IMPROVEMENTS OF SAT SOLVING
TECHNIQUES

Roman Gershman

Improvements of SAT solving techniques

Research Thesis

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science

By

Roman Gershman

Submitted to the Senate of
The Technion - Israel Institute of Technology
Adar, 5767 Haifa March 2007

i

The Research Thesis Was Done Under The Supervision
of Dr. Ofer Strichman in the Faculty of Computer Science

The Generous Financial Help Of The Technion
Is Gratefully Acknowledged.

1ii

Contents

List of Tables

List of Figures

Abstract

1 Introduction

1.1
1.2
1.3
1.4

The SAT problem
DPLL SAT solvers s,
Decision heuristics

The current work

2 The HYPERBINFAST algorithm

2.1
2.2
2.3
24
2.5

2.6

Introduction
Definitions
Hyper Resolution
The HYPERBINFAST algorithm
discussion
2.5.1 Differences from HYPRE
2.5.2 Bounding the runtime of HyPERBINFAST

Experiments, conclusions and directions for future research

vii

viii

© W o= e

11

3 The CMTF decision heuristic

3.1 Imtroduction

3.2 Background

3.2.1 Conflict clauses and resolution

3.2.2 The Berkmin Decision heuristic

3.3 The Clause-Move-To-Front (CMTF) decision heuristic.

4 Resolution-based-scoring

4.1 Introduction and some definitions

4.2 Computing the scores of a variable

4.3 Experiments

4.4 Summary of chapters 3 and 4

Bibliography

vi

33
33
34
36
41
43

45
45
49
50
93

54

List of Tables

2.1

2.2

2.3

Run-times (in seconds) and failures (denoted by ‘F’) for various SAT
solvers with and without HYPERBINFAST. Times which are smaller
by 10% than in competing configurations with the same SAT solver
are bolded. Failures denoted by * are partially caused by bugs in the
SAT solver.
Run-times (in seconds) and failures (denoted by ‘F’) for HaifaSat and
Siege_v1, without preprocessing and when combined with HYPRE and
HyPERBINFAST. All run-times include both the preprocessing and the
SAT solving times. Times which are smaller by 10% than in competing
configurations with the same SAT solver are bolded.
Few representative instances for which both HYPRE and HYPERBIN-
FAST terminated before their respective (different) timeouts. The SAT
times refer to HaifaSat’s solving time. It can be seen that typically the
solving time is longer after HYPERBINFAST, but together with the

SAT solver time it is more cost effective than HYPRE.

vil

30

31

List of Figures

1.1

1.2

3.1

3.2
3.3

The size of industrial CNF formulas (instances generated for solving
various realistic problems such as verification of circuits and Planning
problems) that are regularly solved by SAT solvers in a few hours,
according to year. Most of the progress in efficiency was made in the
last decade.o
A partial Implications Graph for decision level 6, corresponding to the
clauses in Formula 1.1, after a decision x; = 1 (left) and a similar graph
after learning the conflict clause ¢g = (x5 V =) and backtracking to

decision level 3 (right). o oo

A partial implication graph and set of clauses demonstrate ANALYZE-
CONFLICT. x4 is the FirstUIP, and complx, is the asserted literal.

A resolve-graph corresponding to the implication graph in Figure 3.1
A partial implication graph corresponding to ¢y, c3, ¢4 and the decision

l’4@5

viil

3.4 Berkmin’s decision heuristic can be thought of as an abstraction-refinement

3.5

4.1

4.2

process, where a range of the conflict clauses from the right end until
¢; represents an abstract model of the clauses on the left of ¢;. (a)
Berkmin clauses stack: after encountering a conflict, the new resolved
clauses are added on the right end. By the time the solver returns to
cs0, it will have a partial assignment that satisfies a refined model, i.e.
the clauses ¢z . .. c110 (b) The resolve sub-graph of some newly created
clauses. Grey thick edges denote the blue edges in the graph.

A Resolve-Graph Based decision heuristic

A possible scenario for the flow of the solver’s run. After deciding w3
at decision level 27 the solver iteratively goes down to deeper decision
levels and returns twice to level 27 with new asserted literals x43 and
Trs. The latter causes a conflict at level 27 and the solver backtracks to
a higher decision level. Implications in the boxes denote assignments
that are done during BCP after implying decision or asserting literal.
A comparison of various configurations, showing separately the advan-
tage of CMTF, the heuristic for choosing the next clause from which
the decided variables will be chosen, and RBS, the heuristic for choos-

ing the variable from this clause and its sign.

1X

47

Abstract

We present two algorithms that improve current state-of-art SAT solving techniques.
The first algorithm is an improvement of Bacchus and Winter’s [2] Binary Hyper-
Resolution preprocessor algorithm for simplifying industrial SAT formulas. Unlike
the original algorithm, we restrict the application of Unit-Propagation to the roots of
the Binary Implications Graph, and learn stronger implications by finding dominators
that are responsible for the implications. Our algorithm HYPERBINFAST is typically
faster and more cost-effective.

The second algorithm is a new decision heuristic in the DPLL framework. We
present a theoretical model, based on abstraction-refinement, which is helpful in ex-
plaining clause-based decision heuristics such as Berkmin. Based on this model, we
suggest a different heuristic, called Clause-Move-To-Front (CMTF), which attempts
to keep the refinement focused on one path, in contrast to Berkmin. We also suggest
a new algorithm for scoring variables, based on their activity in the internal resolution
process that the SAT solver performs. Together these heuristics perform better on
average than the well-known VSIDS and Berkmin heuristics, based on a large set of
industrial problems.

The algorithms described in the thesis are implemented in our SAT solver HaifaSat.
HaifaSat won the third place in the 2005 SAT competition in the industrial-benchmarks

category.

Chapter 1

Introduction

1.1 The SAT problem

The satisfiability (SAT) problem is to decide whether there exists a truth assignment
that satisfies a given propositional formula in Conjunctive Normal Form (CNF). Since
every propositional formula can be translated to an equivalent CNF formula in poly-
nomial time, and since experience of decades has shown that CNF formulas are easier
to solve than their original representations, CNF has become the standard de-facto
for competitive SAT solvers. The SAT problem is fundamental for solving many
other problems in Computer-Aided Design, Verification, Automated Reasoning and
so forth. The ever-growing need to solve larger and harder CNF formulas led through
the years to a vast amount of research and consequently to exceptionally powerful
SAT solvers, which can solve many real-life CNF formulas with hundreds of thousands
of variables in a reasonable amount of time. Figure 1.1 shows the progress of these
tools through the years. Of course, there are also instances with several hundreds of
variables that they cannot solve. In general it is very hard to predict which instance
is going to be hard to solve. It seems that SAT solvers are very good in identify-
ing the important variables, those variables that once given the right value, simplify
immensely the problem (Williams, Gomes and Selman coined the term back-door

variables to refer to these variables[12]).

1000000

100000

10000

1000

100

10

1

1960 1970 1980 1990 2000 2010

Figure 1.1: The size of industrial CNF formulas (instances generated for solving
various realistic problems such as verification of circuits and Planning problems) that
are regularly solved by SAT solvers in a few hours, according to year. Most of the
progress in efficiency was made in the last decade.

Modern SAT solvers can be classified into two main categories. The first cate-
gory is based on the Davis-Putnam-Loveland-Logemann (DPLL) framework: in this
framework the tool can be thought of as traversing and backtracking on a binary tree,
in which internal nodes represent partial assignments, and the leaves represent full
assignments, i.e., an assignment to all the variables. The second category is based
on stochastic search: the solver guesses a full assignment, and then, if the formula
is unsatisfied, starts to flip values of variables according to some (greedy) heuristic.
Typically it counts the number of unsatisfied clauses and chooses the flip that min-
imizes this number. There are various strategies that help such solvers avoid local
minimums and repeating previous bad moves. DPLL, however, is considered better in
most cases, at least at the time of writing this thesis (2006), according to annual com-
petitions that measure their respective success in solving numerous CNF' instances.
DPLL solvers also have the advantage that, unlike stochastic search methods, they
are complete. Stochastic methods seem to have an average advantage in solving ran-
domly generated CNF instances, which is not surprising: in these instances there is
no structure to exploit and learn from, and no obvious choices of variables and values,

which makes the heuristics adopted by DPLL solvers ineffective. We focus on DPLL

solvers only.

1.2 DPLL SAT solvers

In its simplest form, a DPLL solver progresses by making a decision on a variable
and its value, propagates the implications of this decision using Boolean Constraint
Propagation (BCP), and backtracks in case of a conflict. Viewing the process as a
search on a binary tree, each decision is associated with a decision level, which is the
depth in the binary decision tree in which it is made, starting from 1. The assignments
implied by the decision are associated with its decision level. The assignments implied
regardless of the current decisions (due to unary clauses, which are clauses with a
single literal) are associated with decision level 0, also known as the ground level.
During the solving process, a clause in the CNF formula under partial assignment

is exactly in one of the following four states:
1. Satisfied - if at least one of its literals is satisfied.
2. Conflicting - if all its literals are set to FALSE.
3. Unit - if one of the literals is undefined and all other are set to FALSE.
4. Unresolved - otherwise.
Example 1. Given the Partial Assignment
(x1=1,29 = 0,24 = 1)

(1 VgV —xy) s satisfied

(mx1 V 29) is conflicting
(mxy V —zg Voxg) is unil
(

-z VgV oxs) 18 unresolved

Given a partial assignment under which a clause becomes unit, it may be extended
so it satisfies the last literal of this clause: this observation is known as the unit clause
rule. Following this requirement is necessary but obviously not sufficient for satisfying
the formula. BCP is the algorithm that is responsible for identifying all unit clauses
and by setting their undefined literals to TRUE. During the run of this algorithm the
unit clause rule is iteratively applied until there are no unit clauses under the current
assignment or a conflicting clause is found. Each time a unit clause becomes a reason
for assigning some variable x, we say that this clause is an antecedent clause of x and

it stays so until x is unassigned during the backtracking.

Example 2. Given the clause C : (—x1 V —x4 V x3) and the partial assignment (z1 =

1,24 = 1), x5 is implied and Antecedent(x3) = C. O

Algorithm 1 The DPLL SAT framework
1: procedure DPLL

2 while (TRUE) do

3 if (BCP() = ‘coNFLICT’) then

4 if decision-level = 0 then return ‘Unsatisfiable’;
5: end if
6

7
8

9

backtrack-level := ANALYZE-CONFLICT();
BackTrack(backtrack-level);

else
if “DECIDE() then return ‘Satisfiable’;
10: end if
11: end if
12: end while

13: end procedure

A framework followed by most DPLL modern solvers is presented, for example,
by Zhang and Malik in [8], and reappears in Algorithm 1. Function DECIDE() at
line 9 is responsible for choosing a next unassigned variable and assigning a truth
value for it. In case all variables are assigned, it returns FALSE and DPLL() returns
SATISFIABLE. Each such decision is associated with a decision level, which can be

thought of as the depth in the search tree. There are numerous heuristics for making

these decisions. Some of these are described later in Section 1.3. Function BCP()
at line 3 is responsible for applying the Unit Clause Rule. If during the propaga-
tion of the current assignment a conflicting clause is found, it returns the answer
‘conflict” and saves the conflicting clause for further processing. In case the con-
flict was found at the ground level, DPLL() returns UNSATISFIABLE. Otherwise,
ANALYZE-CONFLICT() at line 6 creates a conflict clause (see below), adds it to the
clause database, and computes the decision level to which DPLL() should backtrack.

