
IMPROVEMENTS OF SAT SOLVING

TECHNIQUES

Roman Gershman

Improvements of SAT solving techniques

Research Thesis

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science

By

Roman Gershman

Submitted to the Senate of

The Technion - Israel Institute of Technology

Adar, 5767 Haifa March 2007

ii

The Research Thesis Was Done Under The Supervision

of Dr. Ofer Strichman in the Faculty of Computer Science

The Generous Financial Help Of The Technion

Is Gratefully Acknowledged.

iii

Contents

List of Tables vii

List of Figures viii

Abstract x

1 Introduction 1

1.1 The SAT problem . 1

1.2 DPLL SAT solvers . 3

1.3 Decision heuristics . 9

1.4 The current work . 11

2 The HyperBinFast algorithm 13

2.1 Introduction . 13

2.2 Definitions . 14

2.3 Hyper Resolution . 16

2.4 The HyperBinFast algorithm . 19

2.5 discussion . 24

2.5.1 Differences from Hypre . 24

2.5.2 Bounding the runtime of HyperBinFast 25

2.6 Experiments, conclusions and directions for future research 26

v

3 The CMTF decision heuristic 33

3.1 Introduction . 33

3.2 Background . 34

3.2.1 Conflict clauses and resolution 36

3.2.2 The Berkmin Decision heuristic 41

3.3 The Clause-Move-To-Front (CMTF) decision heuristic 43

4 Resolution-based-scoring 45

4.1 Introduction and some definitions . 45

4.2 Computing the scores of a variable 49

4.3 Experiments . 50

4.4 Summary of chapters 3 and 4 . 53

Bibliography 54

vi

List of Tables

2.1 Run-times (in seconds) and failures (denoted by ‘F’) for various SAT

solvers with and without HyperBinFast. Times which are smaller

by 10% than in competing configurations with the same SAT solver

are bolded. Failures denoted by * are partially caused by bugs in the

SAT solver. 30

2.2 Run-times (in seconds) and failures (denoted by ‘F’) for HaifaSat and

Siege v1, without preprocessing and when combined with Hypre and

HyperBinFast. All run-times include both the preprocessing and the

SAT solving times. Times which are smaller by 10% than in competing

configurations with the same SAT solver are bolded. 31

2.3 Few representative instances for which both Hypre and HyperBin-

Fast terminated before their respective (different) timeouts. The SAT

times refer to HaifaSat’s solving time. It can be seen that typically the

solving time is longer after HyperBinFast, but together with the

SAT solver time it is more cost effective than Hypre. 32

vii

List of Figures

1.1 The size of industrial CNF formulas (instances generated for solving

various realistic problems such as verification of circuits and Planning

problems) that are regularly solved by SAT solvers in a few hours,

according to year. Most of the progress in efficiency was made in the

last decade. 2

1.2 A partial Implications Graph for decision level 6, corresponding to the

clauses in Formula 1.1, after a decision x1 = 1 (left) and a similar graph

after learning the conflict clause c9 = (x5 ∨ ¬x1) and backtracking to

decision level 3 (right). 7

3.1 A partial implication graph and set of clauses demonstrate Analyze-

Conflict. x4 is the FirstUIP , and complx4 is the asserted literal. 39

3.2 A resolve-graph corresponding to the implication graph in Figure 3.1 40

3.3 A partial implication graph corresponding to c1, c3, c4 and the decision

x4@5. 40

viii

3.4 Berkmin’s decision heuristic can be thought of as an abstraction-refinement

process, where a range of the conflict clauses from the right end until

ci represents an abstract model of the clauses on the left of ci. (a)

Berkmin clauses stack: after encountering a conflict, the new resolved

clauses are added on the right end. By the time the solver returns to

c50, it will have a partial assignment that satisfies a refined model, i.e.

the clauses c51 . . . c110 (b) The resolve sub-graph of some newly created

clauses. Grey thick edges denote the blue edges in the graph. 41

3.5 A Resolve-Graph Based decision heuristic 43

4.1 A possible scenario for the flow of the solver’s run. After deciding x30

at decision level 27 the solver iteratively goes down to deeper decision

levels and returns twice to level 27 with new asserted literals x43 and

x78. The latter causes a conflict at level 27 and the solver backtracks to

a higher decision level. Implications in the boxes denote assignments

that are done during BCP after implying decision or asserting literal. 47

4.2 A comparison of various configurations, showing separately the advan-

tage of CMTF, the heuristic for choosing the next clause from which

the decided variables will be chosen, and RBS, the heuristic for choos-

ing the variable from this clause and its sign. 52

ix

Abstract

We present two algorithms that improve current state-of-art SAT solving techniques.

The first algorithm is an improvement of Bacchus and Winter’s [2] Binary Hyper-

Resolution preprocessor algorithm for simplifying industrial SAT formulas. Unlike

the original algorithm, we restrict the application of Unit-Propagation to the roots of

the Binary Implications Graph, and learn stronger implications by finding dominators

that are responsible for the implications. Our algorithm HyperBinFast is typically

faster and more cost-effective.

The second algorithm is a new decision heuristic in the DPLL framework. We

present a theoretical model, based on abstraction-refinement, which is helpful in ex-

plaining clause-based decision heuristics such as Berkmin. Based on this model, we

suggest a different heuristic, called Clause-Move-To-Front (CMTF), which attempts

to keep the refinement focused on one path, in contrast to Berkmin. We also suggest

a new algorithm for scoring variables, based on their activity in the internal resolution

process that the SAT solver performs. Together these heuristics perform better on

average than the well-known VSIDS and Berkmin heuristics, based on a large set of

industrial problems.

The algorithms described in the thesis are implemented in our SAT solver HaifaSat.

HaifaSat won the third place in the 2005 SAT competition in the industrial-benchmarks

category.

x

Chapter 1

Introduction

1.1 The SAT problem

The satisfiability (SAT) problem is to decide whether there exists a truth assignment

that satisfies a given propositional formula in Conjunctive Normal Form (CNF). Since

every propositional formula can be translated to an equivalent CNF formula in poly-

nomial time, and since experience of decades has shown that CNF formulas are easier

to solve than their original representations, CNF has become the standard de-facto

for competitive SAT solvers. The SAT problem is fundamental for solving many

other problems in Computer-Aided Design, Verification, Automated Reasoning and

so forth. The ever-growing need to solve larger and harder CNF formulas led through

the years to a vast amount of research and consequently to exceptionally powerful

SAT solvers, which can solve many real-life CNF formulas with hundreds of thousands

of variables in a reasonable amount of time. Figure 1.1 shows the progress of these

tools through the years. Of course, there are also instances with several hundreds of

variables that they cannot solve. In general it is very hard to predict which instance

is going to be hard to solve. It seems that SAT solvers are very good in identify-

ing the important variables, those variables that once given the right value, simplify

immensely the problem (Williams, Gomes and Selman coined the term back-door

variables to refer to these variables[12]).

1

2

1

10

100

1000

10000

100000

1000000

1960 1970 1980 1990 2000 2010

Year

V
ar

ia
b

le
s

Figure 1.1: The size of industrial CNF formulas (instances generated for solving
various realistic problems such as verification of circuits and Planning problems) that
are regularly solved by SAT solvers in a few hours, according to year. Most of the
progress in efficiency was made in the last decade.

Modern SAT solvers can be classified into two main categories. The first cate-

gory is based on the Davis-Putnam-Loveland-Logemann (DPLL) framework: in this

framework the tool can be thought of as traversing and backtracking on a binary tree,

in which internal nodes represent partial assignments, and the leaves represent full

assignments, i.e., an assignment to all the variables. The second category is based

on stochastic search: the solver guesses a full assignment, and then, if the formula

is unsatisfied, starts to flip values of variables according to some (greedy) heuristic.

Typically it counts the number of unsatisfied clauses and chooses the flip that min-

imizes this number. There are various strategies that help such solvers avoid local

minimums and repeating previous bad moves. DPLL, however, is considered better in

most cases, at least at the time of writing this thesis (2006), according to annual com-

petitions that measure their respective success in solving numerous CNF instances.

DPLL solvers also have the advantage that, unlike stochastic search methods, they

are complete. Stochastic methods seem to have an average advantage in solving ran-

domly generated CNF instances, which is not surprising: in these instances there is

no structure to exploit and learn from, and no obvious choices of variables and values,

which makes the heuristics adopted by DPLL solvers ineffective. We focus on DPLL

3

solvers only.

1.2 DPLL SAT solvers

In its simplest form, a DPLL solver progresses by making a decision on a variable

and its value, propagates the implications of this decision using Boolean Constraint

Propagation (BCP), and backtracks in case of a conflict. Viewing the process as a

search on a binary tree, each decision is associated with a decision level , which is the

depth in the binary decision tree in which it is made, starting from 1. The assignments

implied by the decision are associated with its decision level. The assignments implied

regardless of the current decisions (due to unary clauses, which are clauses with a

single literal) are associated with decision level 0, also known as the ground level .

During the solving process, a clause in the CNF formula under partial assignment

is exactly in one of the following four states:

1. Satisfied - if at least one of its literals is satisfied.

2. Conflicting - if all its literals are set to false.

3. Unit - if one of the literals is undefined and all other are set to false.

4. Unresolved - otherwise.

Example 1. Given the Partial Assignment

(x1 = 1, x2 = 0, x4 = 1)

(x1 ∨ x3 ∨ ¬x4) is satisfied

(¬x1 ∨ x2) is conflicting

(¬x1 ∨ ¬x4 ∨ x3) is unit

(¬x1 ∨ x3 ∨ x5) is unresolved
ut

4

Given a partial assignment under which a clause becomes unit, it may be extended

so it satisfies the last literal of this clause: this observation is known as the unit clause

rule. Following this requirement is necessary but obviously not sufficient for satisfying

the formula. BCP is the algorithm that is responsible for identifying all unit clauses

and by setting their undefined literals to true. During the run of this algorithm the

unit clause rule is iteratively applied until there are no unit clauses under the current

assignment or a conflicting clause is found. Each time a unit clause becomes a reason

for assigning some variable x, we say that this clause is an antecedent clause of x and

it stays so until x is unassigned during the backtracking.

Example 2. Given the clause C : (¬x1 ∨¬x4 ∨ x3) and the partial assignment (x1 =

1, x4 = 1), x3 is implied and Antecedent(x3) = C. ut

Algorithm 1 The DPLL SAT framework

1: procedure DPLL
2: while (true) do
3: if (BCP() = ‘conflict’) then
4: if decision-level = 0 then return ‘Unsatisfiable’;
5: end if
6: backtrack-level := Analyze-Conflict();
7: BackTrack(backtrack-level);
8: else
9: if ¬Decide() then return ‘Satisfiable’;

10: end if
11: end if
12: end while
13: end procedure

A framework followed by most DPLL modern solvers is presented, for example,

by Zhang and Malik in [8], and reappears in Algorithm 1. Function Decide() at

line 9 is responsible for choosing a next unassigned variable and assigning a truth

value for it. In case all variables are assigned, it returns false and DPLL() returns

SATISFIABLE. Each such decision is associated with a decision level , which can be

thought of as the depth in the search tree. There are numerous heuristics for making

5

these decisions. Some of these are described later in Section 1.3. Function BCP()

at line 3 is responsible for applying the Unit Clause Rule. If during the propaga-

tion of the current assignment a conflicting clause is found, it returns the answer

’conflict’ and saves the conflicting clause for further processing. In case the con-

flict was found at the ground level, DPLL() returns UNSATISFIABLE. Otherwise,

Analyze-Conflict() at line 6 creates a conflict clause (see below), adds it to the

clause database, and computes the decision level to which DPLL() should backtrack.

We now demonstrate BCP, reaching a conflict and backtracking, following Analyze-

Conflict as presented in Algorithm 2. Each assignment is associated with the de-

cision level in which it occurred. If a variable xi is assigned true (either due to

a decision or an implication) in decision level dl, we write xi = 1@dl. Similarly,

xi = 0@dl reflects a false assignment to this variable in decision level dl. When ap-

propriate, we refer only to the part of the label that refers to the assignment, without

the decision level, in order to make the notation simpler.

