

and the second one because all the bound variables are basic. Then, the algorithm

searches for a basic variable that violates one of its bounds. If there is no such variable the

instance is declared satisfiable, since the current assignment satisfies both the equations

and all the bound variables. Otherwise, suppose that the assignment to the basic variable
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xi violates its upper bound, and hence has to be reduced. Simplex searches for a nonbasic

variable with a positive coefficient that its current value is higher than its lower bound

(or such a variable with a negative coefficient that its current value is lower that its

upper bound). If there is such a variable xj, it means that the value of xi can be reduced

by changing the value of xj. If not – the instance is declared unsatisfiable. Suppose

that there exists such a variable xj (which is then said to be suitable). The next step

is to change the current assignment and perform pivoting, which is essentially the same

operation that is done in Gaussian elimination. Pivoting between these two variables

means that they exchange places (xi becomes nonbasic whereas xj becomes basic), the

coefficient matrix is updated accordingly, the assignment to xi is reduced to meet its

upper bound, and the assignment to the other variables are updated so the first invariant

is maintained. More details about the pivot operation can be found in [11]. Through a

series of such pivoting operations simplex updates its assignment β until it satisfies the

input linear system, or declares the system unsatisfiable. Our method uses the assignment

β and the pivot operations to approximate T -implications, as will be described later on.

Pseudocode for general simplex appears in Alg. 3. In Fig. 4, assuming the system

comprises a conjunction of the predicates c1, . . . , c5, general simplex’s initial assignment

corresponds to the origin (0 to all variables), which is marked as v1 in the figure. As more

pivoting operations take place the assignment is updated, and the points move closer to

the target cell P1.

Algorithm 3 General Simplex

1: function General Simplex
2: Transform the system into the general form

Ax=0 and
∧m

i=0 li ≤ si ≤ ui

3: Set B to the set of additional variables s1, ..., sm

4: Construct a tableau for A
5: Determine a fixed order on the variables
6: If there is no basic variable that violates its bounds, returns ”Satisfiable”

Otherwise, let xi be the first basic variable in the order that violates its bounds
7: Search for the first suitable nonbasic variable xj in the order for pivoting with xi.

If there is no such variable, return ”Unsatisfiable”.
8: Perform the pivot operation on xi and xj.
9: Go to step 5.

Recall that in the context of DPLL(T ) the linear solver is used incrementally: linear

predicates are added or erased as the search progresses. While for most theories, compet-

itive implementations of DPLL(T ) check for T -consistency of every partial assignment

(and perform theory propagation as described in Sect. 1), this is not cost-effective in
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the case of LRA, at least as long as no better alternative to general-simplex is found.

Instead, competitive solvers use a lightweight checking procedure called Assert – see

Alg. 4. This procedure can only detect inconsistencies of bounds, for example if both

xi ≤ 5 and xi ≥ 6 are asserted. In addition it updates the assignment of nonbasic

variables so the second invariant is maintained.

Algorithm 4 Procedure Assert-Upper detects simple T -inconsistencies in the current
assignment to the predicates, and maintains an assignment which satisfies the bounds of
the nonbasic variable.
1: function Assert Upper (xi < ci)
2: if ci ≥ ui then return “satisfiable”;

3: if ci < li then return “unsatisfiable”;

4: ui := ci;
5: if xi is a nonbasic variable and β(xi) > ci then
6: update-assignment(xi, ci);
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4 Geometric Representation

4.1 Representing the Geometric Search Space

Given a linear arithmetic formula ϕ, denoted by C(ϕ) the set of linear predicates ap-

pearing in ϕ. Each linear constraint c ∈ C(ϕ) is represented as a hyperplane in Rd,

partitioning Rd into two halfspaces: in c+ all points satisfy c, and in c− all points do not

satisfy c. An intersection of C(ϕ) halfspaces form cells, which are convex regions in Rd.

As was seen in Sect. 1 these cells can be mapped into an assignment to the predicates in

C(ϕ).

For example, consider the cell marked P1 in Fig. 4. This region is the intersection

of the positive halfspaces of ϕ’s constraints and hence corresponds to the assignment

(c1, c2, c3, c4).

The space of feasible assignments to the predicates can be described with a hyperplane

linear arrangement, which is a well known data structure that is used in computational

geometry. An arrangement captures the decomposition of a d-dimensional space into

connected cells, induced by a set of hyperplanes in Rd. Each cell in the hyperplane

arrangement is associated with a dimension: vertices (i.e., hyperplane intersection points)

have a dimension of zero, while the convex regions formed by the intersection of halfspaces

have a dimension equal to the total number of variables appearing in C(ϕ).

The number of cells is bounded by O(nd), where n = |C(ϕ)| and d is the total

number of distinct variables appearing in C(ϕ).1 This implies that the complexity of

enumerating theory-consistent assignments is exponential in the number of dimensions

whereas the complexity of enumerating values in the Boolean space is exponential in the

number of constraints.2 The difference in the two spaces plays a crucial role during the

DPLL(T ) search: the greater the ratio is, the greater the chance that a propositional

assignment is inconsistent in T (in other words, it does not correspond to any cell in

the arrangement).3 Since this difference depends on the values of d and n, These values

were checked in various SMT-LIB benchmarks – see Table 1. The results show that

the number of predicates is greater than the dimension, hence the linear search space is

smaller than the propositional one in these benchmarks.

1The ‘O’ notation is not precise here, because the constant actually depends on d. The convention
used by Halperin in [17] is followed here, which used this convention based on an assumption that d is
small relatively to n. The bound is in fact

∑
i<d

(
n

d−i

)
.

2possible implications of this gap in complexity are discussed in Sect. 7.
3As a result one may even tune the search procedure according to this ratio.
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Table 1: Proportion of predicates Vs. variables (dimensions) in the SMT-LIB benchmarks

Benchmark Predicates:Dimension
QF RDL SCHEDULING 10.9:1
QF RDL SAL 6.7:1
QF LRA SC 3.9:1
QF LRA START UP 6.9:1
QF LRA UART 6.1:1
QF LRA CLOCK SYNCH 3.3:1
QF LRA SPIDER BENCHMARKS 3.2 :1
QF LRA SAL 6.1:1
MathSAT benchmarks (difference logic) 44.5:1
SEP benchmarks (difference logic) 17:1

Figure 4: A linear arrangement corresponding to five linear constraints. The axes and
the points v1, v2, v3 are not part of the arrangement, but useful for understanding the
progress of simplex given the same constraints. The points v1, v2, v3 represent a possible
progress of the assignment maintained by simplex. v1 is the initial assignment, which is
always the origin.
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4.2 Geometric Representation of T -Implications

A partial propositional assignment is T -consistent if it can be mapped into a cell and

T -inconsistent otherwise. Viewed geometrically, the value of an unassigned predicate

p is T -implied by a partial assignment, if the cell induced by the partial assignment is

contained within any of the halfspaces defined by p.

Example 2 In Fig. 4 the subset (c2, c4) is T -consistent and forms the cell P1. If c1 is the

current decision variable, deciding on ¬c1 would lead to a conflict, expressed geometrically

as an empty intersection of c−1 and P1. Hence, c1 is T -implied by the partial assignment.

Indeed, P1 is completely contained within one of c1’s halfspaces.

Now consider P2 as the current partial assignment. The value of c5 is not implied as

both its halfspaces have a non-empty intersection with P2.

As the DPLL search advances and the partial assignment grows (i.e., more linear

constraints are asserted), more values are likely to be T -implied. The reason is that

more predicates imply a smaller cell (or even an empty cell if the partial assignment is

T -inconsistent), and hence the chances of an unassigned predicate to intersect this cell is

smaller. This observation was tested empirically: Fig. 5 describes the ratio between the

partial assignment size and the number of predicates implied by it for two benchmarks.