We now demonstrate BCP, reaching a conflict and backtracking, following ANALYZE-
CONFLICT as presented in Algorithm 2. Fach assignment is associated with the de-
cision level in which it occurred. If a variable z; is assigned TRUE (either due to
a decision or an implication) in decision level dl, we write z; = 1Qdl. Similarly,
x; = 0Qdl reflects a FALSE assignment to this variable in decision level dl. When ap-
propriate, we refer only to the part of the label that refers to the assignment, without
the decision level, in order to make the notation simpler.

The process of BCP can be illustrated with an implication graph. An implica-
tion graph represents the current partial assignment, and the reason for each of the

implications.
Definition 1.2.1. An implication graph is a labelled directed acyclic graph G(V, F)

where

e V represents the literals of the current partial assignment (we refer to a node and
the literal it represents interchangeably). Each node is labelled with the literal

it represents and the decision level in which it entered the partial assignment.

o E = {(v;,v;)|vi,v; € VA —w; € antecedent(v;)}. Each edge (v;,v;) is labelled

with antecedent(v;).

e (G can also contain a single conflict node labelled with £ and incoming edges

{(v, k)|=v € ¢} labelled with ¢ for some conflicting clause c.

In an implication graph the root nodes correspond to decisions, and the internal

nodes to implications through BCP. A conflict node with incoming edges labelled with

Algorithm 2 Analyze-Conflict

Require: current-decision-level > 0

1: cl := current-con flicting-clause;

2: while (-STOP-CRITERION-MET (cl)) do
3 lit := LAST-ASSIGNED-LITERAL (cl);
4 var := VARIABLE-OF-LITERAL (lit);
5: ante := ANTECEDENT (var);
6
7
8
9

cl := RESOLVE (cl, ante, var);
: end while
. add-clause-to-database(cl);
: return clause-asserting-level(cl); > 2nd highest decision level in cl

c represents the fact that the BCP process has reached a conflict by assigning FALSE
to all the literals in the clause ¢ (i.e. ¢ is conflicting). In such a case we say that the
graph is a conflict graph. The implication graph corresponds to all the decision levels
lower or equal to the current one, and is dynamic: backtracking removes nodes and
their incoming edges, while new decisions, implications, and conflict clauses continue
the construction of the graph. Note that the implication graph is sensitive to the
order in which the implications are propagated in BCP, which means that there is
more than one possible such graph given a specific state and a decision. In most SAT
solvers this order is arbitrary and determined by the order of clauses in propagation
queue.

A partial implication graph, which illustrates the BCP in a specific decision level,
is sufficient for describing a particular popular method for implementing ANALYZE-
CONFLICT. The roots in such a partial graph represent assignments in decision levels
lower than dl, in addition to the decision at level dl, and internal nodes correspond
to implications at level dl. The description that follows mainly uses this restricted
version of the graph.

Consider, for example, the following subset of clauses:

Ty = 1Q6 1 = 0Q3

€1 \ o Decision s
.. ry = 1Q6 — 0¢ Y
Decision S 6 = 0Q3 i)
C2 r3 = 1Q6 . - T3 = 1@3
Ca or
e 75 = 0@3 e
Cq

Figure 1.2: A partial Implications Graph for decision level 6, corresponding to the
clauses in Formula 1.1, after a decision 21 = 1 (left) and a similar graph after learning
the conflict clause ¢y = (z5 V —21) and backtracking to decision level 3 (right).

cg = (w1 Vag)

ca = (—x1VazVas)

c3 = (mweViay)

ca = (—wgV zy)

cs = (x1 VsV -z (1.1)
ce = (woVxs3)

cr = (x9V x3)

cs = (wgV —ws)

Assume that at decision level 3 the decision was zg = 0Q3, which implied x5 = 0Q3
through clause cg (hence Antecedent(—xs) = cg). Further assume that the solver is
now at decision level 6 and assigns z; = 1. In decision levels 4 and 5, variables other
than x1, ..., ¢ were assigned, and are not listed here as they are not relevant to these
clauses. The implication graph on the left of Figure 1.2 demonstrates the BCP process
at the current decision level 6 until, in this case, a conflict is detected. The roots
of this graph, namely x5 = 0@Q3 and z; = 1@Q6, constitute a sufficient condition for
creating this conflict. Therefore, we can safely add the conflict clause cg = (x5V —x1)
to our formula: while it is logically implied by the original formula and therefore does

not change the result, it prunes the search space because it forbids partial assignments

that contradict it. The process of adding conflict clauses is generally referred to as
learning, reflecting the fact that this is the solver’s way to learn from its past mistakes.
As we progress in this chapter, it will become clear that conflict clauses not only prune
the search space, but also impact the decision heuristic, the backtracking level and
the set of variables implied by each decision.

Algorithm ANALYZE-CONFLICT (see algorithm 2) is the function responsible for
deriving new conflict clauses and computing the backtracking level. It traverses the
implication graph backwards, starting from the conflict node x, and generates a con-
flict clause through a series of steps that we describe later in §3.2.1. For now assume
that cg is indeed the generated clause.

After detecting the conflict and adding cgy, the solver determines to which decision
level to backtrack according to the conflict-driven backtracking strategy. According
to this strategy the backtracking level is set to the second most recent decision level in
the conflict clause !, while erasing all decisions and implications made after that level.
In the case of ¢g, the solver backtracks to decision level 3 (the decision level of z5),
and erases all assignments from decision level 4 onwards, including the assignments
to x1,x9 and x3.

The newly added conflict clause ¢y becomes a unit clause since x5 = 0, and
therefore the assignment x; = 0@3 is implied. This new implication re-starts the
BCP process at level 3. ¢g is a special kind of a conflict clause, called an asserting
clause: it forces an immediate implication after backtracking. With the right stopping
condition in line 2, ANALYZE-CONFLICT can be designed to generate only asserting
clauses. Indeed, most competitive solvers nowadays only add asserting clauses. After
asserting ;1 = 0 the solver again reaches a conflict as can be seen in the right drawing
of Figure 1.2. This time the conflict clause (x¢) is added, the solver backtracks to
decision level 0, and continues from there.

Conflict-driven backtracking raises several issues:

e [t seems to waste work, because the Partial Assignments up to decision level

'In case of learning a unary clause, the solver backtracks to the ground level.

5 can still be part of a satisfying assignment. However, empirical evidence
shows that conflict-driven backtracking, coupled with modern decision heuristics
performs very well. A possible explanation of the success of this heuristic is that
the encountered conflict can influence the decision heuristic to decide different
values or different variables than those in deeper decision levels (levels 4 and 5
in this case). Thus, keeping the decisions and implications made before the new
information (i.e., the new conflict clause) arrived may have skewed the search

to areas not considered best anymore by the heuristic.

e [s this process guaranteed to terminate? In other words, how do we know that
a partial assignment cannot be repeated forever? The learned conflict clauses
cannot be the reason, because in fact most SAT solvers erase many of them
after a while to prevent the formula from growing too much. The reason is
the following: it is never the case that the solver enters decision level dl with
the same Partial Assignment. Consider a Partial Assignment up to decision
level dl — 1 that does not end with a conflict, and falsely assume that this
state is later repeated, after the solver backtracks to some lower decision level
dl= (0 < di~ < dl). Any backtracking from a decision level di™ (dIt > dI)
to Decision level dI~ adds an implication at level dl~ of a variable that was
assigned at decision level di*. Since this variable was not so far part of the
Partial Assignment up to decision level dl, once the solver reaches dl again, it

is with a different Partial Assignment, which contradicts our assumption.

1.3 Decision heuristics

As we noted before DECIDE() is responsible for choosing variables and their truth
values during the search. In fact, this function plays a crucial role in the perfor-
mance of DPLL solvers. An improvements to decision heuristics in the past have led
improvements of orders of magnitude on average and to solving problems that were

considered unsolvable before. We mention some of the modern heuristics that are

10

implemented in the best SAT solvers known to the research community to date.

Variable State Independent Decaying Sum (VSIDS) [8]: Each literal has its own
score. At each decision, a literal with the biggest score is chosen to be satisfied. Each
time a conflict clause is added to the database, the score of its literals is increased by
1. In addition, every constant number of conflicts (say 100), all scores are divided by
2 - thus gradually giving priority to those literals whose score was increased lately.
Initially a score for each literal is set to the number of occurrences of that literal
in the formula. This heuristic was implemented in Zchaff in 2001 and led to a very
significant improvement. The authors of [8] explain VSIDS by saying that literals
which appear most in the latest conflict clauses are chosen to be satisfied, thus satis-
fying ”problematic” clauses. This was the first conflict-driven decision heuristic, and
virtually all modern decision heuristic follow this principle.

Berkmin [6]: A score list is maintained as in VSIDS. Conflict clauses are pushed
into a stack. When a decision has to be made, the first unsatisfied clause from the top
is identified; From this clause the unassigned literal with the highest score is chosen.
If the stack is empty, the literal with the highest score is chosen, as in VSIDS. This
heuristic appears to be very robust for a wide range of industrial problems.

Variable Move To Front VMTF [7]: All variables are maintained in a list. Initially,
variables are ordered in the list according to their frequency in the formula, where
the most frequent variable appears at the top of the list. Each time a decision is
made, variables are scanned from the top of the list and a first unsatisfied variable
is chosen. Its value is chosen according to the relative frequency of its positive and
negative occurrences (similarly to VSIDS). At each conflict a small constant number
(say 8) of variables from the conflict clause is moved to the front of the variable list.
These variables are chosen randomly from the conflict clause. This simple and fast

heuristic in practice is very efficient as well.

11

1.4 The current work

This thesis improves modern DPLL-based algorithms in two ways: by applying a
preprocessing algorithm on the initial CNF formula before DPLL is applied, and by

using a new decision heuristic in the function DECIDE().

1. The first algorithm is our improvement to the preprocessing algorithm by Bac-
chus and Winter HYPRE [2]. The authors used the fact that most industrial
formulas have a lot of binary clauses with which many syntactical and semanti-
cal simplifications can be done. Often these simplifications help the SAT solver
afterwards and can be seen as an orthogonal heuristic that helps DPLL. How-
ever, even for polynomial preprocessing algorithms, sometimes it is very hard to
compete with SAT solvers on large formulas. Consider, for example, instances
with 100 — 200K variables and 500 — 800K clauses. Even with complexity of
O(n?®) the preprocessing algorithm will run too long compared to aggressive
heuristics of SAT solvers. Therefore, there is a need of more robust preproces-
sor, which can run faster in most cases. We improve HYPRE by constraining
its derivation rule to a subset of the variables, and learn from it more than the

original HYPRE would learn.