The process of BCP can be illustrated with an implication graph. An implica-

tion graph represents the current partial assignment, and the reason for each of the

implications.

Definition 1.2.1. An implication graph is a labelled directed acyclic graph G(V, E)

where

• V represents the literals of the current partial assignment (we refer to a node and

the literal it represents interchangeably). Each node is labelled with the literal

it represents and the decision level in which it entered the partial assignment.

• E = {(vi, vj)|vi, vj ∈ V ∧ ¬vi ∈ antecedent(vj)}. Each edge (vi, vj) is labelled

with antecedent(vj).

• G can also contain a single conflict node labelled with κ and incoming edges

{(v, κ)|¬v ∈ c} labelled with c for some conflicting clause c.

In an implication graph the root nodes correspond to decisions, and the internal

nodes to implications through BCP. A conflict node with incoming edges labelled with

6

Algorithm 2 Analyze-Conflict

Require: current-decision-level > 0
1: cl := current-conflicting-clause;
2: while (¬Stop-criterion-met (cl)) do
3: lit := Last-assigned-literal (cl);
4: var := Variable-of-literal (lit);
5: ante := Antecedent (var);
6: cl := Resolve (cl, ante, var);
7: end while
8: add-clause-to-database(cl);
9: return clause-asserting-level(cl); . 2nd highest decision level in cl

c represents the fact that the BCP process has reached a conflict by assigning false

to all the literals in the clause c (i.e. c is conflicting). In such a case we say that the

graph is a conflict graph. The implication graph corresponds to all the decision levels

lower or equal to the current one, and is dynamic: backtracking removes nodes and

their incoming edges, while new decisions, implications, and conflict clauses continue

the construction of the graph. Note that the implication graph is sensitive to the

order in which the implications are propagated in BCP, which means that there is

more than one possible such graph given a specific state and a decision. In most SAT

solvers this order is arbitrary and determined by the order of clauses in propagation

queue.

A partial implication graph, which illustrates the BCP in a specific decision level,

is sufficient for describing a particular popular method for implementing Analyze-

Conflict. The roots in such a partial graph represent assignments in decision levels

lower than dl, in addition to the decision at level dl, and internal nodes correspond

to implications at level dl. The description that follows mainly uses this restricted

version of the graph.

Consider, for example, the following subset of clauses:

7

c3

Decision

c2

c2

x2 = 1@6

x1 = 1@6

c4

κ

x3 = 1@6

x2 = 0@3

c5

x6 = 0@3
Decision

c8
x3 = 1@3

κ

c9

c7

c6

c5

c7x5 = 0@3
c4

c1
x4 = 1@6

x5 = 0@3

x1 = 0@3

Figure 1.2: A partial Implications Graph for decision level 6, corresponding to the
clauses in Formula 1.1, after a decision x1 = 1 (left) and a similar graph after learning
the conflict clause c9 = (x5 ∨ ¬x1) and backtracking to decision level 3 (right).

c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3)

c8 = (x6 ∨ ¬x5)
...

(1.1)

Assume that at decision level 3 the decision was x6 = 0@3, which implied x5 = 0@3

through clause c8 (hence Antecedent(¬x5) = c8). Further assume that the solver is

now at decision level 6 and assigns x1 = 1. In decision levels 4 and 5, variables other

than x1, . . . , x6 were assigned, and are not listed here as they are not relevant to these

clauses. The implication graph on the left of Figure 1.2 demonstrates the BCP process

at the current decision level 6 until, in this case, a conflict is detected. The roots

of this graph, namely x5 = 0@3 and x1 = 1@6, constitute a sufficient condition for

creating this conflict. Therefore, we can safely add the conflict clause c9 = (x5∨¬x1)

to our formula: while it is logically implied by the original formula and therefore does

not change the result, it prunes the search space because it forbids partial assignments

8

that contradict it. The process of adding conflict clauses is generally referred to as

learning , reflecting the fact that this is the solver’s way to learn from its past mistakes.

As we progress in this chapter, it will become clear that conflict clauses not only prune

the search space, but also impact the decision heuristic, the backtracking level and

the set of variables implied by each decision.

Algorithm Analyze-Conflict (see algorithm 2) is the function responsible for

deriving new conflict clauses and computing the backtracking level. It traverses the

implication graph backwards, starting from the conflict node κ, and generates a con-

flict clause through a series of steps that we describe later in §3.2.1. For now assume

that c9 is indeed the generated clause.

After detecting the conflict and adding c9, the solver determines to which decision

level to backtrack according to the conflict-driven backtracking strategy. According

to this strategy the backtracking level is set to the second most recent decision level in

the conflict clause 1, while erasing all decisions and implications made after that level.

In the case of c9, the solver backtracks to decision level 3 (the decision level of x5),

and erases all assignments from decision level 4 onwards, including the assignments

to x1, x2 and x3.

The newly added conflict clause c9 becomes a unit clause since x5 = 0, and

therefore the assignment x1 = 0@3 is implied. This new implication re-starts the

BCP process at level 3. c9 is a special kind of a conflict clause, called an asserting

clause: it forces an immediate implication after backtracking. With the right stopping

condition in line 2, Analyze-Conflict can be designed to generate only asserting

clauses. Indeed, most competitive solvers nowadays only add asserting clauses. After

asserting x1 = 0 the solver again reaches a conflict as can be seen in the right drawing

of Figure 1.2. This time the conflict clause (x6) is added, the solver backtracks to

decision level 0, and continues from there.

Conflict-driven backtracking raises several issues:

• It seems to waste work, because the Partial Assignments up to decision level

1In case of learning a unary clause, the solver backtracks to the ground level.

9

5 can still be part of a satisfying assignment. However, empirical evidence

shows that conflict-driven backtracking, coupled with modern decision heuristics

performs very well. A possible explanation of the success of this heuristic is that

the encountered conflict can influence the decision heuristic to decide different

values or different variables than those in deeper decision levels (levels 4 and 5

in this case). Thus, keeping the decisions and implications made before the new

information (i.e., the new conflict clause) arrived may have skewed the search

to areas not considered best anymore by the heuristic.

• Is this process guaranteed to terminate? In other words, how do we know that

a partial assignment cannot be repeated forever? The learned conflict clauses

cannot be the reason, because in fact most SAT solvers erase many of them

after a while to prevent the formula from growing too much. The reason is

the following: it is never the case that the solver enters decision level dl with

the same Partial Assignment. Consider a Partial Assignment up to decision

level dl − 1 that does not end with a conflict, and falsely assume that this

state is later repeated, after the solver backtracks to some lower decision level

dl− (0 ≤ dl− < dl). Any backtracking from a decision level dl+ (dl+ ≥ dl)

to Decision level dl− adds an implication at level dl− of a variable that was

assigned at decision level dl+. Since this variable was not so far part of the

Partial Assignment up to decision level dl, once the solver reaches dl again, it

is with a different Partial Assignment, which contradicts our assumption.

1.3 Decision heuristics

As we noted before Decide() is responsible for choosing variables and their truth

values during the search. In fact, this function plays a crucial role in the perfor-

mance of DPLL solvers. An improvements to decision heuristics in the past have led

improvements of orders of magnitude on average and to solving problems that were

considered unsolvable before. We mention some of the modern heuristics that are

10

implemented in the best SAT solvers known to the research community to date.

Variable State Independent Decaying Sum (VSIDS) [8]: Each literal has its own

score. At each decision, a literal with the biggest score is chosen to be satisfied. Each

time a conflict clause is added to the database, the score of its literals is increased by

1. In addition, every constant number of conflicts (say 100), all scores are divided by

2 - thus gradually giving priority to those literals whose score was increased lately.

Initially a score for each literal is set to the number of occurrences of that literal

in the formula. This heuristic was implemented in Zchaff in 2001 and led to a very

significant improvement. The authors of [8] explain VSIDS by saying that literals

which appear most in the latest conflict clauses are chosen to be satisfied, thus satis-

fying ”problematic” clauses. This was the first conflict-driven decision heuristic, and

virtually all modern decision heuristic follow this principle.

Berkmin [6]: A score list is maintained as in VSIDS. Conflict clauses are pushed

into a stack. When a decision has to be made, the first unsatisfied clause from the top

is identified; From this clause the unassigned literal with the highest score is chosen.

If the stack is empty, the literal with the highest score is chosen, as in VSIDS. This

heuristic appears to be very robust for a wide range of industrial problems.

Variable Move To Front VMTF [7]: All variables are maintained in a list. Initially,

variables are ordered in the list according to their frequency in the formula, where

the most frequent variable appears at the top of the list. Each time a decision is

made, variables are scanned from the top of the list and a first unsatisfied variable

is chosen. Its value is chosen according to the relative frequency of its positive and

negative occurrences (similarly to VSIDS). At each conflict a small constant number

(say 8) of variables from the conflict clause is moved to the front of the variable list.

These variables are chosen randomly from the conflict clause. This simple and fast

heuristic in practice is very efficient as well.

11

1.4 The current work

This thesis improves modern DPLL-based algorithms in two ways: by applying a

preprocessing algorithm on the initial CNF formula before DPLL is applied, and by

using a new decision heuristic in the function Decide().

1. The first algorithm is our improvement to the preprocessing algorithm by Bac-

chus and Winter Hypre [2]. The authors used the fact that most industrial

formulas have a lot of binary clauses with which many syntactical and semanti-

cal simplifications can be done. Often these simplifications help the SAT solver

afterwards and can be seen as an orthogonal heuristic that helps DPLL. How-

ever, even for polynomial preprocessing algorithms, sometimes it is very hard to

compete with SAT solvers on large formulas. Consider, for example, instances

with 100 − 200K variables and 500 − 800K clauses. Even with complexity of

O(n3) the preprocessing algorithm will run too long compared to aggressive

heuristics of SAT solvers. Therefore, there is a need of more robust preproces-

sor, which can run faster in most cases. We improve Hypre by constraining

its derivation rule to a subset of the variables, and learn from it more than the

original Hypre would learn.

2. The second algorithm is a new decision heuristic, based on our hypothesis that

explains why SAT solvers are able to be so efficient in solving industrial prob-

lems. We suggest a model based on abstraction-refinement that helps explain

the progress of modern SAT solvers. Based on this model, we analyze the Berk-

min decision procedure and suggest an improved procedure, using the insights

given by the suggested model. In addition, we describe a new scoring scheme

for the decision heuristic, which is based on the activity of a variable in the

resolution process conducted by the SAT solver.

12

These improvements and some others are all implemented in HaifaSat, a SAT

solver that was developed for this thesis. HaifaSat competed in the 2005 SAT com-

petition and won the 3rd place in the industrial benchmarks category 2.

The rest of the thesis is organized as follows. Chapter 1 introduces HyperBin-

Fast as an improvement to the algorithm Hypre. Chapter 2 describes our new

decision procedure for DPLL solver. Chapter 3 describes a new variable scoring pro-

cedure and Chapter 4 provides the experimental results of our SAT solver HaifaSAT.

2the first two were variations on the same code base

Chapter 2

The HyperBinFast algorithm

2.1 Introduction

Given the power of modern SAT solvers, most CNF preprocessing algorithms [5, 11]

are mostly not cost-effective time-wise. Since these solvers are so effective in focusing

on the important information in a given CNF, it is particularly challenging to find the

right balance between the amount of effort invested in preprocessing and the quality

of information gained, in order to positively impact the overall solving time.

One of the only preprocessors that succeeds to do so, at least when combined

with some of the modern SAT solvers, is Hypre [2]. An early version of Hypre

was implemented in 2cls+eq as an inference rule with impressive success (it solved

instances that could not be solved by any other solver in the SAT’02 competition).

There it was invoked in each node of the decision tree (before the call to Decide()),

hence making it part of the solver rather than a preprocessor. But given the very large

SAT instances that now solvers need to cope with, this approach was too costly in

practice. In [2] Bacchus and Winter improved the implementation of this algorithm

and tried it very successfully as a preprocessor. Their experiments show that in

most cases there is a benefit in using this preprocessor prior to invoking a state-

of-the-art solvers like Berkmin and zChaff. It seems, however, that on larger CNF

formulas this is no longer true: running Hypre on the benchmarks given in the

13

14

SAT’04 competition, which were larger on average than the benchmark set attempted

in [2], we noticed that it is not cost-effective in most cases.