The number of T -implications was measured by randomly selecting 100 different partial

propositional assignments of equal size and averaging the number of T -implied values by

each such partial assignment. Indeed, it is clear that the probability of an unassigned

predicate to be T -implied grows with the partial propositional assignment.

4.3 Identifying T -Implications

There are two natural ways to identify T -implications that can be thought of. Given a

system of constraints S corresponding to the current partial assignment and an unas-

signed predicate p, the first method (called plunging in [10]) is to solve S together with

the negation of p. If the system is unsatisfiable, it means that S implies p. This is

a generic method that is relevant for all decidable theories. The second method is to

consider the vertices of the cell corresponding to S: if they fall on both halfspaces of p,

then the value of p is not T -implied.4 For example in Fig. 4 the vertices of the cell P2

fall on both halfspaces of c5.

4This can be applied directly only to closed cells. For open cells a different test has to be made, such
as plunging.
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Figure 5: The proportion of assigned vs. implied values at different points during the
search. Two benchmarks were checked: a Linear Arithmetic (LRA) benchmark – in-
var.induct – containing 633 constraints and 163 variables, and a Difference Logic (RDL)
benchmark – abz5 1000.smt – containing 1011 constraints and 102 variables.

These methods are too expensive in practice, the first because it corresponds to solving

a full linear system for each predicate, and the second because there can be an exponential

number of vertices to consider for each cell. In the following two sections we present

two approaches exploiting the geometrical interpretation of the search space: the first,

described in section 5 presents an algorithm based on a hierarchical decomposition of the

search space and employs exhaustive theory propagation. This algorithm uses plunging

to exhaustively identify implications, and as can be expected, it does not perform well

in practice. The second approach recognizes the computational cost of performing T-

propagation and performs a cheap approximation the geometric implications instead.
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5 Deciding Disjunctive Linear Arithmetic by Hyper-

plane Arrangement Traversal

5.1 Introduction

Our initial attempt to exploit the combinatorial properties of the geometric search space

is to traverse this space instead of the Boolean search space when looking for a satisfying

assignment. As previously mentioned, this space corresponds to the set of d-cells in a

hyperplane arrangement induced by the formulas constraints. A clear advantage of this

approach is the theoretical bound on the number of such cells, which is known to be

O(nd), which is considerably smaller than the Boolean search space if d < n as is indeed

the case in SMT benchmarks. However, for many of these benchmarks a straight-forward

construction is unrealistic as the number of variables appearing in the formula (or the

dimension of the formula) is large. A potential approach that can help alleviate this

problem is to use an incremental construction of the hyperplane arrangement, in which

only a subset of the linear predicates are chosen at each step, and a partial arrangement

is constructed; each cell in this arrangement corresponds to a partial assignment to the

formulas Boolean skeleton. Using the partial assignment new values are implied by both

the geometric and the propositional structure of the formula. Recalling the theoretical

results by Welzl [16] and Clarkson [5] mentioned in Section 1, it can be expected that

the number of implications would be considerable.

5.2 Cell Traversal Algorithm

This method is described in detail in Algorithm 5 (and in Fig. 6). The algorithm

is applied recursively, where at each recursion level an arrangement is constructed, in

which all the cells should have a non empty intersection with a cell chosen in the former

level of the recursion. Phrased differently, the algorithm advances by selecting a cell,

identifying hyperplanes intersecting that cell (i.e., the set of hyperplanes whose values

are not implied by the current assignment) and decomposing the cell using a subset of

these hyperplanes. In case the chosen cell conflicts with the Boolean skeleton of the

formula, a new cell is chosen from the arrangement.

The AddImplications procedure described in Algorithm 6 describes the interplay

between Boolean and geometric constraint propagation procedure, which are consecu-

tively executed until the process converges and no new values are added, or until a conflict

is encountered. Viewed geometrically, the geometric constraint propagation procedure

identify implied values of constraints that lie outside of the cell defined by the current
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Figure 6: The main components of the Cell-traversal algorithm

assignment, while the Boolean constraint propagation procedure identifies implied values

of constraints that lie inside the cell (it may also identify values of constraints outside

the cell if applied before the geometric procedure). Given the considerable computa-

tional cost of the geometric procedure, in our implementation we always apply BCP

exhaustively before invoking the geometric procedure.

Algorithm 5 Cell Traversal Algorithm

1: function Solve(ψ, assigned)
2: if FullAssignment () then return “SAT”

3: choose r unassigned linear predicates randomly and construct A(Hr)
4: while (remains an unvisited cell in A(Hr)) do
5: Select an unvisited cell in A(Hr)
6: if AddImplications (cell) 6= “Conflict” then return Solve (ψ, assigned∪

cell)

7: return “UNSAT”

Example 3 Fig. 7 describes several stages in the search process defined by Algorithm

5, the stages (and figures) are ordered from left to right, and referenced throughout this

example in this order.

Consider a set l1, ..., l8 of linear constraints, and Boolean skeleton defined over these con-

straints -
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Algorithm 6 Add Implications Algorithm

1: function AddImplications(cell)
2: cellreference = φ
3: while (cellreference 6= cell) do
4: cellreference = cell
5: if AddGeometricImplications () = “Conflict” then return “Conflict”

6: if BCP () = “Conflict” then return “Conflict”

(¬e(l1) ∨ e(l2)) ∧ (e(l1) ∨ e(l2))∧
(e(l3) ∨ e(l4)) ∧ (e(l5) ∨ e(l2)) ∧ (e(l4) ∨ e(l7))∧

(e(l4) ∨ e(l6) ∨ ¬e(l8)) ∧ (e(l8) ∨ e(l1))

In the first stage, appearing in Fig. 7.1, a subset of the constraints are chosen {l5, l6, l7}
and partial arrangement is constructed. Then in Fig. 7.2 , a cell is chosen, corresponding

to the partial assignment -{l5 = true, l6 = false, l7 = true}. This assignment also

geometrically implies an assignment to the following constraints– { l2 = false,l3 =

true,l4 = false,l8 = false } as these constraints do not intersect that cell, their value

can be determined. This assignment, while consistent with the theory, conflicts with the

Boolean structure of the formula as it forces l1 to accept contradicting values to satisfy the

first two clauses in the Boolean skeleton. The algorithm therefore moves to a new cell in

the arrangement (Fig. 7.3), corresponding to the assignment - {l5 = false, l6 = true, l7 =

true}. Using the AddImplications procedure in the next step (Fig. 7.4) identifies the

values implied by the current assignment. These values can be implied by the theory, i.e.,

the values of hyperplanes not intersecting this cell, or by applying BCP. In this case the

value implied by appplying BCP, l2 = true,is of a hyperplane intersecting the cell.

At this point a new recursive step is taken, and the algorithm constructs a new ar-

rangement from the remaining predicates, which in this case consists only of l8 (Fig. 7.5).

Finally, the algorithm selects a cell in that arrangement, validates that it does not conflict

with the Boolean skeleton, and terminates the search with a SAT value (Fig. 7.6).
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Figure 7: Different stages in the search algorithm, referenced as 7.1- 7.6 ordered top to
bottom, left to right. Bold lines represent the current assignment, thick bold lines are
the boundaries of the actual cell induced by the assignment.
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5.3 Experimental Results and Analysis

Benchmarks originating from real-world applications typically have a high dimension,

making an explicit construction of the hyperplane arrangement unrealistic in practice.