2. The second algorithm is a new decision heuristic, based on our hypothesis that
explains why SAT solvers are able to be so efficient in solving industrial prob-
lems. We suggest a model based on abstraction-refinement that helps explain
the progress of modern SAT solvers. Based on this model, we analyze the Berk-
min decision procedure and suggest an improved procedure, using the insights
given by the suggested model. In addition, we describe a new scoring scheme
for the decision heuristic, which is based on the activity of a variable in the

resolution process conducted by the SAT solver.

12

These improvements and some others are all implemented in HaifaSat, a SAT
solver that was developed for this thesis. HaifaSat competed in the 2005 SAT com-
petition and won the 3rd place in the industrial benchmarks category 2.

The rest of the thesis is organized as follows. Chapter 1 introduces HYPERBIN-
FAST as an improvement to the algorithm HYPRE. Chapter 2 describes our new
decision procedure for DPLL solver. Chapter 3 describes a new variable scoring pro-

cedure and Chapter 4 provides the experimental results of our SAT solver HaifaSAT.

2the first two were variations on the same code base

Chapter 2

The HYPERBINFAST algorithm

2.1 Introduction

Given the power of modern SAT solvers, most CNF preprocessing algorithms [5, 11]
are mostly not cost-effective time-wise. Since these solvers are so effective in focusing
on the important information in a given CNF| it is particularly challenging to find the
right balance between the amount of effort invested in preprocessing and the quality
of information gained, in order to positively impact the overall solving time.

One of the only preprocessors that succeeds to do so, at least when combined
with some of the modern SAT solvers, is HYPRE [2]. An early version of HYPRE
was implemented in 2CLS-+EQ as an inference rule with impressive success (it solved
instances that could not be solved by any other solver in the SAT’02 competition).
There it was invoked in each node of the decision tree (before the call to DECIDE()),
hence making it part of the solver rather than a preprocessor. But given the very large
SAT instances that now solvers need to cope with, this approach was too costly in
practice. In [2] Bacchus and Winter improved the implementation of this algorithm
and tried it very successfully as a preprocessor. Their experiments show that in
most cases there is a benefit in using this preprocessor prior to invoking a state-
of-the-art solvers like Berkmin and zChaff. It seems, however, that on larger CNF

formulas this is no longer true: running HYPRE on the benchmarks given in the

13

14

SAT’04 competition, which were larger on average than the benchmark set attempted
in [2], we noticed that it is not cost-effective in most cases.

HYPRE processes a CNF instance in three interconnected ways:
1. Tt adds binary clauses using Hyper Resolution [2].
2. It finds failed literals (variables with forced value) and propagates them, and

3. It identifies equivalent variables by a traversal of the binary implications graph
(a graph in which the edges correspond to binary clauses) and performs substi-

tutions accordingly.

Overall we refer to these actions as deriving auxiliary information from the CNF
instance that simplifies its solution later by the SAT solver. One of the major reasons
for the success of HYPRE comparing to previous preprocessors like 2-SIMPLIFY [5] is
that it is more selective in the information that it adds, and take less time to generate.

In this chapter we present HYPERBINFAST, which is similar to HYPRE, but im-
proves it in two dimensions. First, to avoid cases in which preprocessing takes dispro-
portional time, HYPERBINFAST is implemented as anytime algorithm, which means
that it produces meaningful auxiliary information even when interrupted before ter-
mination. This enables us to control the amount of preprocessing, and in particular,
to allocate a certain percentage of the overall solving time to preprocessing. Second,
HYPERBINFAST sacrifices some of the preprocessing power in order to terminate
faster. We consider this as an adaptation to the new reality of SAT solvers being so

efficient by themselves.

2.2 Definitions

We begin with several definitions.

Definition 2.2.1 (Binary Implications graph). Given a CNF formula ¢ with a set
of binary clauses B, a Binary Implications Graph is a directed graph G(V, E) such

15

that v € V if and only if v is a literal in ¢, and e = (u,v) is an edge if and only if B

contains a clause (@, v).

A Binary Implications Graph allows us to follow implications through binary
clauses. Note that for each binary clause (u,v), both (w,v) and (v,u) are edges
in this graph (thus, the total number of edges in the initial graph, before further
processing, is twice the size of B). For this reason we say that Binary Implications

Graphs are symmetric.

Definition 2.2.2 (Binary Transitive Closure of a literal). Given a literal v, a set of
literals denoted by BT'C(v) is the Binary Transitive Closure of v if it contains exactly
those literals that are implied by v through the Binary Implications Graph.

Definition 2.2.3 (Failed literal). A literal v is called a Failed Literal if setting its
value to TRU E and applying BCP causes a conflict.

Definition 2.2.4 (Propagation closure of a literal). Given a non-failed literal u, a
set of literals denoted by PC'(u) is the Propagation closure of u if it contains exactly
those literals that are implied through BCP by u in the given CNF (not only the

binary clauses).

It is easy to see that BT'C(v) C PC(v) for every literal v, because PC(v) is not
restricted to what can be inferred from binary clauses. Note that v € PC(u) implies
that u — v and hence 7 — 1, but it is not necessarily the case that w € PC(v), due
to the limitations of BCP. For example, in the set of clauses (zVy), (TVz), (JVZVw),
it holds that * — w and hence w — 7, but BCP detects only the first direction. It
disregards w — T because W does not invoke any unit clause. Hence, BCP lacks the

symmetry of Binary Implications Graphs.

Definition 2.2.5 (The HyperBinRes Hyper resolution rule). The HyperBinRes in-

ference rule:

el (00, (e,)
(4, 1)

for n > 2 (2.1)

16

HyperBinRes is a hyper resolution rule (resolution from more than two clauses).
It is possible to compute the HyperBinRes closure (add all possible clauses according
to this rule) in polynomial time, by analyzing the binary sub-theory of the formula,

and invoking BCP.

2.3 Hyper Resolution

Hyper resolution can be thought of as a shortcut to a long sequence of standard
resolution steps, that results only in the last clause in this sequence rather than in
all intermediate results. It allows to retrieve much more information than otherwise
possible by pure binary reasoning, while staying polynomial.

In general, any sequence of implications l; — ... — [,, on the Binary Implications
Graph that does not end with a failed literal, can potentially lead to hyper resolution
through a standard application of BCP on the given formula (including all clauses).

The following lemma proves this:

Lemma 2.3.1. Given a CNF formula F and a set PC(v) as defined before, there is

a sequence of HyperBinRes derivations for every literal w € PC(v) that proves (U, u).

Proof. By induction on the literals that are propagated with BCP. First, BCP is
seeded by v itself and, of course, v € PC(v). Clause (v, v) is universally true in the
trivial way.

Suppose now that the clause (Iy,...,l,,u) propagates v and the lemma holds for
all literals propagated before u. It must be that [; is FALSE for 1 < i < n. Since all
propagated literals are a result of setting v to TRUE, then it must be that I; € PC(v).
We have by induction that there exists a sequence S; of HyperBinRes derivations that
proves (7,1;). Now, we use HyperBinRes again to derive

(@771), ey (@,Zn% (ll, PN ,ln,u)

(0, u)

Y

and add it to the sequence S ... S,, which results in (7, u).

17

Hyper Resolution can solve the problem of lack of symmetry in BCP. In the
example above, in which BCP cannot detect that w — &, applying Hyper Resolution
on the given clauses produces the new binary clause (Z V w). Clearly, now both
w € PC(x) and T € PC(w). In addition, realizing this new clause as a syntactic
primitive allows algorithms that work on Binary Implications Graphs to use the fact
that © — w or w — 7. For example, an algorithm that looks for equivalences between
literals searches for cycles in this graph, and this new clause can lead to additional
such cycles.

Each added binary clause (recall that this corresponds to two edges in the Binary
Implications Graph) adds implicants not only to BTC(v) for some v, but also to
PC(v) because of the symmetry discussed above of binary clauses. The goal of

HYPRE is to add such clauses until both of these sets are equal, or, in other words:

Goal: Build a Binary Implications Graph such that BT C(v) = PC(v) for

every literal v.

The HYPRE algorithm

HYPRE is a recursive algorithm, which processes a node v in the Binary Implications
Graph only after returning from processing its children, i.e. in a post-order. It then
performs BCP in order to compute the propagation closure of v unless v is a Failed
Literal. If v is a Failed Literal then a new unit clause (v) is added to the formula, and
unit propagation is applied. Otherwise, the set NewDescendants := PC(v)\ BTC(v)
is computed. For each literal u € NewDescendants, a new binary clause (7, u)
is added to the formula and NewDescendants is updated to be NewDescendats \
BTC'(u) (this is an optimization, aimed at reducing forward edges, i.e., edges to nodes
to which we already have a path from v). When HYPRE leaves v, it is guaranteed
that either v is a Failed Literal or PC(v) = BTC(v).

We call a node v strong if HYPRE already concluded that BT'C(v) = PC(v) with
respect to the current formula. There is nothing to be done for strong nodes before

the formula changes again. A weak node is a node that is not strong. Note that it

18

is invariantly true that if a node v is weak, then all of its ancestors are also weak.
HYPRE begins by marking all nodes as weak, and then gradually processes them and
changes their marking to strong. When a binary clause (v, u) is added as described
above, @ and its ancestors have to be marked as weak, which means that HYPRE has
to process them again. Note that v should not be marked as weak, since HYPRE
currently processes it.

To detect equivalent literals, occasionally HYPRE searches for Strongly Connected
Components (SCC) in the graph. It is easy to see that literals in a cycle are equiv-
alent. Each SCC is replaced with a single node (a ‘representative literal’), not only
in the binary clauses, rather in the entire formula. This operation, as well as unit
propagation (when a new unit clause is added), can simplify clauses (shorten them)
which means that HYPRE needs to reconsider nodes that were already visited before.
When an n-ary clause (ly, .. .,[,) is shortened to, e.g., ({1,...,lx),2 < k < n, then the
literals [; .. .1} and all their ancestors are marked as weak, since further processing of
these nodes may lead to more hyper resolutions given the new shortened clause. A
more elaborated justification of this step can be found in [2].

The main computational cost of HYPRE is due to the need to perform BCP on
each node at least once, but on average many more times, due to the iterative nature
of the algorithm. It is still far more efficient than previous approaches like 2-SIMPLIFY
and 2CL_SIMP [5, 11] that stored the full transitive closure of the binary sub-theory
and are therefore incapable of handling large instances.

HYPRE also preserves an interesting optimality property: If y € PC(x) N PC(z)
and z = z (read: there is a path from z to z in the binary Implications Graph), then
HYPRE guarantees, by the post-order in which it progresses, that it adds the edge z —
y and not x — y. The former is a stronger implication, because from this implication

it is possible to infer the latter implication through the Binary Implications Graph.

19

2.4 The HYPERBINFAST algorithm

As stated in the introduction, our algorithm HYPERBINFAST builds upon and im-
proves HYPRE in two dimensions: it is capable of giving useful auxiliary information
even when stopped before termination, and it is more efficient for the price of gen-
erating less information. Our experiments, as shown in Section 2.6, prove that this
shifting of emphasis is worth while: although the SAT solving time after HYPRE can

be smaller, the total time is typically larger.