Hypre processes a CNF instance in three interconnected ways:

1. It adds binary clauses using Hyper Resolution [2].

2. It finds failed literals (variables with forced value) and propagates them, and

3. It identifies equivalent variables by a traversal of the binary implications graph

(a graph in which the edges correspond to binary clauses) and performs substi-

tutions accordingly.

Overall we refer to these actions as deriving auxiliary information from the CNF

instance that simplifies its solution later by the SAT solver. One of the major reasons

for the success of Hypre comparing to previous preprocessors like 2-simplify [5] is

that it is more selective in the information that it adds, and take less time to generate.

In this chapter we present HyperBinFast, which is similar to Hypre, but im-

proves it in two dimensions. First, to avoid cases in which preprocessing takes dispro-

portional time, HyperBinFast is implemented as anytime algorithm, which means

that it produces meaningful auxiliary information even when interrupted before ter-

mination. This enables us to control the amount of preprocessing, and in particular,

to allocate a certain percentage of the overall solving time to preprocessing. Second,

HyperBinFast sacrifices some of the preprocessing power in order to terminate

faster. We consider this as an adaptation to the new reality of SAT solvers being so

efficient by themselves.

2.2 Definitions

We begin with several definitions.

Definition 2.2.1 (Binary Implications graph). Given a CNF formula ϕ with a set

of binary clauses B, a Binary Implications Graph is a directed graph G(V,E) such

15

that v ∈ V if and only if v is a literal in ϕ, and e = (u, v) is an edge if and only if B

contains a clause (u, v).

A Binary Implications Graph allows us to follow implications through binary

clauses. Note that for each binary clause (u, v), both (u, v) and (v, u) are edges

in this graph (thus, the total number of edges in the initial graph, before further

processing, is twice the size of B). For this reason we say that Binary Implications

Graphs are symmetric.

Definition 2.2.2 (Binary Transitive Closure of a literal). Given a literal v, a set of

literals denoted by BTC(v) is the Binary Transitive Closure of v if it contains exactly

those literals that are implied by v through the Binary Implications Graph.

Definition 2.2.3 (Failed literal). A literal v is called a Failed Literal if setting its

value to TRUE and applying BCP causes a conflict.

Definition 2.2.4 (Propagation closure of a literal). Given a non-failed literal u, a

set of literals denoted by PC(u) is the Propagation closure of u if it contains exactly

those literals that are implied through BCP by u in the given CNF (not only the

binary clauses).

It is easy to see that BTC(v) ⊆ PC(v) for every literal v, because PC(v) is not

restricted to what can be inferred from binary clauses. Note that v ∈ PC(u) implies

that u → v and hence v → u, but it is not necessarily the case that u ∈ PC(v), due

to the limitations of BCP. For example, in the set of clauses (x∨y), (x∨z), (y∨z∨w),

it holds that x → w and hence w → x, but BCP detects only the first direction. It

disregards w → x because w does not invoke any unit clause. Hence, BCP lacks the

symmetry of Binary Implications Graphs.

Definition 2.2.5 (The HyperBinRes Hyper resolution rule). The HyperBinRes in-

ference rule:
(l1, . . . , ln) (l1, l), . . . , (ln−1, l)

(l, ln)
for n ≥ 2 (2.1)

16

HyperBinRes is a hyper resolution rule (resolution from more than two clauses).

It is possible to compute the HyperBinRes closure (add all possible clauses according

to this rule) in polynomial time, by analyzing the binary sub-theory of the formula,

and invoking BCP.

2.3 Hyper Resolution

Hyper resolution can be thought of as a shortcut to a long sequence of standard

resolution steps, that results only in the last clause in this sequence rather than in

all intermediate results. It allows to retrieve much more information than otherwise

possible by pure binary reasoning, while staying polynomial.

In general, any sequence of implications l1 → . . . → ln on the Binary Implications

Graph that does not end with a failed literal, can potentially lead to hyper resolution

through a standard application of BCP on the given formula (including all clauses).

The following lemma proves this:

Lemma 2.3.1. Given a CNF formula F and a set PC(v) as defined before, there is

a sequence of HyperBinRes derivations for every literal u ∈ PC(v) that proves (v, u).

Proof. By induction on the literals that are propagated with BCP. First, BCP is

seeded by v itself and, of course, v ∈ PC(v). Clause (v, v) is universally true in the

trivial way.

Suppose now that the clause (l1, . . . , ln, u) propagates u and the lemma holds for

all literals propagated before u. It must be that li is false for 1 ≤ i ≤ n. Since all

propagated literals are a result of setting v to true, then it must be that li ∈ PC(v).

We have by induction that there exists a sequence Si of HyperBinRes derivations that

proves (v, li). Now, we use HyperBinRes again to derive

(v, l1), . . . , (v, ln), (l1, . . . , ln, u)

(v, u)
,

and add it to the sequence S1 . . . Sn, which results in (v, u). ut
ut

17

Hyper Resolution can solve the problem of lack of symmetry in BCP. In the

example above, in which BCP cannot detect that w → x, applying Hyper Resolution

on the given clauses produces the new binary clause (x ∨ w). Clearly, now both

w ∈ PC(x) and x ∈ PC(w). In addition, realizing this new clause as a syntactic

primitive allows algorithms that work on Binary Implications Graphs to use the fact

that x → w or w → x. For example, an algorithm that looks for equivalences between

literals searches for cycles in this graph, and this new clause can lead to additional

such cycles.

Each added binary clause (recall that this corresponds to two edges in the Binary

Implications Graph) adds implicants not only to BTC(v) for some v, but also to

PC(v) because of the symmetry discussed above of binary clauses. The goal of

Hypre is to add such clauses until both of these sets are equal, or, in other words:

Goal: Build a Binary Implications Graph such that BTC(v) = PC(v) for

every literal v.

The Hypre algorithm

Hypre is a recursive algorithm, which processes a node v in the Binary Implications

Graph only after returning from processing its children, i.e. in a post-order. It then

performs BCP in order to compute the propagation closure of v unless v is a Failed

Literal. If v is a Failed Literal then a new unit clause (v) is added to the formula, and

unit propagation is applied. Otherwise, the set NewDescendants := PC(v)\BTC(v)

is computed. For each literal u ∈ NewDescendants, a new binary clause (v, u)

is added to the formula and NewDescendants is updated to be NewDescendats \
BTC(u) (this is an optimization, aimed at reducing forward edges, i.e., edges to nodes

to which we already have a path from v). When Hypre leaves v, it is guaranteed

that either v is a Failed Literal or PC(v) = BTC(v).

We call a node v strong if Hypre already concluded that BTC(v) = PC(v) with

respect to the current formula. There is nothing to be done for strong nodes before

the formula changes again. A weak node is a node that is not strong. Note that it

18

is invariantly true that if a node v is weak, then all of its ancestors are also weak.

Hypre begins by marking all nodes as weak, and then gradually processes them and

changes their marking to strong. When a binary clause (v, u) is added as described

above, u and its ancestors have to be marked as weak, which means that Hypre has

to process them again. Note that v should not be marked as weak, since Hypre

currently processes it.

To detect equivalent literals, occasionally Hypre searches for Strongly Connected

Components (SCC) in the graph. It is easy to see that literals in a cycle are equiv-

alent. Each SCC is replaced with a single node (a ‘representative literal’), not only

in the binary clauses, rather in the entire formula. This operation, as well as unit

propagation (when a new unit clause is added), can simplify clauses (shorten them)

which means that Hypre needs to reconsider nodes that were already visited before.

When an n-ary clause (l1, . . . , ln) is shortened to, e.g., (l1, . . . , lk), 2 ≤ k < n, then the

literals l1 . . . lk and all their ancestors are marked as weak, since further processing of

these nodes may lead to more hyper resolutions given the new shortened clause. A

more elaborated justification of this step can be found in [2].

The main computational cost of Hypre is due to the need to perform BCP on

each node at least once, but on average many more times, due to the iterative nature

of the algorithm. It is still far more efficient than previous approaches like 2-simplify

and 2cl simp [5, 11] that stored the full transitive closure of the binary sub-theory

and are therefore incapable of handling large instances.

Hypre also preserves an interesting optimality property: If y ∈ PC(x) ∩ PC(z)

and x
∗→ z (read: there is a path from x to z in the binary Implications Graph), then

Hypre guarantees, by the post-order in which it progresses, that it adds the edge z →
y and not x → y. The former is a stronger implication, because from this implication

it is possible to infer the latter implication through the Binary Implications Graph.

19

2.4 The HyperBinFast algorithm

As stated in the introduction, our algorithm HyperBinFast builds upon and im-

proves Hypre in two dimensions: it is capable of giving useful auxiliary information

even when stopped before termination, and it is more efficient for the price of gen-

erating less information. Our experiments, as shown in Section 2.6, prove that this

shifting of emphasis is worth while: although the SAT solving time after Hypre can

be smaller, the total time is typically larger.

Algorithm 3
HyperBinFast

1: Mark all root vertices as weak;
2: while there are weak roots, unit clauses, or binary cycles do
3: while there are unit clauses or binary cycles do
4: Detect all SCCs and collapse each one of them to a single node;
5: Propagate all unit clauses and simplify all clauses accordingly;
6: For each new binary clause (u, v) mark as weak roots(u) and roots(v);
7: end while
8: Choose a weak root node v;
9: FailedLiteral =FastVisit (v);

10: Undo assignments caused by BinaryWalk and clear bQueue;
11: if FailedLiteral 6= undefined then . FailedLiteral holds a failed literal
12: Add unit clause (FailedLiteral);
13: end if
14: Mark v as strong;
15: end while

Algorithm 3 gives a bird-eye view of HyperBinFast. HyperBinFast iterates

over all root nodes in the Binary Implications Graph (roots(v) denotes the set of

all ancestor roots of v in such a graph). It has two main stages. In the first stage

(lines 4 - 5) it iteratively finds equal literals (by detecting SCCs and unifying their

vertices to a single ‘representing literal’), propagates unit clauses, and simplifies the

clauses in the formula. Simplification in this context corresponds to substituting

literals by their representative literal in all clauses (not only binary), removing literals

that are evaluated to false and removing satisfied clauses. The simplification may

20

result in shortening of some n-ary clauses to binary clauses, which change the Binary

Implications Graph. In line 6 we perform a restricted version of what Hypre does

in such cases: while Hypre marks as weak all ancestor nodes, HyperBinFast only

marks root ancestor nodes. Further, while Hypre invokes this process every time an

n-ary clause is being shortened, HyperBinFast only does so for clauses that become

binary. The reduced overhead due to these changes is clear. In the second stage (line

9), we invoke FastVisit for some weak root node, a procedure that we will describe

next. FastVisit can change the graph as well, so HyperBinFast iterates until

convergence.

Algorithm 4

1: procedure BinaryWalk (Literal t, Antecedent clause C)
2: if value(t)=True then
3: return undefined;
4: end if
5: if value(t)=False then
6: return t; . a failed literal which was marked before
7: end if
8: value(t) ← TRUE;
9: antecedent(var(t)) ← C;

10: Put t on assignment stack;
11: Put t into bQueue;
12: for each binary clause (t, u) in 2-CNF sub-theory do
13: res ← BinaryWalk (u, (t, u));
14: if res 6= undefined then
15: return res;
16: end if
17: end for
18: return undefined;
19: end procedure

Computing the Binary Transitive Closure

Before describing FastVisit, we concentrate on the auxiliary function BinaryWalk

4, which FastVisit calls several times. The goal of BinaryWalk is to mark all

21

literals that are in TBC(v) or return a failed literal, which can be either v itself or

some descendant of v. It also updates a queue, called bQueue with those literals in

TBC(v) for future processing by FastVisit. BinaryWalk performs DFS from a

given literal on the Binary Implications Graph. In each recursive-call, if t is already

set to false (i.e. t is already set to true in the current call to FastVisit), it means

that there is a path in the binary implication graph from t to t, and hence t is a failed

literal. This is a direct consequence of the following lemma:

Lemma 2.4.1. In a DFS-traversal on a Binary Implications Graph from a literal

u that marks all nodes it visits, if when visiting a node t another node t is already

marked, and this is the first time such a ‘collision’ is detected, then t
∗→ t.