In our implementation we used an incremental construction in which only a single hyper-

plane was added to the arrangement at each stage; since we applied exhaustive theory

propagation, any hyperplane not intersecting the cell induced by the current assignment

was assigned by the AddImplications procedure. Any remaining unassigned linear

predicates at this point is known to intersect the current cell and therefore both values

can be assigned to this predicate, thus enabling a symbolic representation of the search

space simply by storing the current assignment. This approach closely resembles the

DPLL(T) approach with exhaustive theory propagation, in which all the deduction

procedure described in Algorithm 2, is continuously applied until all possible values im-

plied by the theory are identified. This approach has been shown to be ineffective in other

studies. The results of our testing also confirm this result. We evaluated this method

over a benchmark set taken from the LRA spider benchmarks suite and compared the

results to the results obtained by using ArgoLib, a DPLL(T) solver over the same set of

benchmarks. ArgoLib outperformed our system by two orders of magnitude - solving the

benchmark suite in 14.83 seconds while it took our system 4430.75 seconds to solve it.
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6 Encoding Geometric Clues in the DPLL(T) Frame-

work

In this section we present a new approach for using geometric information. Unlike Algo-

rithm 5 which uses exact information and suffers from the added computational cost of

obtaining it, this approach tries to approximate this information at a much lower cost.

6.1 Approximating T-Implications

A possible way to alleviate the computational problem of obtaining geometric information

is to approximate it; using exact geometric information essentially requires enumerating

the vertices of the cell induced by the partial assignment ( plunging in the case of LRA

uses a simplex based solver which can be considered in a worst-case analysis as equivalent

to enumerating the cell’s vertices). In this section we describe an approach that approxi-

mates implications using a single vertex, identified using the geometric representation of

the T -solver’s state, and hence does not incur the computational cost of solving a linear

system.

Using approximations, however, prevents us from using this information to identify

implications as described in the DPLL(T) framework, since an approximated implica-

tion may affect the soundness of the algorithm; The use of such information needs to

be restricted, allowing the DPLL search to recover in case the value was not in fact

implied. The approach presented in this work solves this problem by using this informa-

tion as ‘hints’ to the decision heuristic as to the value of the current decision variable.

In other words, it only uses this information to affect the decision, not to create new

implications. The choice of decision variable is still made by the SAT solver, but when

the T -solver has an approximated estimation of the value of this variable, it passes this

information to the DPLL solver which then assigns it to the decision variable. Hence,

wrong information results in slower solving, not incorrect result. How can T -implications

be approximated? It is possible, for example, to generate a small number of points inside

the cell corresponding to the current partial assignment (or better of, a small number

of vertices of this cell), and then guess the value of an unassigned predicate according

to the halfspace of the predicate in which these points fall. If they fall on both sides,

the decision on the value can be made by the SAT solver. For example, consider once

again the constraint c5 and the region P1 appearing in Fig. 4. The partial assignment

(c1, ..., c4), which corresponds to P1 implies c5 = true. But identifying this value for c5

can be done by generating only one of P1’s vertices and checking whether it falls in the
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positive or negative halfspace of c5.

An obvious requirement is the ability to generate such a point with little computa-

tional cost. Unfortunately, generating points which are known to fall within a cell defined

by the intersection of constraints proved to be a non-trivial issue.5

The method our system uses is simple but not very accurate. It relies on the as-

signment β that is maintained by simplex. Recall that due to efficiency considerations,

in competitive DPLL(T ) solvers simplex is not fully invoked after each partial (propo-

sitional) assignment, and rather only the Assert procedure (Alg. 4) is invoked. This

means that β does not necessarily correspond to a point in the cell associated with the

current partial assignment. It is also possible that there is no such cell at all, if the

current assignment is T -inconsistent. Thus, although using the assignment adds no ad-

ditional complexity, it can only be used, as before, to approximate implications rather

than infer them.

An attempt to improve this approximation can be made by trying to make β more

accurate. This can be done by invoking the pivot operation for some bounded number

of times k, or until a definite conclusion is reached (i.e., β is in the cell or the current

system is T -inconsistent). Thus, k is an accuracy parameter. However, additional pivot

operations can also make the number of satisfied constraints go down, since the pivot

operation is not monotonic in this sense. Hence our implementation takes the assignment

β that satisfies the largest number of bound predicates along the way.

Algorithm 7 describes the heuristic – given a partial assignment α and an unassigned

predicate c, the heuristic searches for an assignment to the linear variables that maximizes

the number of satisfied bound constraints, by performing pivoting k times and checking

if the number of satisfied predicates increased after each time. The point defined by the

assignment is then used to set the value of c: if the point falls in the positive halfspace,

p is assigned true and false otherwise.

5One of the methods we tried for generating such points was to randomly select r constraints out of the
partial assignment and identify the point of intersection of these constrains using Gaussian Elimination.
The problem is that unless r is large, most of the points generated in this manner are bound to fall outside
the target cell, which makes this method inefficient in practice. Another approach, also computationally
expansive, can be to solve a linear programming problem and use the solution as our point.
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Algorithm 7 Theory based decision heuristic.

Input: A partial (propositional) assignment α, unassigned linear predicate p, accuracy

parameter k

1: procedure DetermineValue

2: for i:=0 to k do

3: Pivot();

4: if #SatBounds(βi) > #SatBounds(βi−1) then

5: point= βi ;

6: if point ∈ p+ then return True

7: else return False

6.2 Taking Decisions at T -Inconsistent Points

Recall that the current partial assignment is not necessarily T -consistent because in

practice most solvers perform a complete T -consistency checks at selected intervals or

even only when the assignment is full. This is the strategy of the SMT solver Argolib [19],

on top of which the heuristic was implemented.

The ratio of times that decisions are taken when the partial assignment is T -consistent

was approximated empirically. The larger this number is, the less our heuristic will be

affected by this problem. This number was evaluated by running an external T -solver

for validating the partial assignment at each decision point. It should be noted that

the outcome of this validation was ignored, and in no way affected the operation of the

solver. This experiment was run for each of the benchmarks that we used for evaluation,

as described in Sect. 6.3. The average proportion of decisions taken when the partial

assignment was T -consistent across all benchmarks was 0.78.

6.3 Evaluation

We tested the performance of our approach on the LRA benchmarks that were used in

SMT-COMP’07. We set the timeout to 30 minutes for each benchmark. Our implemen-

tation is based on the open-source solver ArgoLib. This tool is based on DPLL(T) and

the general simplex algorithm for solving linear arithmetic.

ArgoLib’s original decision heuristic is the same as in MiniSAT: it selects a decision

variable using a VSIDS-like [21] heuristic and sets its value to false. Also implemented

and evaluated was a system which uses a decision heuristic in which a decision variable is

assigned its last value if it was assigned before, and false otherwise. Such a heuristic was

used in CSP solvers [2], introduced to SAT in [23] and lately adopted by RSAT under
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Figure 8: Baseline vs. 0-pivot (run-time).

Figure 9: PS vs. 0-pivot (run-time).
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Table 2: Overall results. The results show the number of instances solved correctly in
less than 30 minutes and the overall time spent by the solver.

Baseline PS 0-pivot
Score 172 175 180
Total time 72229.8 68656.04 64887.43

2-pivot 4-pivot 14 -pivot
Score 177 174 173
Total time 70491.21 75261.75 84125.97

the name ‘progress saving’ (PS) [22]. This heuristic is referenced as the PS strategy

throughout this work.

Several variants of our approach were evaluated by choosing different values of the ac-

curacy parameter k. Performance was measured in terms of the total number of instances

solved correctly before time-out and the overall running time.