Algorithm 3
HyPERBINFAST

1: Mark all root vertices as weak;
2: while there are weak roots, unit clauses, or binary cycles do
3: while there are unit clauses or binary cycles do

4: Detect all SCCs and collapse each one of them to a single node;

5: Propagate all unit clauses and simplify all clauses accordingly;

6: For each new binary clause (u,v) mark as weak roots(u) and roots(v);

7: end while

8: Choose a weak root node v;

9: FailedLiteral =FASTVISIT (v);

10: Undo assignments caused by BINARYWALK and clear bQueue;

11: if FailedLiteral # undefined then > FailedLiteral holds a failed literal
12: Add unit clause (FailedLiteral);

13: end if

14: Mark v as strong;
15: end while

Algorithm 3 gives a bird-eye view of HYPERBINFAST. HYPERBINFAST iterates
over all root nodes in the Binary Implications Graph (roots(v) denotes the set of
all ancestor roots of v in such a graph). It has two main stages. In the first stage
(lines 4 - 5) it iteratively finds equal literals (by detecting SCCs and unifying their
vertices to a single ‘representing literal’), propagates unit clauses, and simplifies the
clauses in the formula. Simplification in this context corresponds to substituting
literals by their representative literal in all clauses (not only binary), removing literals

that are evaluated to FALSE and removing satisfied clauses. The simplification may

20

result in shortening of some n-ary clauses to binary clauses, which change the Binary
Implications Graph. In line 6 we perform a restricted version of what HYPRE does
in such cases: while HYPRE marks as weak all ancestor nodes, HYPERBINFAST only
marks root ancestor nodes. Further, while HYPRE invokes this process every time an
n-ary clause is being shortened, HYPERBINFAST only does so for clauses that become
binary. The reduced overhead due to these changes is clear. In the second stage (line
9), we invoke FASTVISIT for some weak root node, a procedure that we will describe
next. FASTVISIT can change the graph as well, so HYPERBINFAST iterates until

convergence.

Algorithm 4

1: procedure BINARYWALK (Literal ¢, Antecedent clause C)
2 if value(t)=True then
3 return unde fined,;
4: end if

5: if value(t)=False then
6 return ; > a failed literal which was marked before
7 end if

8 value(t) < TRUE;

9 antecedent(var(t)) « C,

10: Put ¢ on assignment stack;

11: Put t into bQueue;

12: for each binary clause (¢,u) in 2-CNF sub-theory do

13: res « BINARYWALK (u, (£,u));
14: if res # undefined then

15: return res;

16: end if

17: end for

18: return unde fined,

19: end procedure

Computing the Binary Transitive Closure

Before describing FASTVISIT, we concentrate on the auxiliary function BINARY WALK

4, which FASTVISIT calls several times. The goal of BINARYWALK is to mark all

21

literals that are in TBC(v) or return a failed literal, which can be either v itself or
some descendant of v. It also updates a queue, called bQueue with those literals in
TBC(v) for future processing by FASTVISIT. BINARYWALK performs DFS from a
given literal on the Binary Implications Graph. In each recursive-call, if ¢ is already
set to FALSE (i.e. t is already set to TRUE in the current call to FASTVISIT), it means
that there is a path in the binary implication graph from ¢ to ¢, and hence ¢ is a failed

literal. This is a direct consequence of the following lemma:

Lemma 2.4.1. In a DFS-traversal on a Binary Implications Graph from a literal
u that marks all nodes it visits, if when visiting a node t another node t is already

marked, and this is the first time such a ‘collision’ is detected, then T = t.

Proof. Falsely assume that there is no path ¢ = ¢. The fact that traversal from u
leads to marking of both and ¢, implies that u — and u — t. By the symmetry
of Binary Implications Graphs, there is also a path 7 = @. Since the DFS traversal
visits ¢ before ¢ then it must visit u before leaving £. Moreover, it cannot visit ¢ before
leaving ¢ because otherwise this would contradict our assumption that no such path
exists. This leads to a collision between u and @, before a collision is detected between
t and t, which contradicts our assumption that the latter was detected first. Hence,
5t O

g

When BINARY WALK detects such a failed literal it returns ¢ all the way out (due
to lines 14-15) and back to FASTVISIT and then to HYPERBINFAST.

The other case is when ¢ does not have a value yet. In this case BINARYWALK
sets it to TRUE and places it in bQueue, which is a queue of literals to be propagated
later on by FASTVISIT. It also places ¢ in the (global) assignment stack, and stores
for var(t) its antecedent clause (the clause that led to this assignment), both for later

use in FINDUIP.

22

From Binary Transitive Closure to Propagation Closure

We now describe FASTVISIT. Recall that FASTVISIT is invoked for each root node in
the Binary Implications Graph. FASTVISIT combines unit propagation with binary
learning based on single assignments, i.e. learning of new clauses by propagating a
single decision at a time. It relies on the simple observation that if v € PC(v) then
v — u. It is too costly to add an edge for every such pair v, u, because this corresponds
to at least computing the transitive closure [2]. Since our stated goal is to form a
binary graph in which PC(v) = BT'C(v) for each root node, it is enough to focus on a
vertex w only if u € PC(v) but u ¢ BTC(v). Further, given such a vertex u, although
adding the edge v — u achieves this goal, we rather find a vertex w, a descendant of v
that also implies u, in the spirit of the First Unique-Implication-Point (UIP) scheme
that is used by most modern SAT solvers. The FINDUIP function (see Algorithm
6) called by FASTVISIT can in fact be seen as a variation of the standard algorithm
for finding first UIPs [9]: unlike the standard usage of such a function in analyzing
conflicts, here there are no decision levels and the clauses are binary. On the other
hand it can receive as input an arbitrary set of assigned literals, and not just a conflict
clause. In contrast to HYPRE, which performs unit propagation from each node in
a post order, HYPERBINFAST only propagates from the roots, and the edges that it
adds depend on the specific DFS run it performs. It therefore cannot guarantee the
optimality property discussed in the end of the previous section. Invoking FINDUIP
attempts to compensate on this fact, but it cannot guarantee it.

In line 6 FASTVISIT starts to process the literals in bQueue. For each literal p
in this queue, it checks all the n-ary clauses (n > 2) watched by p. As usual, each
such clause can be of interest if it is either conflicting or unit. If it is conflicting, then
FASTVISIT calls FINDUIP, which returns the first UIP causing this conflict. This
UIP is a failed literal and is returned to HYPERBINFAST, which adds its negation
as a unit clause in line 12. If the processed clause is a unit clause, the unassigned
literal, denoted by toLit, is a literal implied by v that is not in BT'C(v) (otherwise

it would be marked as TRUE in BINARYWALK). In other words, toLit € UP(v) and

23

Algorithm 5

1: procedure FASTVISIT (Literal v)

2 res < BINARYWALK (v, NULL);

3 if res # unde fined then

4 return res

5: end if

6 while !bQueue.empty() do

7 Literal p < bQueue.pop_front();
8

9

for each n-ary clause € watched(p) do >n>2
: if clause is conflict then
10 Literal fUIP <« FINDUIP (clause);
11: return fUIP;
12: else if clause is unit then
13: Literal toLit < undefined literal from clause.
14: Literal fromLit < FINDUIP (clause \ {toLit});
15: Add clause (fromLit,toLit)
16: Mark roots(toLit) U roots(fromLit) as weak
17: res < BinaryWalk(toLit, (fromLit,toLit));
18: if res # unde fined then
19: return res
20: end if
21: end if
22: end for
23: end while
24: return unde fined;

25: end procedure

24

Algorithm 6

1: procedure FINDUIP (Literal set .S)
Require: implication graph is binary only.
Ensure: res is first UIP of §

2: mark all variables in S;

3: count — |S|;

4: while count > 1 do

5: v «+— latest marked variable in the assignment stack
6: unmark v and decrease count by one.

7 Let (u, L) be antecedent clause of v, s.t. var(L) = v.
8: if var(u) not marked then

9: mark var(u) and increase count by one.

10: end if

11: end while

12: end procedure

13: res < last marked literal in assignment stack.

14: unmark var(res);

15: return res;

toLit ¢ BT'C(v), which is exactly what we are looking for. At this point we can add
a clause (7, toLit) but rather we call FINDUIP, which returns a first UIP denoted by
fromLit. The clause (fromLit,toLit) is stronger than (v,toLit) because the former
also adds the information that tolit — fromlit. Note that this is an unusual use of
this function, because clause is not conflicting. Because the addition of this clause
changes the Binary Implications Graph, we need to mark as weak all the ancestor
nodes of fromLit and of toLit, and to continue with BINARYWALK from toLit. This

in effect continues to compute BT'C(v) with the added clause.

2.5 discussion

2.5.1 Differences from HYPRE

One of the differences between fast and HYPRE can be demonstrated with the follow-

ing example. Suppose we have a direct sub-graph with n vertices, rooted at a node

25

r. HYPRE goes recursively over all descendants of r and apply UP at each one of
them and finds all edges that are needed to achieve the stated goal of making the
binary graph represent the propagation closure of r and its descendants. There can
be n propagations, which can many times find only a very small number of edges,
sometimes even zero such edges. Moreover, it can also generate edges which connect
descendants of r between them. HYPERBINFAST, on the other hand, applies only
one UP at the root r, and finds all literals that should have new edges leading to
them. It will not connect existing descendants of r but concentrate on those which
do not have any path from r to them.

HYPRE generally adds more information than HYPERBINFAST. For example, if
two descendants of v, p and s prove a new literal ¢, then HYPERBINFAST finds only
one of them, e.g. it could add p — ¢. In other words, it finds only one edge for each
UP-implied literal. Also, while FINDUIP tries to find the best binary clauses to add,
it does not guarantee optimality. It could add p’ — t, where p’ is some literal between
v and p.

HYPERBINFAST can be seen as a restricted version of DPLL with non-conflict
learning. Indeed, it “decides” on the root variables and never goes below decision
level 1. Also, it learns a new clause every time an implication by an n-ary clause
occurs. It is possible to change HYPERBINFAST so it uses decision heuristics other

than just choosing the roots. We leave this option for future research.

2.5.2 Bounding the runtime of HYPERBINFAST

Given that HYPERBINFAST is an anytime algorithm, there are various strategies
to decide when to stop it. The most naive method, of course, is to use a time-limit.
While being extremely simple, it still enables us to balance between the preprocessing
and the solving stage, according to the efficiency of the SAT solver. One somewhat
unexpected disadvantage of this method is that it can lead to a nondeterministic

solving process and run time!. The reason for this is the imperfection of measuring

Tt is the policy of the SAT competition’s organizers to not accept non-deterministic solvers.

26

time: differences in mili-seconds as measured by the computer clock can stop the pre-
processor in different stages and hence lead to a different instance for the SAT solver.
We therefore developed a heuristic function that decides when to stop the preproces-
sor according to its progress. In particular, it measures the number of deduced unit
clauses and equivalent literals, versus decaying rate of the weak nodes. This way we
do not allow HYPERBINFAST to work for a long time without producing evidence of
its efficiency. If the weak nodes are not decreased fast enough comparing to what is
expected from the number of reduced variables, HYPERBINFAST is stopped and its
output is forwarded to the SAT solver. HYPERBINFAST performs this check every
constant number of invocations of FASTVISIT. There are numerous possible heuris-
tics to perform this check. Currently our heuristic, which is still under development,
is better or equally good as a fixed time-out of 300 seconds, although in a few in-
stances it is worse (it stops the preprocessing too early). Altogether for the set of
benchmarks reported in the next section the total solving time of the automated and
fixed timeouts are comparable. We believe that with further experiments and tuning

we will be able to make this technique dominant over a fixed timeout strategy.