Proof. Falsely assume that there is no path t
∗→ t. The fact that traversal from u

leads to marking of both t and t, implies that u
∗→ t and u

∗→ t. By the symmetry

of Binary Implications Graphs, there is also a path t
∗→ u. Since the DFS traversal

visits t before t then it must visit u before leaving t. Moreover, it cannot visit t before

leaving t because otherwise this would contradict our assumption that no such path

exists. This leads to a collision between u and u, before a collision is detected between

t and t, which contradicts our assumption that the latter was detected first. Hence,

t
∗→ t. ut

ut

When BinaryWalk detects such a failed literal it returns t all the way out (due

to lines 14-15) and back to FastVisit and then to HyperBinFast.

The other case is when t does not have a value yet. In this case BinaryWalk

sets it to true and places it in bQueue, which is a queue of literals to be propagated

later on by FastVisit. It also places t in the (global) assignment stack, and stores

for var(t) its antecedent clause (the clause that led to this assignment), both for later

use in FindUIP.

22

From Binary Transitive Closure to Propagation Closure

We now describe FastVisit. Recall that FastVisit is invoked for each root node in

the Binary Implications Graph. FastVisit combines unit propagation with binary

learning based on single assignments, i.e. learning of new clauses by propagating a

single decision at a time. It relies on the simple observation that if u ∈ PC(v) then

v → u. It is too costly to add an edge for every such pair v, u, because this corresponds

to at least computing the transitive closure [2]. Since our stated goal is to form a

binary graph in which PC(v) = BTC(v) for each root node, it is enough to focus on a

vertex u only if u ∈ PC(v) but u 6∈ BTC(v). Further, given such a vertex u, although

adding the edge v → u achieves this goal, we rather find a vertex w, a descendant of v

that also implies u, in the spirit of the First Unique-Implication-Point (UIP) scheme

that is used by most modern SAT solvers. The FindUIP function (see Algorithm

6) called by FastVisit can in fact be seen as a variation of the standard algorithm

for finding first UIPs [9]: unlike the standard usage of such a function in analyzing

conflicts, here there are no decision levels and the clauses are binary. On the other

hand it can receive as input an arbitrary set of assigned literals, and not just a conflict

clause. In contrast to Hypre, which performs unit propagation from each node in

a post order, HyperBinFast only propagates from the roots, and the edges that it

adds depend on the specific DFS run it performs. It therefore cannot guarantee the

optimality property discussed in the end of the previous section. Invoking FindUIP

attempts to compensate on this fact, but it cannot guarantee it.

In line 6 FastVisit starts to process the literals in bQueue. For each literal p

in this queue, it checks all the n-ary clauses (n > 2) watched by p. As usual, each

such clause can be of interest if it is either conflicting or unit. If it is conflicting, then

FastVisit calls FindUIP, which returns the first UIP causing this conflict. This

UIP is a failed literal and is returned to HyperBinFast, which adds its negation

as a unit clause in line 12. If the processed clause is a unit clause, the unassigned

literal, denoted by toLit, is a literal implied by v that is not in BTC(v) (otherwise

it would be marked as true in BinaryWalk). In other words, toLit ∈ UP (v) and

23

Algorithm 5

1: procedure FastVisit (Literal v)
2: res ← BinaryWalk (v, NULL);
3: if res 6= undefined then
4: return res
5: end if
6: while !bQueue.empty() do
7: Literal p ← bQueue.pop front();
8: for each n-ary clause ∈ watched(p) do . n > 2
9: if clause is conflict then

10: Literal fUIP ← FindUIP (clause);
11: return fUIP ;
12: else if clause is unit then
13: Literal toLit ← undefined literal from clause.
14: Literal fromLit ← FindUIP (clause \ {toLit});
15: Add clause (fromLit, toLit)
16: Mark roots(toLit) ∪ roots(fromLit) as weak
17: res ← BinaryWalk(toLit, (fromLit, toLit));
18: if res 6= undefined then
19: return res
20: end if
21: end if
22: end for
23: end while
24: return undefined;
25: end procedure

24

Algorithm 6

1: procedure FindUIP (Literal set S)
Require: implication graph is binary only.
Ensure: res is first UIP of S
2: mark all variables in S;
3: count ← |S|;
4: while count > 1 do
5: v ← latest marked variable in the assignment stack
6: unmark v and decrease count by one.
7: Let (u, L) be antecedent clause of v, s.t. var(L) = v.
8: if var(u) not marked then
9: mark var(u) and increase count by one.

10: end if
11: end while
12: end procedure
13: res ← last marked literal in assignment stack.
14: unmark var(res);
15: return res;

toLit 6∈ BTC(v), which is exactly what we are looking for. At this point we can add

a clause (v, toLit) but rather we call FindUIP, which returns a first UIP denoted by

fromLit. The clause (fromLit, toLit) is stronger than (v, toLit) because the former

also adds the information that tolit → fromlit. Note that this is an unusual use of

this function, because clause is not conflicting. Because the addition of this clause

changes the Binary Implications Graph, we need to mark as weak all the ancestor

nodes of fromLit and of toLit, and to continue with BinaryWalk from toLit. This

in effect continues to compute BTC(v) with the added clause.

2.5 discussion

2.5.1 Differences from Hypre

One of the differences between fast and Hypre can be demonstrated with the follow-

ing example. Suppose we have a direct sub-graph with n vertices, rooted at a node

25

r. Hypre goes recursively over all descendants of r and apply UP at each one of

them and finds all edges that are needed to achieve the stated goal of making the

binary graph represent the propagation closure of r and its descendants. There can

be n propagations, which can many times find only a very small number of edges,

sometimes even zero such edges. Moreover, it can also generate edges which connect

descendants of r between them. HyperBinFast, on the other hand, applies only

one UP at the root r, and finds all literals that should have new edges leading to

them. It will not connect existing descendants of r but concentrate on those which

do not have any path from r to them.

Hypre generally adds more information than HyperBinFast. For example, if

two descendants of v, p and s prove a new literal t, then HyperBinFast finds only

one of them, e.g. it could add p → t. In other words, it finds only one edge for each

UP-implied literal. Also, while FindUIP tries to find the best binary clauses to add,

it does not guarantee optimality. It could add p′ → t, where p′ is some literal between

v and p.

HyperBinFast can be seen as a restricted version of DPLL with non-conflict

learning. Indeed, it “decides” on the root variables and never goes below decision

level 1. Also, it learns a new clause every time an implication by an n-ary clause

occurs. It is possible to change HyperBinFast so it uses decision heuristics other

than just choosing the roots. We leave this option for future research.

2.5.2 Bounding the runtime of HyperBinFast

Given that HyperBinFast is an anytime algorithm, there are various strategies

to decide when to stop it. The most naive method, of course, is to use a time-limit.

While being extremely simple, it still enables us to balance between the preprocessing

and the solving stage, according to the efficiency of the SAT solver. One somewhat

unexpected disadvantage of this method is that it can lead to a nondeterministic

solving process and run time1. The reason for this is the imperfection of measuring

1It is the policy of the SAT competition’s organizers to not accept non-deterministic solvers.

26

time: differences in mili-seconds as measured by the computer clock can stop the pre-

processor in different stages and hence lead to a different instance for the SAT solver.

We therefore developed a heuristic function that decides when to stop the preproces-

sor according to its progress. In particular, it measures the number of deduced unit

clauses and equivalent literals, versus decaying rate of the weak nodes. This way we

do not allow HyperBinFast to work for a long time without producing evidence of

its efficiency. If the weak nodes are not decreased fast enough comparing to what is

expected from the number of reduced variables, HyperBinFast is stopped and its

output is forwarded to the SAT solver. HyperBinFast performs this check every

constant number of invocations of FastVisit. There are numerous possible heuris-

tics to perform this check. Currently our heuristic, which is still under development,

is better or equally good as a fixed time-out of 300 seconds, although in a few in-

stances it is worse (it stops the preprocessing too early). Altogether for the set of

benchmarks reported in the next section the total solving time of the automated and

fixed timeouts are comparable. We believe that with further experiments and tuning

we will be able to make this technique dominant over a fixed timeout strategy.

2.6 Experiments, conclusions and directions for fu-

ture research

We ran HyperBinFast and the original preprocessor Hypre [1] with several SAT

solvers: siege v1 [7], zChaff 2004 and our experimental SAT solver HaifaSat. We do

not present results for the latest version of Siege, siege v4, because we do not know if

this undocumented solver already uses similar learning rules internally. Nevertheless,

we ran siege v4 with both Hypre and HyperBinFast and saw that it is not cost-

effective to run either one of them. The overhead of HyperBinFast, however, was

much smaller than that of Hypre.

Table 2.1 shows experiments on an Intel 2.5Ghz computer with 1GB memory

running Linux. The benchmark set is comprised of 165 industrial instances used in

27

various SAT competitions. In particular, fifo8, bmc2, CheckerInterchange, comb,

f2clk, ip, fvp2, IBM02 and w08 are hard industrial benchmarks from SAT02; hanoi

and hanoi03 participated in SAT02 and SAT03; pipe03 is from SAT03 and 01 rule,

11 rule 2, 22 rule, pipe-sat-1-1, sat02, vis-bmc, vliw unsat 2.0 are from SAT04 [10, 3,

4]. The number in brackets for each benchmark set denotes the number of instances.

The timeout for each instance was set to 3000 seconds. When relevant, the timeout

for the preprocessor itself was set to 300 seconds and the timeout for the SAT solver

was dynamically reduced to 3000 minus the time spent during preprocessing. All

times in the table include preprocessing time when relevant. We count each failure

as 3000 seconds as well.

The table shows that:

1. HyperBinFast helps each of the tested solvers to solve more instances in the

given time bound.

2. When the instance is solvable without HyperBinFast, still HyperBinFast

typically reduces the overall run time.

3. Whenever HyperBinFast does not help, its overhead in time is relatively

small.

4. It is very rare that an instance can be solved without HyperBinFast but

cannot be solved with HyperBinFast.

5. On average, the total gain in time is about 20-25%.

Table 2.2 compares the performance of Hypre and HyperBinFast. Since Hypre

is not implemented as an anytime algorithm, and as a preprocessor it always takes

more time than HyperBinFast (empirically), its only advantage when compared

to HyperBinFast can be that it produces better information that compensates on

the extra preprocessing time. In order to test this possibility we ran Hypre with a

timeout of 3000 seconds and the SAT solver with a timeout of 3000 seconds minus the

28

time spent by Hypre. In other words we compared three configurations for each SAT

solver: plain SAT, SAT solver+Hypre, and SAT solver+HyperBinFast, all with

a global timeout of 3000 seconds per instance. The time policy of HyperBinFast

was left as in the previous experiment. Table 2.2 compares these configurations with

both HaifaSat and Siege v1. The times include both the preprocessing and the SAT

solving run times. The table shows that sometimes HyperBinFast is not ‘strong’

enough (it does not simplify the formula enough), so the SAT solver fails on the

corresponding instance but succeeds after applying Hypre. Nevertheless, the total

time is always smaller with HyperBinFast. Moreover, it can be seen that with

HaifaSat, Hypre is not cost-effective, neither in the total number of failures or the

total run time, while HyperBinFast reduces HaifaSat’s failures by 35% and reduces

its total solving time by 25%.

More data: For the above benchmark, it took HaifaSat 97,909 seconds after Hy-

perBinFast and only 54,567 seconds after Hypre, which indicates that indeed the

quality of the CNF generated by Hypre is better, as expected. But these numbers

may mislead because, recall, the timeouts for the two preprocessors are different,

which, in turn, is because HyperBinFast is an anytime algorithm. In Table 2.3 we

list several benchmarks for which both preprocessors terminated before their respec-

tive timeouts, together with the time it took the preprocessor and then HaifaSat to

solve them. To the extent that these instances are representative, it can be seen that

typically the solving time is longer after HyperBinFast, but together with the SAT

solver time it is more cost effective than Hypre.

Conclusions and directions for future research.