Table 2 summarizes the results for six different strategies: Baseline and PS correspond

to the original ArgoLib’s heuristic and its enhancement with the PS heuristic as define

above. Both of these heuristics do not use the theory solver directly to make a decision.

The strategy k-pivot refers to our heuristic where k pivoting steps are made before

deciding on a value.

The table shows that our heuristic somewhat outperforms the baseline, regardless of

the number of pivoting operations performed. Increasing k turns out to be not cost-

effective (there were several benchmarks, however, that it improved run-time). Overall

the system achieved a modest improvement of 11% in run time and 5% in the number of

solved instances over all benchmarks.6 There was no significant difference between the

satisfiable and unsatisfiable instances.

Figures 8–9 show detailed results when comparing 0-pivot with the two SAT-based

heuristics. From Fig. 8 it is evident that with minor exceptions, the 0-pivot heuristic has

a comparable performance with the baseline heuristic, but it is able to solve most of the

instances which cannot be solved by the baseline system, which means that it is more

robust. Figure 9 shows that PS, although fails less than the baseline heuristic, still fails

in many cases that can be solved with the 0-pivot strategy. We also checked the accuracy

of our approximation. For the first 100 benchmarks in the SMT-LIB benchmark set7,

6Since the improvement is small, one may wonder if a random choice of the value cannot compete with
such results. When running such a test, the result was considerably worse than the baseline: 78070.6
sec and 172 solved instances.

7http://www.smtcomp.org/2007/benchmarks/QF LRA.tar.gz

28



the following data was measured, with a time out of 30 min:

1. Total number of decisions: 710782.

2. Number of decisions resulting in T -inconsistency: 299130 (42% of partial assign-

ments). This is much higher than the average of 22% reported in the previous

section, which can be attributed to the different selection of benchmarks.

3. Number of implied decisions (checked with ‘plunging’): 19799 (4.8% of T -consistent

partial assignments). There are two possible reasons for this particularly small

number in comparison to Fig. 5: First, it may indicate that most decisions are

made in a very small decision level and that relatively few predicates are implied

with BCP. Such a scenario leads to small partial assignments, and hence a small

number of T -implications, when most of the decisions are made. Second, here the

statistics refer to one variable per decision – the variable that was chosen by the

SAT solver due to propositional considerations, whereas the statistics in Fig. 5

refer to all unassigned variables. It is possible that lemmas bias the SAT solvers’s

decision variable towards those that are not implied.

4. Number of times k-pivot approximation with k = 0 lead to a correct implication,

when the partial assignment is consistent: 14447 (72% of T -implications).

5. Number of times k-pivot approximation with k = 22 lead to a correct implication,

when the partial assignment is consistent: 14456 (73% of T -implications). This

result is very surprising: even after that many pivot operations, the improvement

in accuracy is very marginal. This explains why k = 0 is the best, empirically.

6. Number of times the value chosen by the baseline algorithm (simply false) lead

to a correct implication, when the partial assignment is consistent: 12557 (63.4%

of T -implications).

There are two main points to observe: first, that the 0-pivot strategy increases the

accuracy of the decision from 63.4% to 72% (and, recall, it does so with almost 0 cost).

Second, that the fact that in less than 5% of the cases there was an implied value, may

possibly indicate that the 0-pivot strategy is also helpful when the decided value is not

T -implied. We can speculate why this happens when the instance is satisfiable: the

predicate partitions the cell into two parts which are most likely not even. The chosen

point has a higher probability to be in the bigger of the two parts, and there is a higher

probability that the solution resides in that part.
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7 Discussion and Future work

The improvement in run time that was showen is very modest. Yet there are several

aspects in this work that are novel and may lead to future research:

1. As far as we know this is the first work that studies the problem of deciding dis-

junctive linear arithmetic from the perspective of computational geometry;

2. It is the first work in the context of DPLL(T ) that lets the theory guide the Boolean

search directly, i.e., not by adding new clauses;

3. It is the first work in this context that considers the problem of using conjectured

information without losing soundness.

As discussed in Sect. 4.1, the number of cells is exponential in the number of variables,

whereas the number of Boolean assignments is exponential in the number of predicates.

Since the former is typically much smaller than the latter (see Table 1), it raises the

question whether there is a way to build an efficient SMT solver that exploits this fact.

An explicit traversal of the linear arrangement does not seem a reasonable direction,

but perhaps there is a way to represent the cells in an arrangement symbolically with

a function – this would enable us to build a solver in which the theory leads the search

rather than the SAT solver. In other words, in the current DPLL(T ) framework the SAT

solver leads the search: SAT suggests an assignment, and the theory solver checks it.

Also, only the SAT solver can declare the formula unsatisfiable. This will change if we

can find a method in which the linear space is traversed rather than the Boolean one.

This will open a new research direction of finding decision heuristics in the linear domain,

i.e., choosing which cell should be traversed next.8

8A possible direction is in line with [14], which presents a decision procedure for LRA that is led by
the theory side. Given a CNF-style formula, they check if its negation – in DNF – is valid. Each term in
this DNF represents a polygon, and checking whether the whole formula is valid corresponds to checking
whether the union of these polygons covers Rd. Doing so efficiently is the subject of the above reference:
they consider the polygons one at a time in a random order, and maintain their union incrementally.
Perhaps such an approach can also be used in a DPLL(T ) style algorithm led by the theory.
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Appendices

A Propositional Satisfiability

The Boolean satisfiability problem (SAT) has long been recognized as one of the fun-

damental problems of computer science, and has drawn both theoretic and practical

research interest. Being at the heart of the basic NP-complete problem [6] all suggested

algorithms for this problem are likely to be computationally intractable using a worst-

case complexity analysis. However, many instances of this problem emerging from real

world applications can be solved efficiently by recent algorithms. Modern SAT solvers

can be roughly divided into two groups- DPLL based algorithms [7, 8] and stochastic

search based algorithms; in this work DPLL based algorithms are reviewed and ana-

lyzed as algorithms for the SMT problem depend or at least make use of DPLL based

algorithms. In general, the basic DPLL procedure can be considered as search through a

binary tree spanning all possible assignments to the input formula, in which each internal

node is mapped to a partial assignment and the leaves represent a full assignment. The

DPLL procedure progresses by choosing an unassigned variable and deciding its value,

identifying and propagating implications of this decision and backtracking in case of a

conflict. Current solvers, for example [21], identify the problem’s underlying structure

which enables pruning large search spaces quickly by learning from conflicting assign-

ments and identifying the important variables in the formula. In this chapter current

algorithms are reviewed and analyzed using abstract-DPLL [25], an abstract declarative

framework used to explain DPLL based solvers for both the propositional satisfiability

and the satisfiability modulo theories. In this framework the DPLL procedure is modeled

as a transition system. An algorithmic description of the DPLL procedure, conforming

to the specifications of the formal framework is discussed in the following subparagraphs.

A.1 Abstract DPLL

Definition 12 (State) A state in the transition system is either FailState or the pair

M ||F , in which F is a CNF Boolean formula and M is a set of annotated literals rep-

resenting the current partial assignment. A literal annotated as ld represents a decision

literal.

The DPLL procedure is modeled as a set of transition rules, called the transition

relation, which is a binary relation ⇒, over the states. Given a state S the binary

relation defines if there is a transition rule applicable to that state and if so, a definition
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of the following state S ′ is also provided. In the following subparagraphs several transition

systems are presented using different subsets of the DPLL transition rules presented in the

next definition. A transition system can be used to decide the satisfiability of an input

formula F by applying the transition rules to generate a derivation φ||F ⇒ ... ⇒ Sk,

where Sk is a final state, i.e no transition rules can be applied on Sk. it should either be

a FailState in which case F is unsatisfiable or Sk = M ||F , and M is a model of F.