2.6 Experiments, conclusions and directions for fu-

ture research

We ran HYPERBINFAST and the original preprocessor HYPRE [1] with several SAT
solvers: siege vl [7], zChaff 2004 and our experimental SAT solver HaifaSat. We do
not present results for the latest version of Siege, siege_v4, because we do not know if
this undocumented solver already uses similar learning rules internally. Nevertheless,
we ran siege_v4 with both HYPRE and HYPERBINFAST and saw that it is not cost-
effective to run either one of them. The overhead of HYPERBINFAST, however, was
much smaller than that of HYPRE.

Table 2.1 shows experiments on an Intel 2.5Ghz computer with 1GB memory

running Linux. The benchmark set is comprised of 165 industrial instances used in

27

various SAT competitions. In particular, fifo8, bmc2, CheckerInterchange, comb,
feclk, ip, fup2, IBMO02 and w08 are hard industrial benchmarks from SAT02; hanoi
and hanoi03 participated in SAT02 and SATO03; pipe03 is from SATO03 and 01_rule,
11_rule_2, 22_rule, pipe-sat-1-1, sat02, vis-bme, vliw_unsat_2.0 are from SAT04 [10, 3,
4]. The number in brackets for each benchmark set denotes the number of instances.
The timeout for each instance was set to 3000 seconds. When relevant, the timeout
for the preprocessor itself was set to 300 seconds and the timeout for the SAT solver
was dynamically reduced to 3000 minus the time spent during preprocessing. All
times in the table include preprocessing time when relevant. We count each failure
as 3000 seconds as well.

The table shows that:

1. HYPERBINFAST helps each of the tested solvers to solve more instances in the

given time bound.

2. When the instance is solvable without HYPERBINFAST, still HYPERBINFAST

typically reduces the overall run time.

3. Whenever HYPERBINFAST does not help, its overhead in time is relatively

small.

4. Tt is very rare that an instance can be solved without HYPERBINFAST but

cannot be solved with HYPERBINFAST.

5. On average, the total gain in time is about 20-25%.

Table 2.2 compares the performance of HYPRE and HYPERBINFAST. Since HYPRE
is not implemented as an anytime algorithm, and as a preprocessor it always takes
more time than HYPERBINFAST (empirically), its only advantage when compared
to HYPERBINFAST can be that it produces better information that compensates on
the extra preprocessing time. In order to test this possibility we ran HYPRE with a

timeout of 3000 seconds and the SAT solver with a timeout of 3000 seconds minus the

28

time spent by HYPRE. In other words we compared three configurations for each SAT
solver: plain SAT, SAT solver+HYPRE, and SAT solver+HYPERBINFAST, all with
a global timeout of 3000 seconds per instance. The time policy of HYPERBINFAST
was left as in the previous experiment. Table 2.2 compares these configurations with
both HaifaSat and Siege_v1. The times include both the preprocessing and the SAT
solving run times. The table shows that sometimes HYPERBINFAST is not ‘strong’
enough (it does not simplify the formula enough), so the SAT solver fails on the
corresponding instance but succeeds after applying HYPRE. Nevertheless, the total
time is always smaller with HYPERBINFAST. Moreover, it can be seen that with
HaifaSat, HYPRE is not cost-effective, neither in the total number of failures or the
total run time, while HYPERBINFAST reduces HaifaSat’s failures by 35% and reduces
its total solving time by 25%.

More data: For the above benchmark, it took HaifaSat 97,909 seconds after Hy-
PERBINFAST and only 54,567 seconds after HYPRE, which indicates that indeed the
quality of the CNF generated by HYPRE is better, as expected. But these numbers
may mislead because, recall, the timeouts for the two preprocessors are different,
which, in turn, is because HYPERBINFAST is an anytime algorithm. In Table 2.3 we
list several benchmarks for which both preprocessors terminated before their respec-
tive timeouts, together with the time it took the preprocessor and then HaifaSat to
solve them. To the extent that these instances are representative, it can be seen that
typically the solving time is longer after HYPERBINFAST, but together with the SAT

solver time it is more cost effective than HYPRE.

Conclusions and directions for future research.

Preprocessing can be cost-effective when combined with modern SAT solvers, as is
evident from our experiments with 165 industrial CNF instances from previous SAT
competitions. We pointed to two directions for future research: develop more efficient
dynamic strategies for determining the amount of time spent for preprocessing, and

make preprocessing decide on the set of variables from which it begins its traversal

29

of the Binary Implications Graph (and not just choose all the root nodes as we do
now). This concept can be generalized to preprocessing in general: while SAT solvers
focus on the semantics of the formula, that is, they attempt to find the ‘important’
variables, preprocessors focus on the syntactical characteristics of the formula, and
are therefore much more sensitive to its size. Hence, attempting to build a semantic
preprocessor seems like a worth while direction to pursue next: the CNF instances
that are hard to solve with modern solvers become larger every year, so becoming
less affected by their sheer size seems like the only way for preprocessors to stay in

the game.

30

SAT solver — HaifaSat Siege v1 zChaff 2004
Preprocessor — — H-B-Fast — H-B-Fast — H-B-Fast
Benchmark: Time | F | Time | F | Time | F | Time |F | Time | F | Time | F
01_rule(20) 19172 | 2| 7,379 | 0 | 20,730 | 4 | 11,408 | 1 | 20,779 | 4 | 19,196 | 5
11 rule 2(20) 2297 | 6 | 7,491 | 0| 29,303 | 8 | 17,733 | 2 | 36,042 | 10 | 27,500 | 8
22 rule(20) 27,597 | 8| 22,226 | 5 | 31,839 [10| 29,044 | 9 | 31279 | 9 | 25,377 | 6
bme2(6) 1,262 | 0 81 0 333 |1 85 0 317 |1 83 0
Checkerl-C(4) 682 | 0 902 0| 4114 | 0| 3,541 |0 | 86 |0] 703 |0
comb(3) 4130 | 1| 4170 | 1| 5679 | 1] 6027 | 1] 6363 | 2| 6237 |2
f2clk(3) 4059 | 1| 4060 | 1| 6105 [2| 6063 |2 | 609 |2 | 6047 | 2
fifo8(4) 183 [0| 554 | 0| 555 | 1| 2420 | 0| 5206 | 1 | 3,390 | 1
fvp2(22) 1,99% [0 2117 | 0| 180 | 0| 2009 [0 7078 {0] 3,830 | 0
hanoi(5) 131 | 0 285 0 37 |0 1231 |0 2151 | 0] 243 |0
hanoi03(4) 427 |0 533 0 602 | 2| 6028 |2 6022 |2] 6016 |2
IBM02(9) 3,876 | 0| 5070 | 0 | 10442 |4*| 7,881 | 0 | 959 | 3 | 8132 | 1
ip(4) 203 |0 172 | 0| 630 |0 548 | 0| 1,065 | 0| 3538 |1
pipe03(3) 1,339 |0 1266 |0 | 2006 |0 | 1,275 |0 | 4106 | 1| 1,254 | 0
pipe-sat-1-1(10) | 3,310 | 0 | 5147 | 0 | 2,445 | 0 | 5249 |0 | 4,568 | 0 | 8950 | 0
sat02(9) 17330 | 4 | 14,797 | 4 | 24182 | 7 | 18,843 | 5 | 23,632 | 7 | 20,333 | 6
vis-bme(8) 13,768 | 3 | 10,717 | 2 | 10,449 | 2 | 6,989 | 1 | 18358 | 6 | 13,389 | 4
vliw unsat 2(8) | 19,425 | 5 | 19862 | 6 | 16,983 | 6* | 17,891 | 6% | 21,867 | 7 | 21,364 | 6
w08(3) 2681 | 0 1,421 |0 | 4387 | 1| 1,711 | 0 | 4316 | 1 | 2,223 | 0

| Total(165) | 146,194 | 30 | 108,251 | 19 | 186,426 | 49 | 145,978 | 29 | 212,508 | 56 | 179,997 | 44 |

Table 2.1: Run-times (in seconds) and failures (denoted by ‘F’) for various SAT
solvers with and without HYPERBINFAST. Times which are smaller by 10% than in
competing configurations with the same SAT solver are bolded. Failures denoted by
* are partially caused by bugs in the SAT solver.

31

SAT solver — HaifaSat Siege v1
Preprocessor — — HYPRE H-B-FasT — HYPRE H-B-Fast
Benchmark: Time | F | Time | F | Time | F | Time | F | Time | F | Time |F
01_rule(20) 19172 | 2 | 10,758 | 1| 7,379 | 0 | 20,730 | 4 | 5,318 | 0 | 11,408 | 1
11 rule 2(20) 22975 | 6 | 21,247 | 0 | 7,491 | 0 | 29,303 | 8 | 20,178 | 1 [17,733 | 2
22 rule(20) 27597 | 8 116,825 | 2 | 22226 | 5 | 31,839 |10 | 17,510 | 3 | 29,044 | 9
hme2(6) 1,262 [0| 163 | 0 81 0] 333 |1 156 | 0 85 0
Checkerl-C(4) 682 [0 989 |0 902 0| 4114 | 0| 2,492 | 0 | 3541 | 0
comb(3) 4131 | 1] 4056 | 1 | 4170 | 1] 5679 | 1| 4,439 | 1| 6,027 |1
f2clk(3) 4059 | 1] 3,448 | 1| 4060 | 1| 6,105 | 2 | 5,078 | 1 | 6,063 | 2
fifo8(4) 1,833 | 0| 1,756 | 0 554 0] 555 | 1| L1589 | 0 | 2420 | 0
fvp2(22) 1,995 [0| 3,288 | 0| 2117 |0 | 1,860 | 0 | 2431 | 0 | 2,009 | 0
hanoi(5) 131 |0 119 [0 285 0] 37 [0 802 |[0] 1231 |0
hanoi03(4) 427 [0 979 |0 533 0] 602 | 2| 6014 | 2| 6,028 |2
IBM02(9) 3,876 | 0| 11,072 | 3 | 5070 | 0 | 10,442 | 4 | 12,653 | 3 | 7,881 | 0
ip(4) 203 | 0] 365 |0 172 0] 630 [0 349 [0] 548 |0
pipe03(3) 1,339 [0] 1,809 | 0| 1,266 | 0 | 2006 |0 | 1,822 | 0 | 1,275 | 0
pipe-sat-1-1(10) | 3,310 | 0 | 27,130 | 10 | 5147 | 0 | 2445 | 0 | 30,029 | 10| 5249 | 0
sat02(9) 17,330 | 4 | 16,669 | 4 | 14,797 | 4 | 24,182 | 7 | 17,662 | 4 | 18843 | 5
vis-bme(8) 13,768 | 3 | 10,139 | 2 | 10,717 | 2 | 10449 | 2 | 5,715 | 0 | 6,989 | 1
vliw unsat 2(8) | 19425 | 5 | 20421 | 6 | 19,862 | 6 | 16,983 | 6 | 20,375 | 6 | 17,891 | 6
w08(3) 2681 | 0| 2,899 | 0| 1,421 | 0 | 4387 [1| 2726 | 0| 1,711 | 0

| Total(165)

| 146,194 | 30 | 154,132 [30 | 108,251 | 19 | 186,426 | 49 | 156,910 | 31 | 145,978 | 2

Nes)

Table 2.2: Run-times (in seconds) and failures (denoted by ‘F’) for HaifaSat and
Siege v1, without preprocessing and when combined with HYPRE and HYPERBIN-
FAsT. All run-times include both the preprocessing and the SAT solving times. Times
which are smaller by 10% than in competing configurations with the same SAT solver

are bolded.