Preprocessing can be cost-effective when combined with modern SAT solvers, as is

evident from our experiments with 165 industrial CNF instances from previous SAT

competitions. We pointed to two directions for future research: develop more efficient

dynamic strategies for determining the amount of time spent for preprocessing, and

make preprocessing decide on the set of variables from which it begins its traversal

29

of the Binary Implications Graph (and not just choose all the root nodes as we do

now). This concept can be generalized to preprocessing in general: while SAT solvers

focus on the semantics of the formula, that is, they attempt to find the ‘important’

variables, preprocessors focus on the syntactical characteristics of the formula, and

are therefore much more sensitive to its size. Hence, attempting to build a semantic

preprocessor seems like a worth while direction to pursue next: the CNF instances

that are hard to solve with modern solvers become larger every year, so becoming

less affected by their sheer size seems like the only way for preprocessors to stay in

the game.

30

SAT solver → HaifaSat Siege v1 zChaff 2004
Preprocessor → — H-B-Fast — H-B-Fast — H-B-Fast
Benchmark: Time F Time F Time F Time F Time F Time F
01 rule(20) 19,172 2 7,379 0 20,730 4 11,408 1 20,779 4 19,196 5
11 rule 2(20) 22,975 6 7,491 0 29,303 8 17,733 2 36,042 10 27,500 8
22 rule(20) 27,597 8 22,226 5 31,839 10 29,044 9 31,279 9 25,377 6
bmc2(6) 1,262 0 81 0 3,335 1 85 0 3,174 1 83 0
CheckerI-C(4) 682 0 902 0 4,114 0 3,541 0 816 0 703 0
comb(3) 4,131 1 4,171 1 5,679 1 6,027 1 6,363 2 6,237 2
f2clk(3) 4,059 1 4,060 1 6,105 2 6,063 2 6,090 2 6,047 2
fifo8(4) 1,833 0 554 0 5,555 1 2,420 0 5,206 1 3,390 1
fvp2(22) 1,995 0 2,117 0 1,860 0 2,009 0 7,078 0 3,830 0
hanoi(5) 131 0 285 0 357 0 1,231 0 2,151 0 2,435 0
hanoi03(4) 427 0 533 0 6,026 2 6,028 2 6,022 2 6,016 2
IBM02(9) 3,876 0 5,070 0 10,442 4* 7,881 0 9,596 3 8,132 1
ip(4) 203 0 172 0 630 0 548 0 1,065 0 3,538 1
pipe03(3) 1,339 0 1,266 0 2,006 0 1,275 0 4,106 1 1,254 0
pipe-sat-1-1(10) 3,310 0 5,147 0 2,445 0 5,249 0 4,568 0 8,950 0
sat02(9) 17,330 4 14,797 4 24,182 7 18,843 5 23,632 7 20,333 6
vis-bmc(8) 13,768 3 10,717 2 10,449 2 6,989 1 18,358 6 13,389 4
vliw unsat 2(8) 19,425 5 19,862 6 16,983 6* 17,891 6* 21,867 7 21,364 6
w08(3) 2,681 0 1,421 0 4,387 1 1,711 0 4,316 1 2,223 0

Total(165) 146,194 30 108,251 19 186,426 49 145,978 29 212,508 56 179,997 44

Table 2.1: Run-times (in seconds) and failures (denoted by ‘F’) for various SAT
solvers with and without HyperBinFast. Times which are smaller by 10% than in
competing configurations with the same SAT solver are bolded. Failures denoted by
* are partially caused by bugs in the SAT solver.

31

SAT solver → HaifaSat Siege v1
Preprocessor → — Hypre H-B-Fast — Hypre H-B-Fast
Benchmark: Time F Time F Time F Time F Time F Time F
01 rule(20) 19,172 2 10,758 1 7,379 0 20,730 4 5,318 0 11,408 1
11 rule 2(20) 22,975 6 21,247 0 7,491 0 29,303 8 20,178 1 17,733 2
22 rule(20) 27,597 8 16,825 2 22,226 5 31,839 10 17,510 3 29,044 9
bmc2(6) 1,262 0 163 0 81 0 3,335 1 156 0 85 0
CheckerI-C(4) 682 0 989 0 902 0 4,114 0 2,492 0 3,541 0
comb(3) 4,131 1 4,056 1 4,171 1 5,679 1 4,439 1 6,027 1
f2clk(3) 4,059 1 3,448 1 4,060 1 6,105 2 5,078 1 6,063 2
fifo8(4) 1,833 0 1,756 0 554 0 5,555 1 1,159 0 2,420 0
fvp2(22) 1,995 0 3,288 0 2,117 0 1,860 0 2,431 0 2,009 0
hanoi(5) 131 0 119 0 285 0 357 0 802 0 1,231 0
hanoi03(4) 427 0 979 0 533 0 6,026 2 6,014 2 6,028 2
IBM02(9) 3,876 0 11,072 3 5,070 0 10,442 4 12,653 3 7,881 0
ip(4) 203 0 365 0 172 0 630 0 349 0 548 0
pipe03(3) 1,339 0 1,809 0 1,266 0 2,006 0 1,822 0 1,275 0
pipe-sat-1-1(10) 3,310 0 27,130 10 5,147 0 2,445 0 30,029 10 5,249 0
sat02(9) 17,330 4 16,669 4 14,797 4 24,182 7 17,662 4 18,843 5
vis-bmc(8) 13,768 3 10,139 2 10,717 2 10,449 2 5,715 0 6,989 1
vliw unsat 2(8) 19,425 5 20,421 6 19,862 6 16,983 6 20,375 6 17,891 6
w08(3) 2,681 0 2,899 0 1,421 0 4,387 1 2,726 0 1,711 0

Total(165) 146,194 30 154,132 30 108,251 19 186,426 49 156,910 31 145,978 29

Table 2.2: Run-times (in seconds) and failures (denoted by ‘F’) for HaifaSat and
Siege v1, without preprocessing and when combined with Hypre and HyperBin-
Fast. All run-times include both the preprocessing and the SAT solving times. Times
which are smaller by 10% than in competing configurations with the same SAT solver
are bolded.

32

Hypre HyperBinFast
Benchmark: Hypre SAT HyperBinFast SAT
01 rule.k95.cnf 377 1679 4 1504
11 rule2.k70.cnf 1387 47 71 285
22 rule.k70.cnf 671 251 51 1410
fifo8 400.cnf 164 1226 12 309
7pipe.cnf 651 258 147 416
ip50.cnf 109 82 6 79
w08 14.cnf 1231 5 267 298

Total: 4590 3548 558 4301

Table 2.3: Few representative instances for which both Hypre and HyperBin-
Fast terminated before their respective (different) timeouts. The SAT times refer to
HaifaSat’s solving time. It can be seen that typically the solving time is longer after
HyperBinFast, but together with the SAT solver time it is more cost effective than
Hypre.

Chapter 3

The CMTF decision heuristic

3.1 Introduction

A SAT solver can be thought of as a search engine based on enumeration of solutions,

but also as a proof engine based on inference through the resolution rule. Tradition-

ally the first view was dominant, hence the emphasis in designing SAT solvers and

explaining their success was on pruning search spaces. Decision heuristics and learn-

ing schemes can all be interpreted as aiming at this goal. Yet the harder and larger

the CNF instances are, pruning alone cannot account for the success of modern SAT

solvers. It is their ability as proof engines that makes them succeed. This distinction

has practical implications, too. For example, for many years decision heuristics gave

higher priority to variables in shorter clauses, and to learning shorter conflict clauses.

The reasoning was that such clauses can potentially prune larger search-spaces. Al-

though this claim is true, all modern decision heuristics (VSIDS [8], VMTF [7], Berk-

min [6]) ignore the length of the clauses, after reaching empirically the conclusion that

there are more important considerations. Ryan experimented in his thesis [7] with

first-UIP and all-UIP learning schemes, and although the latter generate on average

shorter clauses, the former is empirically better. He hypothesized that the learning

scheme should be geared towards resolution rather than for pruning. In this chapter

we extend this approach by looking on clause-learning and the decision heuristic as

33

34

one complete mechanism and refer to a SAT solver as a prover rather than as a search

engine. It turns out, empirically, that when conflict clauses are effective, which is the

case in all real-world instances, this is the right way to go.

Not only that a DPLL-based SAT-solver can be seen as a proof engine, various

strategies, we argue, can be explained through the popular abstraction/refinement

framework, which is very common in verification. The connection between these

two worlds is due to the fact that conflict clauses are derived through a process of

resolution. If a clause c is derived by resolution from a set of clauses c1 . . . cn then

c1 ∧ · · · ∧ cn → c

while the other direction does not hold. As we will show in Section 3.2, we can view

c as an over-approximating abstraction of the resolving clauses c1 . . . cn. Attempting

to satisfy c first, therefore, can be seen as an attempt to satisfy the abstract model

first. And like any abstraction/refinement technique, a successful assignment to c

is one that satisfies the concrete model (the c1 . . . cn clauses) as well. Further, an

unsuccessful assignment leads to a refinement step, or, in our case, to derivation of

new conflict clauses which further constrain the abstract model. According to this

model, Berkmin is only one of many possible strategies to refine the abstract model.

In Section 3.3 we suggest one such alternative clause-based decision heuristic called

Clause-Move-To-Front (CMTF), which attempts to follow the order of the clauses in

the resolve-graph rather than their chronological order in which they were created.

In Section 4 we also show a resolution-based score function for choosing the variable

from the selected clause and a similar function for choosing the sign. In Section 4.3

we report experimental results on hundreds of industrial benchmarks that prove the

advantage of our approach.

3.2 Background

The explanation of our methods and the analysis of various heuristics later on will

require some basic definitions.

35

The Abstraction-refinement model: from structures to formulas

The classic use of the terms abstraction and refinement in the context of model-

checking is the following. Let M be a Kripke structure, L(M) the set of propositions

labeling its states and L(M) the language defined by M . A model M̂ is an over-

approximating abstraction of M such that L(M̂) ⊆ L(M), if for every property ϕ

M̂ |= ϕ → M |= ϕ. (3.1)

Equivalently, for every string s,

s ∈ L(M) → s ∈ L(M̂). (3.2)

The inclusion relation is defined with respect to the alphabet of the language, e.g.,

s ∈ L(M) is defined with respect to the projection of s to L(M).

M1 is a refinement of M̂ with respect to M , if for every string s,

s ∈ L(M) → s ∈ L(M1), (3.3)

and

s ∈ L(M1) → s ∈ L(M̂). (3.4)

Abstraction-Refinement is a process in which we find increasingly accurate models

(closer to the concrete model M) until proving the property or, in the worst case,

reaching the original model M .

In this chapter we wish to bridge between the terminology and notations of models

and strings on one hand, and the terminology and notations of formulas and satisfying

assignments on the other hand. Thus, consider now formulas rather than models.

For two formulas f and f̂ such that var(f̂) ⊆ var(f), we can restate an implication

of the form

f → f̂ , (3.5)

by saying that for every assignment α,

α |= f → α |= f̂ . (3.6)

36

As usual satisfaction is defined with respect to a projection of α to the variables of

the formula.

Due to the resemblance to Formula 3.2, we now say that f̂ is a conservative

abstraction (over-approximation) of f .

Further, for a formula f1 such that var(f̂) ⊆ var(f1) ⊆ var(f), we can restate

f → f̂1 (3.7)

and

f̂1 → f̂ (3.8)

by saying that for every assignment α,

α |= f → α |= f1, (3.9)

and

α |= f1 → α |= f̂ . (3.10)

Once again, due to the resemblance of Formulas 3.3 and 3.4 to Formulas 3.9 and 3.10,

we now say that f1 refines f̂ with respect to f .

Continuing with this terminology, abstraction-refinement for formulas is an itera-

tive process, in which one begins with some abstract formula f̂ of a concrete formula

f and gradually refines it through a series of formulas f̂1, . . . , f̂n until proving or

disproving the desired property of f . Here again, in the worst case f̂n = f . Thus,

there is a parallelism between abstraction refinement of structures, and the process

described here for formulas.