Definition 13 (DPLL transition rules) The abstract-DPLL framework contains the

following transition rules:

1. Unit Propagate

M ||F, C ∨ l ⇒ Ml||F, C ∨ l if





M |= ¬C

l is undefined in M

2. Pure Literal

M ||F ⇒ Ml||F if





l occurs in F

¬(¬l occurs in F )

l is undefined in M

3. Decide

M ||F ⇒ Mld||F if





l ∨ ¬l occur in F

l is undefined in M

4. Fail

M ||F, C ⇒ FailState if





M |= ¬C

M does not contain decision literals

5. Backtrack

MldN ||F, C ⇒ M¬l||F, C if





MldN |= ¬C

N does not contain decision literals

6. Backjump

MldN ||F, C ⇒ Ml′||F, C if





MldN |= ¬C

exists a clause C ′ ∨ l′ such that :

F, C |= C ′ ∨ l′ and M |= ¬C ′,

l′ is undefined in M

l′ or ¬l′ occur in F or in MldN.

7. Learn

M ||F ⇒ M ||F, C if





each atom of C occurs in F or in M

F |= C
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8. Forget

M ||F, C ⇒ M ||F if
{

F |= C

9. Restart

M |= F ⇒ φ||F

The basic DPLL procedure system employs the first five transition rules presented in

Definition 13, The procedure, originally presented by [8] and improved by [7], is essen-

tially a depth-first search procedure in which the Decide and UnitPropagate transition

rules are applied interchangeably, and Backtrack applied in case a conflict is encountered.

Modern state of the art solvers do not implement the basic DPLL system, these solver

are conflict driven; when a conflict is encountered it is analyzed and used to prune large

search spaces. In a transition system modeling these algorithms, the Backtrack transition

rule is replaced by the Backjump transition rule; using this rule several decisions can

be undone in a single step. Furthermore, using learn transition rule new clauses can

be added to the input formula, allowing further applications of the UnitPropagate rule

on the learnt clauses. Since potentially an exponential number of clauses can be added

to the formula, The forget rule is applied to remove learnt clause which are no longer

relevant. The Restart rule is yet another improvement used to restart the search in cases

the search procedure is not making enough progress.

A.2 Implementation Details

The performance improvement achieved by current SAT solver can be attributed to ef-

ficient implementations of the transition rules described in the previous paragraph, and

solvers differ in the way these transition rules are implemented. While the initial, ba-

sic DPLL algorithm presented over 45 years ago was implemented in a straight forward

recursive manner and suffered from the memory explosion problem, current solvers are

implemented efficiently in an iterative manner and include smart decision heuristics, con-

flict driven learning and non-chronological backtracking, efficient deduction mechanism

and use highly efficient data structures for storing clauses. Current implementations will

typically apply the Decide transition rule only when UnitPropagate rule can no longer

be applied. If a conflict has been detected as a result of a decision or deduction the

algorithm will analyze the conflict cause, Learn the conflict clause and Backjump to a

prior state. The PureLiteral rule is considered only as a preprocessing step. In the rest

of this section some of the algorithms implementing the transition rules are reviewed.
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A.2.1 Unit Propagation

The unit propagation rule assigns value to literals needed to satisfy unit clauses, i.e.,

unresolved clauses in which all but one literal are assigned. The process of identifying

and satisfying these clauses is also known Boolean Constraint Propagation (BCP), and in

current SAT solvers this process usually consumes most of the solvers run time, hence the

importance of efficient implementation. Current solvers usually implement the 2-literal

watch algorithm suggested by [21]. In this approach two special literals, not assigned

a false value at any given time are monitored for each clause; as long as this condition

hold, no literal value is implied for that clause. When one of these literals is assigned a

false value, the clause can be in either of the following states -

a. The clause is not implied, i.e. exist at least two literals in which are not assigned a

false value (including the other watched literal). A new literal is then chosen to replace

the literal assigned a false value.

b. The clause is implied; the unassigned watched literal will have its value implied to a

true value.

Using this approach, clauses are visited only when one of the watched literals is assigned

a false value instead at each assignment and when backtracking there is no need to change

the watched literals.

A.2.2 Conflict Analysis, Learning and Backjumping

A key performance improvement is due to non-chronological backjumping, referenced

previously as Backjump and Learn transition rules. Non-Chronological Backjumping is

especially efficient in cases of structured problems, such as in problems emerging from

real world applications. Given a conflicting clause, most current solvers will analyze the

conflicting clause, learn the conflict cause and possibly flip the value of a decision variable

earlier than the recent decision. During the conflict analysis, new clauses are added to

the original formula; these clauses do not change the satisfiability of the formula, but can

help the solver prune large spaces by avoiding assignments which would reproduce the

learnt conflict cause. The concept of non-chronological backjumping was first introduced

into the DPLL framework by [20] and became a common practice for all DPLL based

SAT solvers. In this section analyzing and learning conflict clause is explained using the

concept of an implication graph. This work follows the explanations presented also at

[26].

Definition 14 (Implication Graph) An implication graph is a directed acyclic graph

in which each vertex is associated with an assignment of a value to a variable at a given
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decision level. A directed edge in the implication graph corresponds to an assignment

implied by another assignment through BCP. Given an implication graph, a conflict occurs

if there exists a variable p such that p has two vertices associated with it in the implication

graph. A conflict clause is a disjunction of literals excluding from the search the set of

assignments to a formula’s variables that causes a conflict in the implication graph.

Using the implication graph, whenever a conflict occurs it is analyzed to detect a

conflict clause. The solver then Backjumps to the maximum decision level of variables

in the conflict clause. After backtracking the conflict clause will become a unit clause

and since the current decision variable is a unit literal it is force to flip; such clauses are

known as asserting clauses.

The conflict clause is generated by a bipartition of the implication graph. The parti-

tion divides the graph into the reason side, containing all the decision variables and the

conflict side containing the conflicting variable. Vertices on the reason side that have at

least one edge into the conflict side are considered the reason of the conflict - i.e. the

conflict clause.

It is therefore easy to intuitively see that different cuts correspond to different learning

strategies, as detailed in the following subparagraphs.

Definition 15 (Vertex Domination) A vertex Vi is said to dominate a vertex Vj iff

any path from the vertex representing the decision variable of the decision level associated

with Vi to Vj needs to go through Vi .

Definition 16 (Unique Implication Point) A vertex Vi at decision level dl is a Unique

Implication Point (UIP) iff any path form the decision variable of dl to the conflicting

variables needs to go either through Vi or go through a vertex of decision level higher than

dl that is on the reason side of the implication graph partition.

Since it is possible to have several UIP in a single implication graph, the UIPs are

numbered starting from the conflicting variable. To ensure that a conflict clause is

an asserting clause the partition needs to have one UIP of the current decision level

on the reason side, and all vertices assigned after this UIP on the conflict side. Thus

after backtracking the UIP vertex will become a unit literal and make the clause an

asserting clause. A simple learning strategy implemented in RelSAT solver is to generate

conflict clause be continuously resolving the conflicting clause with its antecedent until the

resolved clauses contains only decision variables of the current decision level or smaller.