HYPRE HYPERBINFAST

Benchmark: HyYPRE | SAT | HYPERBINFAST | SAT
01_rule.k95.cnf 377 1679 4 1504
11 _rule2.k70.cnf | 1387 47 71 285
22_rule.k70.cnf 671 251 51 1410
fifo8_400.cnf 164 1226 12 309
Tpipe.cnf 651 258 147 416
ipH0.cnf 109 82 6 79
w08_14.cnf 1231 5 267 298

| Total: | 4590 | 3548 | 558 | 4301 |

32

Table 2.3: Few representative instances for which both HYPRE and HYPERBIN-
FAST terminated before their respective (different) timeouts. The SAT times refer to
HaifaSat’s solving time. It can be seen that typically the solving time is longer after
HyYPERBINFAST, but together with the SAT solver time it is more cost effective than

HYPRE.

Chapter 3

The CMTF decision heuristic

3.1 Introduction

A SAT solver can be thought of as a search engine based on enumeration of solutions,
but also as a proof engine based on inference through the resolution rule. Tradition-
ally the first view was dominant, hence the emphasis in designing SAT solvers and
explaining their success was on pruning search spaces. Decision heuristics and learn-
ing schemes can all be interpreted as aiming at this goal. Yet the harder and larger
the CNF instances are, pruning alone cannot account for the success of modern SAT
solvers. It is their ability as proof engines that makes them succeed. This distinction
has practical implications, too. For example, for many years decision heuristics gave
higher priority to variables in shorter clauses, and to learning shorter conflict clauses.
The reasoning was that such clauses can potentially prune larger search-spaces. Al-
though this claim is true, all modern decision heuristics (VSIDS [8], VMTF [7], Berk-
min [6]) ignore the length of the clauses, after reaching empirically the conclusion that
there are more important considerations. Ryan experimented in his thesis [7] with
first-UIP and all-UIP learning schemes, and although the latter generate on average
shorter clauses, the former is empirically better. He hypothesized that the learning
scheme should be geared towards resolution rather than for pruning. In this chapter

we extend this approach by looking on clause-learning and the decision heuristic as

33

34

one complete mechanism and refer to a SAT solver as a prover rather than as a search
engine. It turns out, empirically, that when conflict clauses are effective, which is the
case in all real-world instances, this is the right way to go.

Not only that a DPLL-based SAT-solver can be seen as a proof engine, various
strategies, we argue, can be explained through the popular abstraction/refinement
framework, which is very common in verification. The connection between these
two worlds is due to the fact that conflict clauses are derived through a process of

resolution. If a clause c is derived by resolution from a set of clauses ¢; ... ¢, then
citN---N¢, —cC

while the other direction does not hold. As we will show in Section 3.2, we can view
¢ as an over-approximating abstraction of the resolving clauses ¢; . ..c,. Attempting
to satisfy ¢ first, therefore, can be seen as an attempt to satisfy the abstract model
first. And like any abstraction/refinement technique, a successful assignment to ¢
is one that satisfies the concrete model (the ¢;...¢, clauses) as well. Further, an
unsuccessful assignment leads to a refinement step, or, in our case, to derivation of
new conflict clauses which further constrain the abstract model. According to this
model, Berkmin is only one of many possible strategies to refine the abstract model.
In Section 3.3 we suggest one such alternative clause-based decision heuristic called
Clause-Move-To-Front (CMTF), which attempts to follow the order of the clauses in
the resolve-graph rather than their chronological order in which they were created.
In Section 4 we also show a resolution-based score function for choosing the variable
from the selected clause and a similar function for choosing the sign. In Section 4.3
we report experimental results on hundreds of industrial benchmarks that prove the

advantage of our approach.

3.2 Background

The explanation of our methods and the analysis of various heuristics later on will

require some basic definitions.

35

The Abstraction-refinement model: from structures to formulas

The classic use of the terms abstraction and refinement in the context of model-
checking is the following. Let M be a Kripke structure, L(M) the set of propositions
labeling its states and £(M) the language defined by M. A model M is an over-

~

approximating abstraction of M such that L(M) C L(M), if for every property ¢

MEp—MEe. (3.1)

Equivalently, for every string s,
se L(M)—se L(M). (3.2)

The inclusion relation is defined with respect to the alphabet of the language, e.g.,
s € L(M) is defined with respect to the projection of s to L(M).

M is a refinement of M with respect to M, if for every string s,
s€ L(M)— s e L(M), (3.3)

and
se L(M) —seL(M). (3.4)

Abstraction-Refinement is a process in which we find increasingly accurate models
(closer to the concrete model M) until proving the property or, in the worst case,
reaching the original model M.

In this chapter we wish to bridge between the terminology and notations of models
and strings on one hand, and the terminology and notations of formulas and satisfying
assignments on the other hand. Thus, consider now formulas rather than models.

For two formulas f and f such that var(f) C var(f), we can restate an implication

of the form
f—= 1 (3.5)

by saying that for every assignment «,

abEf—alf (3.6)

36

As usual satisfaction is defined with respect to a projection of a to the variables of

the formula.

Due to the resemblance to Formula 3.2, we now say that f is a conservative

abstraction (over-approximation) of f.

Further, for a formula f; such that var(f) C var(fi) C var(f), we can restate

f—h (3.7)
and
- f (3.8)
by saying that for every assignment c«,
alEf—oalfi (3.9)
and
aEfi—oakf (3.10)

Once again, due to the resemblance of Formulas 3.3 and 3.4 to Formulas 3.9 and 3.10,
we now say that f; refines f with respect to f.

Continuing with this terminology, abstraction-refinement for formulas is an itera-
tive process, in which one begins with some abstract formula f of a concrete formula
f and gradually refines it through a series of formulas fl, ceey fn until proving or
disproving the desired property of f. Here again, in the worst case fn = f. Thus,
there is a parallelism between abstraction refinement of structures, and the process

described here for formulas.

3.2.1 Conflict clauses and resolution

The well-known binary resolution rule is:

aV...Va,Vp by V...Vby,V(—=P)
arV...Va,Vb V...Vb,

where ay,...ay,, by, ...by,, 0 are literals. 3 is known as the resolution variable of this

derivation. Clauses (ai,...,an,3) and (by,...,b,, 3) are called resolving clauses and

37

clause (ay, ..., a,,by,...b,) is a resolvent. It follows by the soundness of the rule, that
the resolvent is always implied by its resolving clauses and, using the terminology of
§3.2, can be thought of as an abstraction of the clauses that participated in the

derivation.

Algorithm 7 The First-UIP resolution algorithm

procedure ANALYZECONFLICT(Clause: conflict)
2: currentClause < con flict;
ResolveNum « 0;
4: NewClause « (;

repeat
6: for each literal lit € currentClause do
v «— var(lit);
8: if v is not marked then
Mark v;
10 if dlevel(v) = CurrentLevel then
++4 Resolve Num;
12: else
NewClause — NewClause U {lit};
14: end if
end if
16: end for
u «— last marked literal on the assignment stack;
18: Unmark var(u);
—— ResolveNum;
20: ResolveCl «— Antecedent(u);
currentClause «— ResolveCl \ {u};
22: until ResolveNum = 0;

Unmark literals in NewClause;
24: NewClause «— NewClause U {u};

Add NewClause to the clause database;
26: end procedure

We now show why the process of generating conflict clauses indeed can be seen as a
sequence of resolution steps. Algorithm 7 shows a simple and efficient implementation
of the First-UIP resolution scheme, which is implemented in most competitive SAT

solvers, including our solver HATFASAT. We will refer to this algorithm simply as

38

the resolution algorithm. First, a conflicting clause is set to be the current resolved
clause. The main loop processes literals in the current clause. All literals from the
previous decision levels are gathered into NewClause at line 13 and marked. Literals
from the current level are marked in order to resolve on them further (i.e., make
them the resolution variables). In every iteration a new marked (yet unprocessed)
literal u is chosen in line 17. This literal must be from the current decision level.
The algorithm resolves on u by setting currentClause to be the antecedent clause
without .

Resolve Num counts the number of the marked literals from the current decision
level that still have to be processed. When ResolveNum = 0 at line 22, then u
is the FirstUIP or the asserted literal. The negation of this literal is added to the
NewClause causing u’s value to be flipped after backtracking. For more details on
the resolution algorithm see [8, 7).

We will use the following definition in order to denote the initial state of NewClause:

Definition 3.2.1 (Asserting clause). Suppose a new conflict clause C' was created
in Alg. 7 with asserted literal u. Suppose also that the solver backtracks after the
conflict to level dl. Then C' becomes an asserting clause when it implies @ for the

first time at level dl, and stops being asserting when the solver backtracks from di.
It follows from definition that every conflict clause becomes asserting exactly once.

Example 3. Consider the following partial implication graph and set of clauses.
Denote by Resolve(s,t,) the binary resolution of clauses s and t with the resolution
variable x. Then the conflict clause cs : (19, T2, 724) is computed through a series
of binary resolutions, starting from the conflicting clause cy4, and going backwards on
the tmplication graph until all literals in the conflict clause are either from previous

decision levels or the firstUIP.

Resolve(Resolve(Resolve(cy, ¢3,x7)), 2, Xg), 1, T5) = (T10, T2, TT4)

Algorithm 7 implicitly performs these resolution steps while computing the conflict

clause cs. O

39

cg = (mxyVayVas)

Co = (_|(II4 V 10 V .Z‘G)
c3 = (—x5V gV)
Cy, = (ﬁZEG V 1‘7)

Figure 3.1: A partial implication graph and set of clauses demonstrate ANALYZE-
CONFLICT. x4 is the FirstUIP, and complxy is the asserted literal.

NewClause is derived through a series of binary resolutions that can be seen as
a tree: every time the solver reaches line 21, an intermediate clause (consisting of all
marked literals) is resolved with the antecedent clause of the chosen resolution vari-
able. We can treat this process as one atomic action of Hyper-resolution (resolution
between more than two clauses). Since each conflict clause is derived from a set of
other clauses, we can keep track of this process with a Resolve-Graph. Here we define
a variation of the well-known resolve-graph that distinguished between two types of

resolutions:

Definition 3.2.2 (Colored Resolve Graph). A Resolve Graph is a directed acyclic
graph where each node corresponds to a clause, and there is an edge (u,v) if and only
if v participated in the Hyper-resolution of u as a CurrentClause at line 6 of Alg 7.