3.2.1 Conflict clauses and resolution

The well-known binary resolution rule is:

a1 ∨ . . . ∨ an ∨ β b1 ∨ . . . ∨ bm ∨ (¬β)

a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm

where a1, . . . an, b1, . . . bm, β are literals. β is known as the resolution variable of this

derivation. Clauses (a1, . . . , an, β) and (b1, . . . , bn, β) are called resolving clauses and

37

clause (a1, . . . , an, b1, . . . bn) is a resolvent. It follows by the soundness of the rule, that

the resolvent is always implied by its resolving clauses and, using the terminology of

§3.2, can be thought of as an abstraction of the clauses that participated in the

derivation.

Algorithm 7 The First-UIP resolution algorithm

procedure AnalyzeConflict(Clause: conflict)
2: currentClause ← conflict;

ResolveNum ← 0;
4: NewClause ← ∅;

repeat
6: for each literal lit ∈ currentClause do

v ← var(lit);
8: if v is not marked then

Mark v;
10: if dlevel(v) = CurrentLevel then

++ ResolveNum;
12: else

NewClause ← NewClause ∪ {lit};
14: end if

end if
16: end for

u ← last marked literal on the assignment stack;
18: Unmark var(u);

−−ResolveNum;
20: ResolveCl ← Antecedent(u);

currentClause ← ResolveCl \ {u};
22: until ResolveNum = 0;

Unmark literals in NewClause;
24: NewClause ← NewClause ∪ {u};

Add NewClause to the clause database;
26: end procedure

We now show why the process of generating conflict clauses indeed can be seen as a

sequence of resolution steps. Algorithm 7 shows a simple and efficient implementation

of the First-UIP resolution scheme, which is implemented in most competitive SAT

solvers, including our solver HaifaSat. We will refer to this algorithm simply as

38

the resolution algorithm. First, a conflicting clause is set to be the current resolved

clause. The main loop processes literals in the current clause. All literals from the

previous decision levels are gathered into NewClause at line 13 and marked. Literals

from the current level are marked in order to resolve on them further (i.e., make

them the resolution variables). In every iteration a new marked (yet unprocessed)

literal u is chosen in line 17. This literal must be from the current decision level.

The algorithm resolves on u by setting currentClause to be the antecedent clause

without u.

ResolveNum counts the number of the marked literals from the current decision

level that still have to be processed. When ResolveNum = 0 at line 22, then u

is the FirstUIP or the asserted literal. The negation of this literal is added to the

NewClause causing u’s value to be flipped after backtracking. For more details on

the resolution algorithm see [8, 7].

We will use the following definition in order to denote the initial state of NewClause:

Definition 3.2.1 (Asserting clause). Suppose a new conflict clause C was created

in Alg. 7 with asserted literal u. Suppose also that the solver backtracks after the

conflict to level dl. Then C becomes an asserting clause when it implies u for the

first time at level dl, and stops being asserting when the solver backtracks from dl.

It follows from definition that every conflict clause becomes asserting exactly once.

Example 3. Consider the following partial implication graph and set of clauses.

Denote by Resolve(s, t, x) the binary resolution of clauses s and t with the resolution

variable x. Then the conflict clause c5 : (x10, x2,¬x4) is computed through a series

of binary resolutions, starting from the conflicting clause c4, and going backwards on

the implication graph until all literals in the conflict clause are either from previous

decision levels or the firstUIP .

Resolve(Resolve(Resolve(c4, c3, x7)), c2, x6), c1, x5) = (x10, x2,¬x4)

Algorithm 7 implicitly performs these resolution steps while computing the conflict

clause c5. ut

39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)
...

...

¬x2@3

c1

c1 c3

c3c2

c2

¬x10@3

x4@5

x5@5

¬x7@5

Conflict

c4x6@5

c4

Figure 3.1: A partial implication graph and set of clauses demonstrate Analyze-
Conflict. x4 is the FirstUIP , and complx4 is the asserted literal.

NewClause is derived through a series of binary resolutions that can be seen as

a tree: every time the solver reaches line 21, an intermediate clause (consisting of all

marked literals) is resolved with the antecedent clause of the chosen resolution vari-

able. We can treat this process as one atomic action of Hyper-resolution (resolution

between more than two clauses). Since each conflict clause is derived from a set of

other clauses, we can keep track of this process with a Resolve-Graph. Here we define

a variation of the well-known resolve-graph that distinguished between two types of

resolutions:

Definition 3.2.2 (Colored Resolve Graph). A Resolve Graph is a directed acyclic

graph where each node corresponds to a clause, and there is an edge (u, v) if and only

if v participated in the Hyper-resolution of u as a CurrentClause at line 6 of Alg 7.

The color of the edge (u, v) is defined to be blue if v was an asserting (conflict)

clause during the resolution and red otherwise.

In this graph, edges come from the resolvent to its resolving clauses. The leafs

of the graph correspond to the original clauses in the formula. Notice that since a

conflict at level dl necessarily implies that the solver backtracks from dl and unassigns

all the variables that were resolved on, any asserting clause which participated in the

40

c1

c3

c2 c5

c4

Figure 3.2: A resolve-graph corresponding to the implication graph in Figure 3.1

c1 = (¬x4 ∨ x2 ∨ x5)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)
...

...

¬x2@3

c1

c1

x4@5

x5@5

Figure 3.3: A partial implication graph corresponding to c1, c3, c4 and the decision
x4@5.

resolution will stop being asserting. Therefore for any conflict clause there can be at

most one incoming blue edge. The original clauses do not have outgoing edges, and

only red incoming edges.

Example 4. Consider once again the implication graph in Figure 3.1. Since c1 . . . c4

participate in the resolution of c5, the corresponding resolve-graph is as appears in

Figure 3.2. Assuming that c1 . . . c4 are original clauses, then all the edges in this

graph are red, because original clauses cannot be asserting.

Now consider a similar case in which c2 is not an original clause, and at the

time when x4@5 is assigned it does not yet exist. The implication graph at this stage

appears in Figure 3.3. Now assume that due to further decisions and implications

in deeper decision levels a conflict is encountered, the solver creates the new conflict

clause c2, backtracks to decision level 5 and asserts x6@5. This, in turn, completes

the implication graph to the way it looks in Figure 3.1. But now, since c2 asserts x6,

41

c1 c100 c110

Berkmin direction

c50

(a)

c20 c13 c37

c101
.....

c51

c102

c110

..... c105

c104c103
.

(b)

Figure 3.4: Berkmin’s decision heuristic can be thought of as an abstraction-
refinement process, where a range of the conflict clauses from the right end until
ci represents an abstract model of the clauses on the left of ci. (a) Berkmin clauses
stack: after encountering a conflict, the new resolved clauses are added on the right
end. By the time the solver returns to c50, it will have a partial assignment that
satisfies a refined model, i.e. the clauses c51 . . . c110 (b) The resolve sub-graph of some
newly created clauses. Grey thick edges denote the blue edges in the graph.

we consider its edge on the resolve-graph from c5 as blue. ut

The distinction between the two type of edges is important because a blue edge

(u, v) indicates that the solver had to create u in order to later create v1.

3.2.2 The Berkmin Decision heuristic

We have already described the Berkmin Decision heuristic in our introduction. Let

see this heuristic in more detail.

Berkmin [6] pushes every new conflict clause to a stack, and makes a decision by

choosing an unassigned variable from the last unsatisfied conflict clause in this stack

(if there is more than one such variable, it uses the VSIDS score system). If all the

conflict clauses are satisfied, it continues with a different heuristic.

In Fig. 3.4(a) we show a sketch of the progress of Berkmin, which is helpful

in understanding why this process can be seen as abstraction-refinement. Clauses

c1, . . . , c100 are conflict clauses ordered by their creation time (c1 is first). Berkmin

tries to satisfy these clauses from last to first, i.e. from right to left. Suppose that

all clauses c51 . . . c100 are already satisfied, and now Berkmin focuses on c50. We refer

to S = {c51, . . . , c100} as our current abstract formula of the original formula ϕ (it is

1By this we do not mean that this is the only way to create v.

42

abstract because each of the clauses in S is derived by a resolution chain from the

clauses of ϕ). Clauses in S must be satisfied, since the decision heuristic reached c50.

Berkmin now makes a decision on a variable from c50 which leads to a conflict and

learning of a new clause. The decision heuristic backtracks to the clauses on the end

of the list, until finally, through possibly additional iterations of conflicts and added

clauses, it reaches c50 again while all the clauses to its right are satisfied. Denote by

S ′ the clauses to the right of c50 at this point, e.g. S ′ = {c51 . . . , c110}. Clearly S ⊆ S ′

and S ′ is an abstraction of ϕ. We can therefore say that S ′ is a refinement of S with

respect to ϕ.

This view of the process possibly explains why a strategy of giving absolute priority

to variables in a specific clause is empirically better than previous approaches like

VSIDS that used only a score function.

Fig. 3.4(a) shows a ‘linear’ view of the conflict clauses in the order that they

are added, which is also the order in which they are considered by Berkmin. The

Berkmin heuristic never tries to satisfy a clause before satisfying its resolvents and

thus mimics a gradual process of refinement.

A different view of conflict clauses considers their partial order in the Resolve

Graph. Fig.3.4(b) presents a possible Resolve sub-Graph corresponding to the same

set of clauses. After the conflicts, Berkmin starts from satisfying c110. c102 is a

resolving clause that can potentially refine the initial model, however Berkmin first

passes through c105, c104, c103 to which c110 is not connected at all. Therefore Berkmin

is dispersed trying to refine several abstractions. Such unfocused behavior can lead to

longer proofs. This problem is exactly what our decision heuristic CMTF attempts

to solve, as we soon show.

Our SAT solver HaifaSat makes a decision in three steps: it chooses an unsatis-

fied clause according to the CMTF heuristic, it then chooses an unassigned variables

from this clause, and finally gives it a value. The next sections describe in detail these

decision steps.

43

1: S = roots(ResolveGraph); . The resolvent clauses that did not resolve other
clauses.

2: Choose an unsatisfied clause (vertex) v ∈ S;
3: Process v; . Processing a clause, among other things, satisfies it.
4: S = S ∪ children(v);
5: Goto 2

Figure 3.5: A Resolve-Graph Based decision heuristic

3.3 The Clause-Move-To-Front (CMTF) decision

heuristic

The description above of Berkmin’s decision heuristic, and the alternative view of the

conflict clauses as being part of a resolve-graph, hints towards the process which is

described in Figure 3.5. In this general scheme a clause is processed only if at least

one of its abstractions (its resolvent clauses) has already been processed. It is easy

to see that Berkmin is an instantiation of the scheme. In fact, Berkmin is more strict

and processes a clause only if all its abstractions are satisfied.

CMTF is a method that instantiates this scheme in a different way. It causes the

decision heuristic to be more focused on the current refinement path, i.e. to satisfy

children of the currently satisfied clause s. It works as follows:

• All the conflict clauses are stored in a list.

• During the resolution in Alg 7, a bounded number of resolving conflict clauses

which are processed at line 6 are moved to the front (front corresponds to the

right end of Fig 3.4(a)). The newly created clause NewClause is also added to

the list (can be done at line 25).

• Clauses are processed from right to left in the list, while ignoring satisfied

clauses. If all the conflict clauses are satisfied then the original VMTF strategy

(from Siege [7]) is applied.

The idea of this strategy is to keep clauses that participate in resolution adjacent

44

to their resolvents (at least until the next time they participate in a resolution, a case

in which they can be moved to a new location).

CMTF shows a big improvement on many industrial problems comparing to the

Berkmin heuristic. Both are specific instantiation of the scheme showed above. The

advantages of CMTF is its simplicity and the fact that the explicit storage of the

resolve-graph is not required. However, it seems that there is still room for future

research on how to use the general scheme. For example, classic AI search methods

like best-first-search can be used to decide on the exploration order of nodes in S at

line 2. It may happen that partial or full storage of the resolve-graph will improve

the performance.

Chapter 4

Resolution-based-scoring

4.1 Introduction and some definitions

In the previous chapter we showed how HaifaSat decides which clause to satisfy first.

Given a clause c there can still be several ways to satisfy it. HaifaSat computes

dynamically an activity score for each variable and then chooses the variable with the

maximal score. Then another sign score is used to determine its Boolean value.