This learning scheme will put all variables assigned at the current decision level, except

for the decision variable, on the conflict side and other variables at the reason side.
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A different approach known as the First UIP learning scheme is focused on learning

conflict clause relevant to the current conflict, by making the partition close to the

conflicting variable; this is done by identifying the First UIP i.e., the UIP closest to

the conflict. The graph partition places the first UIP of the current decision level on

the reason side, and places the rest of the variables with edges leading to the conflicting

variable and assigned after the first UIP on the conflict side.
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1 2 4p c c+ += ההיוריסטיקה תייצר שלוש נקודות , 5c-בהנתן משתנה החלטה המקביל לאילוץ , ∩

1-שונות  2 3, ,v v v ות אלה כמות שונה של אילוצים מקבוצת האילוצים המגדירה   בכל אחת מנקוד

עובדה מעניינת היא שהנקודה הראשונה מספיקה על .  TRUE מקבלת ערך אמת 1Pאת דפנות התא 

עובדה זאת מעלה את חשיבות קביעת כמות . מנת לזהות את הערך המתחייב עבור משתנה זה

  .ק באופן אמפיריהצעדים אותם מפעילה ההיוריסטיקה לשיפור רמת הדיו

 

        י היוריסטיקת ההחלטהי היוריסטיקת ההחלטהי היוריסטיקת ההחלטהי היוריסטיקת ההחלטה"""" נקודות שונות לפיהן ניתן לקבוע ערך ע נקודות שונות לפיהן ניתן לקבוע ערך ע נקודות שונות לפיהן ניתן לקבוע ערך ע נקודות שונות לפיהן ניתן לקבוע ערך ע----3333תמונה תמונה תמונה תמונה 
  

  

השיוונו בין ביצועי . smt-comp ’07אמפירי על בעיות שנלקחו מתחרות  באופן בדקנו את השיטה 

דיוק וכמו כן מול שתי היוריסטיקות החלטה שונות ההמערכת עבור ערכים שונים של פרמטר 

 בזמן הריצה של האלגוריתם ביחס 11%-הראינו שיפור של כ.   במערכות אחרותהנפוצות

  .הכלים הנוכחייםי רוב " עהממומשת יסטיקת ההחלטה המקורית להיור

  

   



 

וניסיון לקבוע את ערכי האילוצים באופן , זיהוי ערכים אלה הינו יקר חישובית, כפי שכבר צוין

  .לירידה חדה בביצועי האלגוריתםבישיר יגרום 

  . קודקוד יחיד של התאהמבוססת על זיהוי , ציגים שיטה לשיערוך אילוצים אלהבעבודה זאת אנו מ

וקובעים את ערכו של המשתנה , אנו מזהים נקודה כזאת, כאשר נדרשת החלטה, במהלך החיפוש

 אם הנקודה נופלת מצידו –י קביעת מיקום הנקודה ביחס לאילוץ "ע) המקביל לאילוץ גיאומטרי(

  .  אחרתFALSEאו , TRUEהחיובי אזי ערכו יקבע לערך אמת 

יקבע )  שאינם חותכים את התאכלומר (אשר ערכם מתחייב  אילוצים ניתן לראות שערכם של

הערך אינו גם כאשר . י כך תמנע החלטה הגורמת לסתירה"י היוריסטיקה זאת וע"בצורה נכונה ע

 במקרה ושני הערכים ,בנוסף לכך. בוודאי לא תיווצר סתירה ,) חותך את התאהאילוץ ( מתחייב 

  . שנאותות האלגוריתם אינה נפגעתך החיפוש כך אפשריים אין הערך השני נגרע מתו

מישור שלו -נבדוק באיזה חצי, 1lבהנתן האילוץ . 1vי הנקודה " מיוצג ע1P התא 2בתמונה , לדוגמא

ר החיובי ואכן ניסיון לתת ערך אחר הנקודה נמצאת בחצי המישו, במקרה זה. 1vנופלת הנקודה 

  .היה גורם לסתירה

  

שימוש בהיוריסטיקת ההחלטה זאת דורש  זיהוי קודקוד כלשהו של התא עבור כל השמת ערך 

אנו כפיתרון לבעיה זאת . דבר ההופך את הגישה הזאת ליקרה מידי באופן כללי, למשתנה החלטה

 ניתן לשערך. י שיערוך נקודה זאת"ע,  התאמנסים לצמצם את עלות זיהוי הנקודה הנמצאת בתוך

 אולם רמת דיוק גבוהה יותר גוררת באופן טבעי עלות את ערכי הנקודה הזאת ברמות דיוק שונות

   . נבדקה אמפיריתרמת הדיוק הדרושה לשיפור מיטבי של התוצאות, חישובית גבוהה יותר 

    -י ההיוריסטיקה "נציג איפה את התהליך המתבצע ע

בהנתן ההשמה .   לכל משתני הנוסחה0-מוצב הערך, פתיחה ממנה מתחיל החיפושנקודת הב

הנקודה המתקבלת מקיימת חלק מאותם , החלקית המגדירה את ערכיהם של קבוצת אילוצים

אשר הנקודה ,  מקבוצת האילוצים המגדירים את התאאילוץ בכל צעד נוסף נבחר . האילוצים

י " תחת ההשמה המוגדרת עזההילוץ זה יקבל ערך אמת רה ונתקן את ההשמה כך שאיהנוכחית מפ

ונבחר את הנקודה בה כמות , של פעמים) לפי פרמטר(נבצע צעד זה כמות מוגדרת  .הנקודה

כפרמטר י ההיוריסטיקה " נתייחס לכמות הצעדים המבוצעת ע.מקסימלית של אילוצים מתקיימת

  .תראשר דורש יותר זמן חישוב עבור ערכים מדויקים יו, דיוק

  

2נתונה ההשמה החלקית , 3לדוגמא בתמונה  4,c TRUE c TRUE=  -המגדירה את התא =



 

DPLL(T)  .ב לחציחכל החלטה הקובעת את ערכו של אחד המשתנים למעשה מחלקת את המר -  

פוש  הנשמרת במהלך החיההשמה החלקיתאו ,  אוסף ההחלטות.החצי בו האילוץ הלינארי מתקיים

, 2תמונה , לדוגמה. )פוליטופ(  גוף קמור במרחבמגדיר אוסף זה , מגדירה את אוסף חיתוכי המרחב

,5אילוציםקבוצה שלמציגה  6, 7{ }l l lמחלק את המרחב כל אחד מאילוצים אלה ,  אשר ערכם נקבע

 0 ו 1י "המסומנים ע, שלילי) בו כל נקודה מספקת את הפרדיקט הלינארי(  חיובי -לשני חצאים 

   .1Pי השמה לאילוצים אלה יוצר את הגוף הקמור "חיתוך השטחים המוגדרים ע. בהתאמה

 

        חיפושחיפושחיפושחיפוש תיאור גיאומטרי של ה תיאור גיאומטרי של ה תיאור גיאומטרי של ה תיאור גיאומטרי של ה2 תמונהתמונהתמונהתמונה

  

י התיאוריה בהנתן "ניתן לזהות האם ערכו מתחייב ע, בהנתן משתנה אשר ערכו אינו נקבע עדיין

ריק עם התא -י האילוץ יש חיתוך לא"אם לשני חצאי המישור המוגדרים ע –ההשמה החלקית 

כאשר רק לאחד . י ההשמה החלקית אזי השמת כל אחד משני הערכים לא יגרום לסתירה"המוגדר ע

 הערך – הגדרה שקולה היא .אזי השמת  ערך זה מתחייבת,  המישור חיתוך לא ריק עם התאמחצאי

, י ההשמה החלקית" התא המוגדר עאת אינו חותךי האילוץ "מישור המוגדר ע-העלאם מתחייב 

   .ולהיפך עבור אילוצים אשר ערכם אינם מתחייב

אלו הם קבוצת , ס לתת השמהצים אשר ערכם נקבע ביחאת האילו, 2 ניתן לראות מתוך תמונה 

  . 1Pהאילוצים אשר אינם חותכים את התא 
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          המבוססת על ניתוח גיאומטרי של מרחב החיפוש המבוססת על ניתוח גיאומטרי של מרחב החיפוש המבוססת על ניתוח גיאומטרי של מרחב החיפוש המבוססת על ניתוח גיאומטרי של מרחב החיפושDPLL(T)היוריסטיקת החלטה עבור היוריסטיקת החלטה עבור היוריסטיקת החלטה עבור היוריסטיקת החלטה עבור 