The color of the edge (u,v) is defined to be blue if v was an asserting (conflict)

clause during the resolution and red otherwise.

In this graph, edges come from the resolvent to its resolving clauses. The leafs
of the graph correspond to the original clauses in the formula. Notice that since a
conflict at level dl necessarily implies that the solver backtracks from dl and unassigns

all the variables that were resolved on, any asserting clause which participated in the

40

>‘@

o

Figure 3.2: A resolve-graph corresponding to the implication graph in Figure 3.1

© ©

—7,@3

c1 = (—wgVasVrs) \ p

®1,Q5
C3 (—|:Ij'5 V —Tg V —|,ZL'7) / T4 Lo

Cy = (_|l’6 V I7)

Figure 3.3: A partial implication graph corresponding to ci,c3,cq and the decision
I4@5

resolution will stop being asserting. Therefore for any conflict clause there can be at
most one incoming blue edge. The original clauses do not have outgoing edges, and

only red incoming edges.

Example 4. Consider once again the implication graph in Figure 3.1. Since ¢y .. .cq4
participate in the resolution of cs, the corresponding resolve-graph is as appears in
Figure 3.2. Assuming that cy...cq4 are original clauses, then all the edges in this
graph are red, because original clauses cannot be asserting.

Now consider a similar case in which co is not an original clause, and at the
time when x,Q5 is assigned it does not yet exist. The implication graph at this stage
appears in Figure 3.3. Now assume that due to further decisions and tmplications
i deeper decision levels a conflict is encountered, the solver creates the new conflict
clause cg, backtracks to decision level 5 and asserts xg@b. This, in turn, completes

the implication graph to the way it looks in Figure 3.1. But now, since cy asserts xg,

41

C110

C10

Berkmin direction

€1 C50 €100 70110 C20 C13 C37

(a) (b)

Figure 3.4: Berkmin’s decision heuristic can be thought of as an abstraction-
refinement process, where a range of the conflict clauses from the right end until
¢; represents an abstract model of the clauses on the left of ¢;. (a) Berkmin clauses
stack: after encountering a conflict, the new resolved clauses are added on the right
end. By the time the solver returns to csg, it will have a partial assignment that
satisfies a refined model, i.e. the clauses cs; ... c110 (b) The resolve sub-graph of some
newly created clauses. Grey thick edges denote the blue edges in the graph.

we consider its edge on the resolve-graph from cs as blue. O

The distinction between the two type of edges is important because a blue edge

(u,v) indicates that the solver had to create u in order to later create v'.

3.2.2 The Berkmin Decision heuristic

We have already described the Berkmin Decision heuristic in our introduction. Let
see this heuristic in more detail.

Berkmin [6] pushes every new conflict clause to a stack, and makes a decision by
choosing an unassigned variable from the last unsatisfied conflict clause in this stack
(if there is more than one such variable, it uses the VSIDS score system). If all the
conflict clauses are satisfied, it continues with a different heuristic.

In Fig. 3.4(a) we show a sketch of the progress of Berkmin, which is helpful
in understanding why this process can be seen as abstraction-refinement. Clauses
1, ..., c100 are conflict clauses ordered by their creation time (¢ is first). Berkmin
tries to satisfy these clauses from last to first, i.e. from right to left. Suppose that
all clauses cs ... 199 are already satisfied, and now Berkmin focuses on c59. We refer

to S = {cs1,...,ci00} as our current abstract formula of the original formula ¢ (it is

By this we do not mean that this is the only way to create v.

42

abstract because each of the clauses in S is derived by a resolution chain from the
clauses of ¢). Clauses in S must be satisfied, since the decision heuristic reached cs.
Berkmin now makes a decision on a variable from c5y which leads to a conflict and
learning of a new clause. The decision heuristic backtracks to the clauses on the end
of the list, until finally, through possibly additional iterations of conflicts and added
clauses, it reaches c5p again while all the clauses to its right are satisfied. Denote by
S’ the clauses to the right of ¢ at this point, e.g. S" = {¢51...,c110}. Clearly S C 5’
and S’ is an abstraction of . We can therefore say that S’ is a refinement of S with
respect to .

This view of the process possibly explains why a strategy of giving absolute priority
to variables in a specific clause is empirically better than previous approaches like
VSIDS that used only a score function.

Fig. 3.4(a) shows a ‘linear’ view of the conflict clauses in the order that they
are added, which is also the order in which they are considered by Berkmin. The
Berkmin heuristic never tries to satisfy a clause before satisfying its resolvents and
thus mimics a gradual process of refinement.

A different view of conflict clauses considers their partial order in the Resolve
Graph. Fig.3.4(b) presents a possible Resolve sub-Graph corresponding to the same
set of clauses. After the conflicts, Berkmin starts from satisfying cj19. cip2 is a
resolving clause that can potentially refine the initial model, however Berkmin first
passes through g5, ¢104, 103 to Which ¢119 is not connected at all. Therefore Berkmin
is dispersed trying to refine several abstractions. Such unfocused behavior can lead to
longer proofs. This problem is exactly what our decision heuristic CMTF attempts
to solve, as we soon show.

Our SAT solver HAIFASAT makes a decision in three steps: it chooses an unsatis-
fied clause according to the CMTF heuristic, it then chooses an unassigned variables
from this clause, and finally gives it a value. The next sections describe in detail these

decision steps.

43

1: S = roots(ResolveGraph); > The resolvent clauses that did not resolve other
clauses.

2: Choose an unsatisfied clause (vertex) v € S;

3: Process v; > Processing a clause, among other things, satisfies it.

4: S = SUchildren(v);

5: Goto 2

Figure 3.5: A Resolve-Graph Based decision heuristic

3.3 The Clause-Move-To-Front (CMTF) decision
heuristic

The description above of Berkmin’s decision heuristic, and the alternative view of the
conflict clauses as being part of a resolve-graph, hints towards the process which is
described in Figure 3.5. In this general scheme a clause is processed only if at least
one of its abstractions (its resolvent clauses) has already been processed. It is easy
to see that Berkmin is an instantiation of the scheme. In fact, Berkmin is more strict
and processes a clause only if all its abstractions are satisfied.

CMTF is a method that instantiates this scheme in a different way. It causes the
decision heuristic to be more focused on the current refinement path, i.e. to satisfy

children of the currently satisfied clause s. It works as follows:

e All the conflict clauses are stored in a list.

e During the resolution in Alg 7, a bounded number of resolving conflict clauses
which are processed at line 6 are moved to the front (front corresponds to the
right end of Fig 3.4(a)). The newly created clause NewClause is also added to
the list (can be done at line 25).

e Clauses are processed from right to left in the list, while ignoring satisfied
clauses. If all the conflict clauses are satisfied then the original VMTF strategy
(from Siege [7]) is applied.

The idea of this strategy is to keep clauses that participate in resolution adjacent

44

to their resolvents (at least until the next time they participate in a resolution, a case
in which they can be moved to a new location).

CMTF shows a big improvement on many industrial problems comparing to the
Berkmin heuristic. Both are specific instantiation of the scheme showed above. The
advantages of CMTF is its simplicity and the fact that the explicit storage of the
resolve-graph is not required. However, it seems that there is still room for future
research on how to use the general scheme. For example, classic Al search methods
like best-first-search can be used to decide on the exploration order of nodes in S at
line 2. It may happen that partial or full storage of the resolve-graph will improve

the performance.

Chapter 4

Resolution-based-scoring

4.1 Introduction and some definitions

In the previous chapter we showed how HAIFASAT decides which clause to satisfy first.
Given a clause ¢ there can still be several ways to satisfy it. HAIFASAT computes
dynamically an activity score for each variable and then chooses the variable with the
maximal score. Then another sign score is used to determine its Boolean value.

We define a scoring heuristic based solely on the resolution algorithm (Algorithm
7). The idea, intuitively, is to give higher weights to variables that were frequently
resolved on recently, while distinguishing between resolutions that were necessary
for the progress of the solver, and those that were made due to the imperfection of
the decision heuristic. We will need several definitions and lemmas to explain this
heuristic more precisely.

Suppose that every time the solver makes a decision or processes a conflict it writes
into a log the event a; = (dl, e) where dl is the decision level where the event occurred
and e € ConflictsUDecisions is either a conflict event or a decision event. The global
index i is incremented every time the event happens. We call the sequence {a;} the
flat log of the solver’s run. We will denote by DL(a;) the decision level of the event.
We consider only the case in which dl > 0. All conflict events other, potentially, than

45

46

the last one in an unsatisfiable instance are included by this definition!. It must hold
that for any conflict ¢ there exists a decision d at the same level as ¢. In such a case,

we say that d is refuted by c¢. More formally:

Definition 4.1.1 (Refuted decision by a conflict). Let a; = (dl, ¢) be a conflict event.
Let a,, = (dl,d), k < j, be the last decision event with decision level dl preceding a;
(note that for ¢ € [k + 1,57 — 1] : DL(a;) > dl). We say that d is the refuted decision

of the conflict ¢, and write D(a;) = ay.

Note that because of non-chronological backtracking the opposite direction does
not hold: there are decisions that do not have conflicts on their levels that refute
them.

For any conflict event a;, the range (D(a;),a;) defines a set of events that hap-
pened after D(a;) and led to the conflicts that were resolved into the conflict a;

which, in turn, refuted D(a;). These events necessarily occurred on levels deeper

than DL(D(a;)).

Definition 4.1.2 (Refutation Sequence and sub-tree events). Let a; be a conflict
event with a; = D(a;). Then the (possibly empty) sequence of events a;41, ..., a;j_1 is
called the Refutation Sequence of a; and denoted by RS(a;). Any event a; € RS(a;)

is called a sub-tree event of both a; and a;.

Example 5. Consider the conflict event a; := (27, c119) in Fig. 4.1. For every event
a; that follows decision D(a;) = (27, dao2) until (but not including) the conflict c119
it holds that a; € RS(a;). Note that the solver can backtrack from deeper levels to
level 27 as a result of conflict events. However no event between a; and a; occurred

on levels smaller or equal to 27. O

The number of resolutions for each variable is bounded from above by the number
of sub-tree conflicts that were resolved into the current conflict. However, not all

sub-tree conflict clauses resolve into the current refuting conflict. Some of them could

LA conflict that occurs at level 0 proves that the instance is unsatisfiable.

47

doo2 = 130@Q27 T43 —x78 C110

implications

implications
C101

events

events

Figure 4.1: A possible scenario for the flow of the solver’s run. After deciding x3q at
decision level 27 the solver iteratively goes down to deeper decision levels and returns
twice to level 27 with new asserted literals z43 and T7s. The latter causes a conflict at
level 27 and the solver backtracks to a higher decision level. Implications in the boxes
denote assignments that are done during BCP after implying decision or asserting
literal.

be caused by the imperfection of the decision heuristic and are therefore not used at
this point of the search. Our goal is to build a scoring system that is based solely
on those conflicts that contribute to the resolution of the current conflict clause. In
other words, we compute for each variable an activity score which reflects the number
of times it was resolved-on in the process of generating the relevant portion of the
refutation sequences of recent conflicts. We hypothesize that this criterion for activity
leads to faster solution times.