We define a scoring heuristic based solely on the resolution algorithm (Algorithm

7). The idea, intuitively, is to give higher weights to variables that were frequently

resolved on recently, while distinguishing between resolutions that were necessary

for the progress of the solver, and those that were made due to the imperfection of

the decision heuristic. We will need several definitions and lemmas to explain this

heuristic more precisely.

Suppose that every time the solver makes a decision or processes a conflict it writes

into a log the event ai = (dl, e) where dl is the decision level where the event occurred

and e ∈ Conflicts∪Decisions is either a conflict event or a decision event. The global

index i is incremented every time the event happens. We call the sequence {ai}N
1 the

flat log of the solver’s run. We will denote by DL(ai) the decision level of the event.

We consider only the case in which dl > 0. All conflict events other, potentially, than

45

46

the last one in an unsatisfiable instance are included by this definition1. It must hold

that for any conflict c there exists a decision d at the same level as c. In such a case,

we say that d is refuted by c. More formally:

Definition 4.1.1 (Refuted decision by a conflict). Let aj = (dl, c) be a conflict event.

Let ak = (dl, d), k < j, be the last decision event with decision level dl preceding aj

(note that for i ∈ [k + 1, j − 1] : DL(ai) > dl). We say that d is the refuted decision

of the conflict c, and write D(aj) = ak.

Note that because of non-chronological backtracking the opposite direction does

not hold: there are decisions that do not have conflicts on their levels that refute

them.

For any conflict event aj, the range (D(aj), aj) defines a set of events that hap-

pened after D(aj) and led to the conflicts that were resolved into the conflict aj

which, in turn, refuted D(aj). These events necessarily occurred on levels deeper

than DL(D(aj)).

Definition 4.1.2 (Refutation Sequence and sub-tree events). Let aj be a conflict

event with ai = D(aj). Then the (possibly empty) sequence of events ai+1, . . . , aj−1 is

called the Refutation Sequence of aj and denoted by RS(aj). Any event ak ∈ RS(aj)

is called a sub-tree event of both aj and ai.

Example 5. Consider the conflict event aj := (27, c110) in Fig. 4.1. For every event

ai that follows decision D(aj) = (27, d202) until (but not including) the conflict c110

it holds that ai ∈ RS(aj). Note that the solver can backtrack from deeper levels to

level 27 as a result of conflict events. However no event between ai and aj occurred

on levels smaller or equal to 27. ut

The number of resolutions for each variable is bounded from above by the number

of sub-tree conflicts that were resolved into the current conflict. However, not all

sub-tree conflict clauses resolve into the current refuting conflict. Some of them could

1A conflict that occurs at level 0 proves that the instance is unsatisfiable.

47

d202 = x30@27

implications

events

c101

implications

x43 −x78

implications

c110

c109

events

Figure 4.1: A possible scenario for the flow of the solver’s run. After deciding x30 at
decision level 27 the solver iteratively goes down to deeper decision levels and returns
twice to level 27 with new asserted literals x43 and x78. The latter causes a conflict at
level 27 and the solver backtracks to a higher decision level. Implications in the boxes
denote assignments that are done during BCP after implying decision or asserting
literal.

be caused by the imperfection of the decision heuristic and are therefore not used at

this point of the search. Our goal is to build a scoring system that is based solely

on those conflicts that contribute to the resolution of the current conflict clause. In

other words, we compute for each variable an activity score which reflects the number

of times it was resolved-on in the process of generating the relevant portion of the

refutation sequences of recent conflicts. We hypothesize that this criterion for activity

leads to faster solution times.

The information in the colored resolve-graph can enable us to compute such a

score.

Definition 4.1.3 (Asserting set). Let G = (V, E) be a colored resolve-graph, and let

v ∈ V be a conflict clause. The Asserting set B(v) ⊂ V of v is the subset of (conflict)

clauses that v has a blue path to them in G.

The following theorem relates between a resolve-graph and sub-tree conflicts.

Theorem 4.1.1. Let ev be the conflict event that created the conflict clause v. Then

the asserting set of v is contained in the refutation sequence of ev, i.e. B(v) ⊆
RS(ev). In particular, since conflict events in B(v) participate in the resolution of v by

definition, they necessarily correspond to those sub-tree conflicts of ev that participate

in the resolution of v.

48

Note that B(v) does not necessarily include all the sub-tree conflicts that resolve

into v, since the theorem guarantees containment in only one direction. Nevertheless,

our heuristic is based on this theorem: it computes the size of the asserting set for

each conflict.

In order to prove this theorem we will use the following lemmas.

Lemma 4.1.2. Denote by stack(aj) the stack of implied literals at the decision level

DL(aj), where aj is a decision event. Suppose that a literal t is asserted and entered

into stack(aj), where aj is a decision event. Further, suppose that t is asserted by

the conflict clause cl (cl is thus asserting at this point) which was created at event ai.

Then it holds that j < i, i.e cl was created after the decision event aj occurred.

Proof. Right after the creation of cl, the DPLL algorithm backtracks to some level

dl′ with a decision event ak = (dl′, d) and implies its asserted literal. It holds that

k < i, because the solver backtracks to a decision level which already exists when cl is

created. By the definition of an asserting clause, cl can be asserting exactly once, and

since cl is asserting on level dl′, it will never be asserting after the DPLL algorithm

will backtrack from dl′. Therefore it must hold that ak = aj (k = j) and dl′ = dl. ut
ut

Lemma 4.1.3 (Transitivity of RS). Suppose that ai, aj are conflict events s.t. ai ∈
RS(aj). Then, for any event ak ∈ RS(ai) it follows that ak ∈ RS(aj).

Proof. First, we will prove that D(ai) ∈ RS(aj), or, in other words, that D(ai)

occurred between D(aj) and aj. Clearly, D(ai) occurred before ai and, therefore,

before aj. Now, falsely assume that D(ai) occurred before D(aj). Then the order

of events is D(ai), D(aj), ai. However, this can not happen since D(aj) occurred on

shallower (smaller) level than ai and this contradicts the fact that all events between

D(ai) and ai occur on the deeper levels. Therefore, both D(ai) and ai occurred

between D(aj) and aj. Now, since ak happened between D(ai) and ai it also happened

between D(aj) and aj and from this it holds that ak ∈ RS(aj). ut
ut

49

Using this lemma we can now prove Theorem 4.1.1.

Proof. We need to show that any blue descendant of v is in RS(ev). By Lemma 4.1.3

it is enough to show it for the immediate blue descendants, since by transitivity of RS

it then follows that for any blue descendant. Now, suppose that there exists a blue

edge (v, u) in the resolve-graph. By the definition a blue edge, clause u was asserting

during the resolution of v. On the one hand, u was resolved during the creation of

v and, therefore, was created before v. On the other hand, by Lemma 4.1.2 it was

created after D(ev). Therefore, eu ∈ RS(ev). ut
ut

Definition 4.1.4 (Sub-tree weight of the conflict). Given a resolve-graph G(V, E)

we define for each clause v a state variable W (v):

W (v) =





∑
(v,u)∈E

W (u) + 1 v is asserting

0 otherwise

The function W (v) is well-defined, since the resolve-graph is acyclic. Moreover,

since the blue sub-graph rooted at v forms a tree (remember that any node has at

most one incoming blue edge), W (v) equals to |B(v)|+ 1. Our recursive definition of

W (v) gives us a simple and convenient way to compute it as part of the resolution

algorithm. Algorithm 8 is the same as Algorithm 7, with the addition of several lines:

in line 5 we add W ← 1, at line 24 we add W+=W (ResolveCl) and, finally, we

set W (NewClause) ← W at line 29. We need to guarantee that W (C) is non-zero

only when C is an asserting clause. Therefore, for any antecedent clause C, when its

implied variable is unassigned we set W (C) ← 0.

4.2 Computing the scores of a variable

Given the earlier definitions, it is now left to show how activity score and sign score

are actually computed, given that we do not have the resolve-graph in memory. For

each variable v we keep two fields: activity(v) and sign score(v). At the beginning

50

of the run activity is initialized to max{lit num(v), lit num(v)} and sign score to

lit num(v) − lit num(v). Alg. 8 shows the extended version of the resolution algo-

rithm which computes the weights of the clauses and updates the scores. Recall that

any clause weight is reset to zero when its implied variable is unassigned, so that

any clause weight is contributed at most once. In order to give a priority to recent

resolutions we occasionally divide both activities and sign scores by 2.

Our decision heuristic chooses a variable from the given clause with a biggest

activity and then chooses its value according to the sign score: true for the positive

values and false for the negative values of the sign score.

4.3 Experiments

Table 4.2 shows experiments on an Intel 2.5Ghz computer with 1GB memory run-

ning Linux, sorted according to the winning strategy, which is CMTF combined

with the RBS scoring technique. The benchmark set is comprised of 165 industrial

instances used in various SAT competitions. In particular, fifo8, bmc2, Checker-

Interchange, comb, f2clk, ip, fvp2, IBM02 and w08 are hard industrial benchmarks

from SAT02; hanoi and hanoi03 participated in SAT02 and SAT03; pipe03 is from

SAT03 and 01 rule, 11 rule 2, 22 rule, pipe-sat-1-1, sat02, vis-bmc, vliw unsat 2.0

are from SAT04 [10, 3, 4]. The timeout for each instance was set to 3000 seconds. If

an instance could not be solved in this time limit, 3000 sec. were added as its solving

time. All configurations are implemented on top of HaifaSat, which guarantees that

the figures faithfully represent the quality of the various heuristics, as far as these

benchmarks are representative. The results show that using CMTF instead of Berk-

min’s heuristic for choosing a clause leads to an average reduction of 10% in run time

and 12-25% in the number of fails (depending on the score heuristic). It also shows

a 23% reduction in run time when using RBS rather than VSIDS as a score system,

and a corresponding 20-30% reduction in the number of fails.

51

Algorithm 8 First-UIP learning scheme, including scoring

procedure AnalyzeConflict(Clause: conflict)
2: currentClause ← conflict;

ResolveNum ← 0;
4: NewClause ← ∅;

wght ← 1;
6: repeat

for each literal lit ∈ currentClause do
8: v ← var(lit);

if v is not marked then
10: Mark v;

if dlevel(v) = CurrentLevel then
12: ++ ResolveNum;

else
14: NewClause ← NewClause ∪ {lit};

end if
16: end if

end for
18: u ← last marked literal on the assignment stack;

Unmark var(u);
20: activity(var(u)) += wght;

sign score(var(u)) −= wght · sign(u);
22: −−ResolveNum;

ResolveCl ← Antecedent(u);
24: wght+= W(ResolveCl);

currentClause ← ResolveCl \ {u};
26: until ResolveNum = 0;

Unmark literals in NewClause;
28: NewClause ← NewClause ∪ {u};

W(NewClause) ← wght ;
30: Add NewClause to the clause database;

end procedure

52

berkmin+rbs berkmin+vsids cmtf+rbs cmtf+vsids
Benchmark instances time fails time fails time fails time fails
hanoi 5 389.18 0 530.62 0 130.72 0 74.55 0
ip 4 191.02 0 395.52 0 203.24 0 324.27 0
hanoi03 4 1548.25 0 1342.1 0 426.87 0 386.28 0
CheckerI-C 4 1368.25 0 3323.16 0 681.56 0 3457.78 0
bmc2 6 1731.96 0 1030.9 0 1261.97 0 1006.94 0
pipe03 3 845.97 0 6459.62 2 1339.29 0 6160.12 1
fifo8 4 1877.57 0 3944.31 0 1832.65 0 3382.61 0
fvp2 22 1385.64 0 8638.63 1 1995.17 0 11233.7 3
w08 3 2548.62 0 5347.62 1 2680.96 0 4453.28 0
pipe-sat-1-1 10 1743.23 0 3881.49 0 3310.41 0 6053.84 0
IBM02 9 7083.55 1 9710.52 1 3875.64 0 7163.95 0
f2clk 3 4389.04 1 5135.25 1 4058.62 1 4538.15 1
comb 3 3915.15 1 3681.45 1 4131.05 1 4034.53 1
vis-bmc 8 15284.45 3 7905.9 1 13767.52 3 10119.34 2
sat02 9 17518.09 4 22785.77 5 17329.64 4 21262.25 4
01 rule 20 22742.11 4 33642.33 9 19171.5 2 23689.37 5
vliw unsat 2.0 8 16600.67 4 24003.62 8 19425.41 5 22756.03 7
11 rule 2 20 31699.69 8 34006.97 10 22974.7 6 28358.05 6
22 rule 20 28844.07 8 33201.87 10 27596.78 8 30669.91 8

Total: 165 161706.5 34 208967.7 50 146193.7 30 189125 38

Figure 4.2: A comparison of various configurations, showing separately the advantage
of CMTF, the heuristic for choosing the next clause from which the decided variables
will be chosen, and RBS, the heuristic for choosing the variable from this clause and
its sign.