יש חשיבות רבה ליעילות לפיהן נקבע הערך של משתנים ) DECIDE – 1בתמונה (להחלטות 

.   על מנת לבחור ערכים אלה מערכות קיימות משתמשות בהיוריסטיקות החלטה,האלגוריתם

 מבוססות על ניתוח המבנה , מאלגוריתמים עבור לוגיקה פסוקיתהושאלוש, היוריסטיקות אלה

במקרים מסוימים השמות . הי התיאורי"ב ע במבנה המוכתות מתחשבןאינו, הבוליאני של הנוסחה

 לסתירה כאשר ההשמה נבדקת ביחס ותהמתקבלות כתוצאה משמוש בהיוריסטיקות אלה גורמ

) -לדוגמא בהנתן הנוסחה . לתיאוריה ) ( ) ( )x y x z y z= ∧ > ∨  TRUEהשמה המעניקה ערך אמת  >

  . לכל הפרדיקטים בנוסחא תוביל לסתירה

כלומר שהשמה אחרת (י התיאוריה "דוק בין כמות הערכים המתחיבים עניתן להבין שקיים קשר ה

 להיוריסטיקת  שיקולים הנגזרים מהתיאוריהלבין החשיבות של) לערכים אלה תגרום לסתירה

  .ההחלטה

קיים פוטנציאל לכך שבמקרה , בהסתמך על עבודות תיאורטיות קודמות, LRAבמקרה של תיאורית 

בהנתן משתנה שערכו אינו , כלומר. בעו בהנתן ההשמה החלקיתמספר רב של ערכים יק, הממוצע

 במידה .י התיאוריה בהנתן ההשמה החלקית" ענגרר ערכו של המשתנה בהסתברות גבוהה, קבוע

  .גוריתם יתקל בסתירהלהא, ויושם למשתנה זה ערך אחר

ינו  בהנתן השמה חלקית ומשתנה שערכו א- היא כדילקמן דרך פשוטה להתחשב בתוצאות אלה

אולם קיים . י התיאוריה בהנתן ההשמה החלקית" לבדוק האם ערכו של המשתנה נגרר עיש, נקבע

י הנוסחה מחייב פתרון של מערכת "  זיהוי הערכים המתחיבים ע- בדרך זאת קושי בשימוש ישיר

האם  ) Simplex –המבוססת על (י הפעלת פרוצדורת הכרעה "כלומר בדיקה ע, לניארית

.  הינה ספיקה ההשמה החלקית עם אחד מהליטרלים של משתנה ההחלטהחברת אתהמקוניונקציה 

  .בפועל פתרון זה יקר מידי

  

 שעלותה קטנה ,י התיאוריה"בעבודה זאת אנו מציגים שיטה לשיערוך משתנים שערכם נגרר ע

 נאותות האלגוריתם,  שמדובר בשיערוך בלבדלמרות. בהרבה מקביעת ערכים אלה באופן ישיר

כך שבמידה והשיערוך אינו נכון , אנו מקודדים מידע זה כהיוריסטיקת החלטהכיוון ש נשמרת

  .האלגוריתם יכול להמשיך בחיפוש

 -י אלגוריתם ה"עהיוריסטיקה זאת מבוססת על ניתוח גיאומטרי של מרחב החיפוש הנחקר 



 

, משלבות באופן הדוק יותר את שתי פרוצדורות ההכרעה, שיטות עדכניות לפתרון בעייה זאת

וקול הפשוט המחייב מציאת פיתרון מלא לשלד בניגוד לפרוט, ומאפשרות להן לפעול באופן חלקי

  .הבוליאני

 בנוסף - הממומשת בכל המערכות העדכניות  DPLL(T) -סכימת הי " התקדמות נוספת הוצגה ע

הפרוצדורה יכולה לזהות ,  השמות חלקיותעבור הקריאה לפרוצדורת ההחלטה נעשתלכך ש

.   בהנתן ההשמה החלקית)לסתירהאחרת יגרמו (יב על ידי התיאוריה ימשתנים אשר ערכם מתח

 אזי ברור שערכו של הפרדיקט  (y=z)  ו  (x=y)  -לדוגמא בהנתן שהפרדיקטים הבאים מתקימים 

(z=x) נקבע אף הוא  .  

   .1מוצג בתמונה    DPLL(T) -סכימת התיאור כללי של 

כל הפורש את , חיפוש על עץ החלטה בינארי האלגוריתם כמבצעניתן לחשוב על החיפוש ש

י בחירת משתנה אשר " עעל עץ זה האלגוריתם מתקדם. האפשריות להשמת ערכים למשתני הנוסחה

 לאחר מכן מתבצעת ).DECIDE – 1בתמונה  (וקובע את ערכו, ) משתנה ההחלטה (ערכו אינו נקבע

האלגוריתם משחזר את , במידה וכן?   האם ההשמה יוצרת סתירה-)BCP – 1בתמונה (ערכו  בדיקה

 ערכם של  מושםמתחיל תהליך איטרטיבי בו, במידה ולא. קודם וממשיך ממנו את החיפושמצבו ה

 כאשר -תהליך זה עוצר בשני מצבים. י התיאוריה"או ע י המבנה הלוגי"משתנים אשר ערכם נגרר ע

כלומר כאשר אין עוד ערכים חדשים המתחייבים מההשמה ,  ישנה סתירה או כאשר הוא מתכנס

 כאשר הוא מצליח להשלים השמה מלאה ללא סתירות – האלגוריתם עוצר בשני מצבים .הנוכחית

  .או כאשר אין עוד השמות חדשות לנסות

 

         DPLL(T) פרוצדורת  פרוצדורת  פרוצדורת  פרוצדורת ----    1 תמונהתמונהתמונהתמונה



 

        הבעיההבעיההבעיההבעיה הגדרת  הגדרת  הגדרת  הגדרת ––––הקדמה הקדמה הקדמה הקדמה 

בעיה . בעיית ההכרעת הספיקות של נוסחא היא אחת מהבעיות הנחקרות ביותר במדעי המחשב

האם קיימת , Α המוגדרת מעל אוסף משתנים ϕבהנתן נוסחא  –אופן פשוט זאת ניתנת להגדרה ב

  .TRUE– תקבל ערך אמת ϕ-כך ש, Α-השמה ל

  .יה הלוגית מעליה מוגדרת הבעיההשונות בתיאור, משפחה של בעיותמגדירה מעשה הגדרה זאת ל

, בעוד פתרון בעיה זאת עבור לוגיקה פסוקית הינו אפשרי גם עבור בעיות גדולות משמעותית

עבור לוגיקות )  אולם קיימים עבורה אלגוריתמים יעיליםNP completeבעיה זאת היא אומנם (

  .פתוח מורכבות יותר האתגר למציאת פיתרון בזמן סביר עדיין במידה רבה

ילוצים לניאריים מעל קבוצת י א"המוגדרת ע,  בעבודה זאת אנו דנים באחת מלוגיקות אלה

 - לדוגמא האם לנוסחא הבאה . ובעלי מבנה בוליאני כללי)LRA (המספרים הממשים

( ) ( ) ( )x y x z y z= ∧ > ∨   .TRUE כך שהנוסחה תקבל ערך אמת x,y,zקיימת השמה למשתנים  >