53

4.4 Summary of chapters 3 and 4

We presented an abstraction/refinement model for analyzing and developing SAT de-

cision heuristics. Satisfying a conflict clause before satisfying the clauses from which

it was resolved, can be seen according to our model as satisfying an abstract model

before satisfying a more concrete version of it. Our Clause-Move-To-Front decision

heuristic, according to this model, attempts to satisfy clauses in an order associated

with the resolve-graph. CMTF does not require to maintain the resolve-graph in

memory, however: it only exploits the connection between each conflict clause and

its immediate neighbors on this graph. Perhaps future heuristics based on this graph

will find a way to improve the balance between the memory consumption imposed

by saving this graph and the quality of the decision order. We also presented a

heuristic for choosing the next variable and sign from the clause chosen by CMTF.

Our Resolution-Based-Scoring heuristic scores variables according to their involve-

ment (‘activity’) in refuting recent decisions. Our experiments show that CMTF and

RBS either separately or combined are better than Berkmin and the VSIDS decision

heuristics.

Bibliography

[1] http://www.cs.toronto.edu/∼fbacchus.

[2] F. Bacchus and J. Winter. Effective preprocessing with hyper-resolution and

equality reduction. In SAT 2003, volume 2919 of Lect. Notes in Comp. Sci.,

pages 341–355, 2003.

[3] D. Le Berre and L. Simon. The essentials of the sat’03 competition. . In editor

A. Tacchella E. Giunchiglia, editor, Sixth International Conference on Theory

and Applications of Satisfiability Testing (SAT2003), volume 2919 of LNAI, pages

452–467. Springer-Verlag, 2003.

[4] Daniel Le Berre and Laurent Simon. Fifty-five solvers in vancouver: The sat

2004 competition. In SAT (Selected Papers, pages 321–344, 2004.

[5] Ronen I. Brafman. A simplifier for propositional formulas with many binary

clauses. In Proceedings of the International Joint Conference on Artifical Intel-

ligence, 2001.

[6] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Design,

Automation, and Test in Europe (DATE ’02), pages 142–149, March 2002.

[7] L.Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis,

Simon Fraser University, 2004.

54

55

[8] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering

an efficient SAT solver. In Proc. Design Automation Conference (DAC’01), 2001.

[9] J.P.M. Silva and K.A. Sakallah. GRASP - a new search algorithm for satisfia-

bility. Technical Report TR-CSE-292996, Univerisity of Michigen, 1996.

[10] L. Simon, D. Le Berre, and E. Hirsch. The sat2002 competition. Accepted for

publication in Annals of Mathematics and Artificial Intelligence (AMAI), 43:343–

378, 2005.

[11] Allen Van Gelder and Yumi K. Tsuji. Satisfiability Testing with More Reasoning

and Less Guessing.

[12] R. Williams, C. Gomes, and Selman. Backdoors to typical case complexity.

IJCAI03, 2003.

 VI

ן יש לכוון את הפותר לפתור פסוקית ולכ, לפתור או להפריך נוסחה אבסטרקטיתקל
אנו , בהתאם. Berkminבניגוד להיוריסטיקת , קונפליקט לפני שפותרים את הבנים שלה

ת שייכ שCMTF – Clause Move To Front בשםחדשה יוריסטיקה המגדירים
 .Berkmin מ ,באופן אמפירי, יותרפועלת טובואותה סכמה ל

אשר זכה במקום השלישי , HaifaSatש בשם חדSATתוצאות המחקר מומשו בפותר
 .2005 לשנת SATבתחרות הבין לאומית לפותרי

 V

ליטרלים שקולים בנוסחה צא וומ ידי פישוט של הנוסחהעל נןאם ישאונריות פסוקיות
 .גרף הבינארי מעגלים בתעל ידי מציא

 : כיווניםהשיפור שלנו התרכז בשני

כך אנחנו מפעילים . בלבדלשורשים של הגרף הבינארימוגבלת BCP-הפעלה של הה .א
נתן יאבל בה,)כתלות של מספר שורשים בגרף(יקרה מבחינת זמן פחות פעולה שיחסית

יותר חזקות מאשר באלגוריתם) ואחר כך קשתות (גרירותזה אנחנו יודעים ללמוד
 .מקוריה

יש לו תרומה גם אם הוא מופסק שכלומר כאלגוריתם , any-timeממומש כ ם האלגורית .ב
מנחשת מתי יעילותו יורדת ר שאיוריסטיקה האלגוריתם משולב עם ה. לפני סוף הריצה

טרתנו העיקרית היא לפתור את הנוסחה ולא לפשט נזכיר שמ. ביחס לזמן שהושקע
ולכן יש חשיבות לעצור את תהליך העיבוד המקדים כשדבר זה פוגע במהירות , אותה

 .הכוללת של האלגוריתם

יוריסטיקה של שיטת החלטה בתוך ההאלגוריתם השני הוא :ת החלטהקהיוריסטי. 2
מודל ססת על וב מהמוצעתיוריסטיקה הה. SAT – DPLLהאלגוריתם של פתירת

האופן בו אשר בעזרתו ניתן להבין טוב יותר את , תיאורטי מסוים אשר אנו מציעים
DPLL מצליח לפתור בעיות SATאמיתיות .

לנוסחא בלתי ספיקה ניתן . הלן מספר מושגים הדרושים על מנת להבין את האלגוריתםל

רזולוציה היא מערכת .)לוגי" שקר(" המובילות לפסוקית ריקה רזולוציותלמצוא סדרת
 :הנקרא כלל הרזולוציה, הסקה עם כלל היסק יחיד

)(
)()(

BA
xBxA

∨
¬∨∧∨

גרף ניתן לבנות , DPLL העובד בשיטת SAT בלתי ספיקה לפותר CNFבהינתן נוסחת

צמתים ו, בגרף זה צמתי המקור מייצגים פסוקיות מהנוסחא. המתאים לנוסחארזולוציות
 נובעות פסוקיות אלה. נלמדו בזמן ריצת הפותרר ש אקונפליקטיות פסוקפנימיים מייצגים

צומת מייצגות את מן ה יוצאותהקשתות ה. מפסוקיות מקוריות לפי כלל הרזולוציה
הקשתות אליהם ובעת מהפסוקיות המתאימות לצמתים העובדה שהפסוקית של הצומת נ

פסוקית ג את הלגרף יש שורש יחיד המייצ, במקרה של נוסחה לא ספיקה .נכנסות
 .יכולים להיות מספר שורשים המייצגים פסוקיות קונפליקט כלשהן, אחרת. ריקהה

. ציות כיחס סדר חלקי בין פסוקיות בנוסחהרזולוהניתן לראות את גרף , בכל רגע נתון
הן פסוקיות מקור שמגדירות את הנוסחה במדויק בסדר אחרונות כאשר פסוקיות

זית של הגרף ומייצגות אבסטרקציה של הנוסחה הן החבסדרקודמות ופסוקיות
 .המקורית

התיזה מראה כיצד ניתן לראות פסוקיות קונפליקט כאבסטרקציה של הפסוקיות מהן הן

תוך). כל צומת פנימי בגרף הוא אבסטרקציה של הבנים שלו, במלים אחרות(נגזרו
ים באימות עידון המשמש לתיאור אלגוריתמים רב/קישור למודל הידוע של הפשטה

אנו מתארים סכמה כללית להבנת תהליך התקדמות הפותר ויצירת פסוקיות , פורמלי
אחד , Berkminאנו מראים יישום של המודל על היוריסטיקת . הקונפליקטים

 יותר SATשלפותר התיזה מציגה השערה . היוריסיקות המובילות בעת כתיבת התיזה

 IV

 תקציר

האם נוסחה בוליאנית נתונה ספיקה : ה של נוסחה בוליאניתבעיית הכרע היא SATבעיית

 על פי רב SATפותרי). קיימת השמה מלאה למשתנים המספקת את הנוסחה, כלומר(
לוגי חיתוך: Conjunctive Normal Form – CNFנוסחאות בוליאניות ב מקבלים כקלט

משתנים בוליאניים או של ") או("כל אחת מהן היא איחוד לוגי אשר , של פסוקיות") וגם("
 :לדוגמה. שלילתם

)()()(432121 xxxxxx ∨∨¬∧¬∧∨

 היא למשל, השמה מספקת לנוסחה זאת. הם משתנים בוליאניים x1…x4כאשר
0,1,1,0 4321 ==== xxxx.

ניתנות למידול על ידי ' שיבוץ וכו, אימות, לאור העובדה שמספר רב של בעיות תכנון

ולאור העובדה שנוסחאות המגיעות ,)NPה ב כל בעי, למעשה (נוסחאות פסוקיות
קיים מחקר אינטנסיבי לשיפור ,)מאות אלפי משתנים ויותר(מהתעשייה הן גדולות מאוד

ר גודל בגודל הנוסחאות דמסיותר בעשור האחרון חל שיפור של . SATיעילותם של פותרי
 .האופייניות מהתעשייה הניתנות לפתרון בזמן סביר

אשר , SATלפתירת בעיית מיםמציגים שני אלגוריתמים לשיפור אלגוריתאנחנו בתיזה זאת

 : יסוכמו להלן בקצרה

הוא שיפור של ,Hyperbinfast, מוצעהאלגוריתם ה:)processing-pre(עיבוד מוקדם . 1

 לפני CNF - ת ה מפשט את נוסחאשר, Bachus & Winterתם שהוצע על ידי יהאלגור
 .ותרים אותהפש

 :את ההגדרה הבאה דורשת ריתם המקוריאלגות הסקיר
 CNF –ה נוסחת בריות נביהפסוקיות המושרה על ידי הוא גרף מכוון ה אריגרף בינ

הם הצמתים , וכן שלילתו, כל משתנה המופיע באחת מהפסוקיות הבינאריות: באופן הבא
 נוסיף שתי (α ∨ β)מהצורה לכל פסוקית . הקשתות המכוונות מוגדרות כלהלן. בגרף

 :שתותק
αββα →→

 .)בגרףמכוונות מסמנות קשתות גרירות (

מעגל בגרף זה מראה שכל הליטרלים במעגל הם שקולים ולכן ניתן לפשט את הנוסחה
 .בהתאם

 ומפעיל , בנפרדxעבור כל משתנה , x למשתנהT ערךמשיםהאלגוריתם המקורי
Boolean Constraint Propagation)BCP (דוק אילו ערכים השמה זאת בכדי ל

מקורית הניתן להוסיף לנוסחה , בתהליך זהTשקיבל ערך yלכל משתנה . גוררת
באופן דומה התהליך מבוצע עבור (.y ל x מפסוקית בינארית ולגרף קשת חדשה

מבטל , את ההשמהמבטל האלגוריתם ,קשתותהאחרי הוספת). Fהשמות של הערך

 III

 המחקר נעשה בהנחיית

 עופר שטריכמן' דר
 .בפקולטה למדעי המחשב

 .אני מודה לטכניון על התמיכה הכספית הנדיבה בהשתלמותי

 .סבלנותם ותמיכתם, תודתי נתונה למשפחתי על אהבתם

 .עופר שטריכמן על ההדרכה והעזרה' תודה לדר

 II

 שיפורים לשיטות פתירה
 SATשל בעיות

 חיבור על מחקר

 לשם מילוי חלקי של הדרישות לקבלת התואר
 במדעי המחשבמגיסטר למדעים

 רומן גרשמן

 מכון טכנולוגי לישראל-הוגש לסנט הטכניון
 2007 פברואר חיפהז"תשסשבט

	thesis
	roman2