        

        עבודה עדכנית בתחוםעבודה עדכנית בתחוםעבודה עדכנית בתחוםעבודה עדכנית בתחום

אלגוריתם חיפוש של בעיית הספיקות עבור לוגיקה קיימים עבור בעיה זאת משלבים לגוריתמים א

י שימוש באלגוריתם "לדוגמא ע, LRAעבור ספציפית  פסוקית בשילוב עם פרוצדורת הכרעה

   . ")וגם("פרוצדורה זאת מקבלת כקלט רק אילוצים בעלי מבנה קוניוקטיבי .  סימפלקס

. עם פרוטוקול מוגדר להחלפת מידע, י שתי פרוצדורות שונות"נפתרת ע למעשה בעיית ההכרעה 

   –ול פשוט שהיה בשימוש מערכות מדור קודם קהנה פרוטו, לדוגמא

כלומר נחליף כל , קידוד כל פרדיקט לינארי המופיע בנוסחא כמשתנה מלוגיקה פסוקית .1

, -פרדיקט לינארי  { , , , , },i ix c c Rα ∞ ∞ ∈ > < ≤ ≥ = נוסחה החדשה ה. במשתנה בולאני ∑∋

  .של הנוסחה המקוריתהשלד הבוליאני  –מכונה 

השמה כזאת אם , בעזרת אלגוריתם ללוגיקה פסוקית שלד הבוליאניחיפוש השמה מספקת ל .2

 . השב כי אין השמה מספקת לבעייה המקורית–אינה קיימת 

 אם . זאתלתיאוריהבעזרת אלגוריתם המיועד ון שהתקבל ר את הפתיש לבדוק  –אחרת  .3

 "ספיק" החזר ערך –ון אינו סותר את האילוצים הלינארים המוגדרים בנוסחא רהפת

  .2-וחזור ל ,  הוסף פסוקית הסותרת פיתרון זה בלוגיקה פסוקית-אחרת .4

  



 

הליטרלים בה  אם רק אחד מunit–היא פסוקית . FALSEהליטרלים בה הם בעלי ערך 

  .עדיין לא נמצא תחת השמה

נוסחה היא ספיקה תחת השמה אם כל פסוקיותיה מסופקות )  תחת השמהספיקות(הגדרה  .6

  .תחת ההשמה

  

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        



 

        הגדרותהגדרותהגדרותהגדרות

 הגדרות –ההגדרות הינן משני סוגים , בחלק זה נציג מספר הגדרת הדרושות להבנת עבודה זאת

  .גיאומטריות והגדרות הקשורות לבעיית הספיקות הבוליאנית

        הגדרות גיאומטריותהגדרות גיאומטריותהגדרות גיאומטריותהגדרות גיאומטריות •

)לינארית מהצורה י משוואה "מישור מוגדר ע-על) מישור-על(הגדרה  .1 )f b=x ,כך ש-f הינה 

dR→פונקציה לנארית מהצורה  R,∈ dx R,ו- bהינו ערך קבוע  

-סידור של על מישורים הוא אוסף על מישורים ב )מישורים-סידור של על(הגדרה  .2
dR סידור

  . מישורים מגדיר חלוקה של המרחב לאוסף תאים קמורים-על

  –נגדיר את הפונקציה הבאה , בהנתן אוסף על מישורים בסידור )וקטור מיקום (הגדרה .3
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)1הוקטור .  ihי " מציינים את שני חצאי המרחב המוגדרים ע ) ( ( ),..., ( ))nu p u p u p= 

  . Pנקרא וקטור המיקום של נקודה 

  . כל הנקודות אשר חולקות באותו וקטור מיקום מגדירות תא)  תאים(הגדרה  .4

        הגדרות הקשורות לבעיית הספיקות הבוליאניתהגדרות הקשורות לבעיית הספיקות הבוליאניתהגדרות הקשורות לבעיית הספיקות הבוליאניתהגדרות הקשורות לבעיית הספיקות הבוליאנית •

  pאזי , לקבוצה זאת שייך pאם משתנה ,  קבוצה של משתניםPתהי ) ליטרל(הגדרה  .1

 .ושלילתו הינם ליטרלים

  פסוקית היא דיסיונקציה של ליטרלים ) פסוקית(הגדרה  .2

  היא קוניונקציה של פסוקיות ) CNFנוסחת , בפרט(נוסחה ) נוסחה(הגדרה  .3

 היא קבוצת ליטרלים כך ש השמת אמתאו , השמה) השמה(הגדרה  .4

| (( ) ( ))p P p M p M∀ ∈ ¬ ∈ ∧ ¬  בהשמה אם הוא שייך  TRUEליטרל הוא בעל ערך , ∋

  .להשמה ולהפך אם שלילתו שייכת להשמה

פסוקית היא מסופקת תחת השמה אם לפחות אחד ) תחת השמה מצב של פסוקית(הגדרה  .5

אם כל , הפסוקית מכילה סתירה.  בהשמהTRUE –ה הוא בעל ערך למהליטרלים ש



 

היוריסטיקת החלטה עבור פרוצדורת הכרעה 
של אילוצים לינאריים המבוססת על ניתוח 

  גיאומטרי של מרחב החיפוש

  
  

  

  דן גולדווסר

  

  תקציר

  

  

  

  

נאריים המוגדרים מעל קבוצת המספרים ית חוקרת את בעיית ההכרעה עבור אילוצים לעבודה זא

הממשים ובעלי מבנה בוליאני כללי תוך שימוש בשיטות ומושגים הלקוחים מעולם הגיאומטריה 

  .החישובית

התאים אנו מגדירים את מרחב החיפוש הגיאומטרי כקבוצת , בהנתן נוסחה המכילה אילוצים

  .י האילוצים הלינאריים המופיעים בנוסחא" עתהמוגדרוקת המרחב לגופים קמורים י חל"המוגדרת ע

יש יתרון גודל , בניגוד למרחב החיפוש הבוליאני, עבודה זאת מראה כי לשימוש במרחב חיפוש זה

כאשר כמות האילוצים המופיעים בנוסחא גדולה מכמות המשתנים מעליהם מעליהם מוגדרים 

  . המצב בבעיות הנפוצות בתחום זהכפי שאכן , אילוצים אלו

ערכים  העבודה גם מציגה היוריסטיקת החלטה המבוססת על שיערוך של ,על מנת לנצל תכונות אלה

י ניתוח מרחב "שיערוך זה נעשה ע. י המבנה הגיאמטרי של הנוסחה במהלך החיפוש"הנגררים ע

בעיות הסטנדרטיות בתחום אנו מראים ששימוש בהיוריסטיקה זאת בפיתרון ה. החיפוש הגיאומטרי

  .מביא לשיפור בזמן הריצה

  

  

 

 

            



 

היוריסטיקת החלטה עבור פרוצדורת הכרעה 
של אילוצים לינאריים המבוססת על ניתוח 

  גיאומטרי של מרחב החיפוש
  :מאת

  דן גולדווסר

  

 :נחייתבה

  )אוניברסיטת חיפה (ר רונן שלתיאל"ד

  )הטכניון (עופר שטריכמן ר"ד

  ) בחיפהIBMמעבדת המחקר של  (ר שי פיין"ד

  

  

  המוגשת כמילוי חלק מהדרישות) תיזה(מחקרית ת גמר עבוד

  " האוניברסיטה מוסמך"לקבלת התואר 

  

  אוניברסיטת חיפה

  למדעי החברההפקולטה 

  למדעי המחשב  החוג

  

  

  ________________תאריך ___________________________      מאושר על ידי  
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