The information in the colored resolve-graph can enable us to compute such a

score.

Definition 4.1.3 (Asserting set). Let G = (V, E) be a colored resolve-graph, and let
v € V be a conflict clause. The Asserting set B(v) C V of v is the subset of (conflict)
clauses that v has a blue path to them in G.

The following theorem relates between a resolve-graph and sub-tree conflicts.

Theorem 4.1.1. Let e, be the conflict event that created the conflict clause v. Then
the asserting set of v is contained in the refutation sequence of e,, i.e. B(v) C
RS(ey). In particular, since conflict events in B(v) participate in the resolution of v by
definition, they necessarily correspond to those sub-tree conflicts of e, that participate

in the resolution of v.

48

Note that B(v) does not necessarily include all the sub-tree conflicts that resolve
into v, since the theorem guarantees containment in only one direction. Nevertheless,
our heuristic is based on this theorem: it computes the size of the asserting set for
each conflict.

In order to prove this theorem we will use the following lemmas.

Lemma 4.1.2. Denote by stack(a;) the stack of implied literals at the decision level
DL(a;), where a; is a decision event. Suppose that a literal t is asserted and entered
into stack(a;), where a; is a decision event. Further, suppose that t is asserted by
the conflict clause cl (cl is thus asserting at this point) which was created at event a;.

Then it holds that j <, i.e cl was created after the decision event a; occurred.

Proof. Right after the creation of ¢/, the DPLL algorithm backtracks to some level
dl" with a decision event a, = (dl’,d) and implies its asserted literal. It holds that
k < i, because the solver backtracks to a decision level which already exists when ¢l is
created. By the definition of an asserting clause, ¢l can be asserting exactly once, and
since cl is asserting on level dl’, it will never be asserting after the DPLL algorithm
will backtrack from dlI’. Therefore it must hold that ay, = a; (k= j) and dl' =dl. O

g

Lemma 4.1.3 (Transitivity of RS). Suppose that a;,a; are conflict events s.t. a; €
RS(a;). Then, for any event a, € RS(a;) it follows that a, € RS(a;).

Proof. First, we will prove that D(a;) € RS(a;), or, in other words, that D(a;)
occurred between D(a;) and a;. Clearly, D(a;) occurred before a; and, therefore,
before a;. Now, falsely assume that D(a;) occurred before D(a;). Then the order
of events is D(a;), D(a;), a;. However, this can not happen since D(a;) occurred on
shallower (smaller) level than a; and this contradicts the fact that all events between
D(a;) and a; occur on the deeper levels. Therefore, both D(a;) and a; occurred
between D(a;) and a;. Now, since a; happened between D(a;) and a; it also happened
between D(a;) and a; and from this it holds that a; € RS(a;). 0

O

49

Using this lemma we can now prove Theorem 4.1.1.

Proof. We need to show that any blue descendant of v is in RS(e,). By Lemma 4.1.3
it is enough to show it for the immediate blue descendants, since by transitivity of RS
it then follows that for any blue descendant. Now, suppose that there exists a blue
edge (v, u) in the resolve-graph. By the definition a blue edge, clause u was asserting
during the resolution of v. On the one hand, u was resolved during the creation of
v and, therefore, was created before v. On the other hand, by Lemma 4.1.2 it was
created after D(e,). Therefore, e, € RS(e,). O

O

Definition 4.1.4 (Sub-tree weight of the conflict). Given a resolve-graph G(V, E)
we define for each clause v a state variable W (v):

> Wu)+1 v is asserting
W('U) — (vyu)eE

0 otherwise

The function W (v) is well-defined, since the resolve-graph is acyclic. Moreover,
since the blue sub-graph rooted at v forms a tree (remember that any node has at
most one incoming blue edge), W (v) equals to |B(v)| 4+ 1. Our recursive definition of
W (v) gives us a simple and convenient way to compute it as part of the resolution
algorithm. Algorithm 8 is the same as Algorithm 7, with the addition of several lines:
in line 5 we add W « 1, at line 24 we add W+=W (ResolveCl) and, finally, we
set W(NewClause) «— W at line 29. We need to guarantee that W (C') is non-zero
only when C'is an asserting clause. Therefore, for any antecedent clause C, when its

implied variable is unassigned we set W (C') « 0.

4.2 Computing the scores of a variable

Given the earlier definitions, it is now left to show how activity score and sign score
are actually computed, given that we do not have the resolve-graph in memory. For

each variable v we keep two fields: activity(v) and sign_score(v). At the beginning

50

of the run activity is initialized to max{lit_num(v),lit_.num(v)} and sign_score to
lit_num(v) — lit_num(v). Alg. 8 shows the extended version of the resolution algo-
rithm which computes the weights of the clauses and updates the scores. Recall that
any clause weight is reset to zero when its implied variable is unassigned, so that
any clause weight is contributed at most once. In order to give a priority to recent
resolutions we occasionally divide both activities and sign scores by 2.

Our decision heuristic chooses a variable from the given clause with a biggest
activity and then chooses its value according to the sign score: TRUE for the positive

values and FALSE for the negative values of the sign score.

4.3 Experiments

Table 4.2 shows experiments on an Intel 2.5Ghz computer with 1GB memory run-
ning Linux, sorted according to the winning strategy, which is CMTF combined
with the RBS scoring technique. The benchmark set is comprised of 165 industrial
instances used in various SAT competitions. In particular, fifo8, bmc2, Checker-
Interchange, comb, f2clk, ip, fup2, IBMO02 and w08 are hard industrial benchmarks
from SATO02; hanoi and hanoi03 participated in SAT02 and SATO03; pipe0s is from
SATO3 and 01_rule, 11_rule_2, 22_rule, pipe-sat-1-1, sat02, vis-bme, vliiw_unsat_2.0
are from SATO04 [10, 3, 4]. The timeout for each instance was set to 3000 seconds. If
an instance could not be solved in this time limit, 3000 sec. were added as its solving
time. All configurations are implemented on top of HaifaSat, which guarantees that
the figures faithfully represent the quality of the various heuristics, as far as these
benchmarks are representative. The results show that using CMTF instead of Berk-
min’s heuristic for choosing a clause leads to an average reduction of 10% in run time
and 12-25% in the number of fails (depending on the score heuristic). It also shows
a 23% reduction in run time when using RBS rather than VSIDS as a score system,

and a corresponding 20-30% reduction in the number of fails.

ol

Algorithm 8 First-UIP learning scheme, including scoring

procedure ANALYZECONFLICT(Clause: conflict)
2: currentClause < con flict;
ResolveNum «+ 0;
4: NewClause « 0;

wght «— 1;
6: repeat
for each literal lit € currentClause do
8: v «— var(lit);
if v is not marked then
10: Mark v;
if dlevel(v) = CurrentLevel then
12: +4 Resolve Num;
else
14: NewClause «— NewClause U {lit};
end if
16: end if
end for
18: u «— last marked literal on the assignment stack;
Unmark var(u);
20: activity(var(u)) += wght;
sign_score(var(u)) —= wght - sign(u);
22: —— ResolveNum;
ResolveCl «— Antecedent(u);
24: wght+= W(ResolveCl);
currentClause < ResolveCl \ {u};
26: until ResolveNum = 0;

Unmark literals in NewClause;
28: NewClause «— NewClause U {u};
W (NewClause) « wght ;
30: Add NewClause to the clause database;
end procedure

BERKMIN+RBS | BERKMIN+-VSIDS CMTF-+RBS CMTF+VSIDS
Benchmark | instances | time | fails | time fails time | fails | time | fails
hanoi 5 38018 | 0 [53062 | 0 [13072 | 0 | 7455 | 0
ip 4 191.02 | 0 | 39552 | 0 | 20324 [0 | 32427 | 0
hanoi03 4 [1825 | 0 | 13421 | 0 | 42687 | 0 | 38628 | 0
Checker]-C 4 [136825 | 0 [332316 | 0 | 68156 | 0 [3457.78 [0
bmc2 6 | 1731.96 | 0 | 1030.9 | 0 [126197 | 0 | 1006.94 | 0
pipe03 3 845.07 | 0 [6459.62 | 2 [133929 | 0 | 6160.12 | 1
fifo8 4 [187757 | 0 | 394431 0 | 183265 | 0 [338261 | 0
fp2 22 | 138564 | 0 [863863 1 [199517 0 | 112337] 3
w08 3 | 254862 0 [534762 1 [268096 | 0 | 445328 | 0
pipe-sat-1-1 10 [174323 | 0 | 388149 | 0 [331041 [0 | 6053.84 | 0
IBM02 9 | 708355 | 1 [971052 | 1 [387564 | 0 | 7163.95 | 0
fclk 3 | 4380.04 | 1 [513525 | 1 [408862 | 1 | 453815 | 1
comb 3 [301505 [1 [368145 | 1 [413105 | 1 | 4034.53 | 1
vis-bme 8 [1528445[3 [79059 | 1 [13767.52| 3 [10119.34] 2
sat02 O [17518.09 | 4 [22785.77| 5 [17320.64| 4 [21262.25| 4
0Lrule 20 | 2274211] 4 [33642.33] 9 [191715 | 2 [23689.37] 5
viwunsat 2.0 | 8 [16600.67 | 4 [24003.62| 8 [1942541| 5 [22756.03] 7
11 rule 2 20 | 31699.69 | 8 [34006.97| 10 [229747 | 6 |28358.05] 6
22rule 20 | 2884407 8 [33201.87] 10 [27506.78 | 8 |30669.91| 8
| Total: | 165 | 1617065 | 34 [208967.7| 50 |146193.7| 30 | 189125 | 33 |

52

Figure 4.2: A comparison of various configurations, showing separately the advantage
of CMTF, the heuristic for choosing the next clause from which the decided variables
will be chosen, and RBS, the heuristic for choosing the variable from this clause and

its sign.

53

4.4 Summary of chapters 3 and 4

We presented an abstraction/refinement model for analyzing and developing SAT de-
cision heuristics. Satisfying a conflict clause before satisfying the clauses from which
it was resolved, can be seen according to our model as satisfying an abstract model
before satisfying a more concrete version of it. Our Clause-Move-To-Front decision
heuristic, according to this model, attempts to satisfy clauses in an order associated
with the resolve-graph. CMTF does not require to maintain the resolve-graph in
memory, however: it only exploits the connection between each conflict clause and
its immediate neighbors on this graph. Perhaps future heuristics based on this graph
will find a way to improve the balance between the memory consumption imposed
by saving this graph and the quality of the decision order. We also presented a
heuristic for choosing the next variable and sign from the clause chosen by CMTF.
Our Resolution-Based-Scoring heuristic scores variables according to their involve-
ment (‘activity’) in refuting recent decisions. Our experiments show that CMTF and
RBS either separately or combined are better than Berkmin and the VSIDS decision

heuristics.

Bibliography

1]
2]

http://www.cs.toronto.edu/~fbacchus.

F. Bacchus and J. Winter. Effective preprocessing with hyper-resolution and
equality reduction. In SAT 2003, volume 2919 of Lect. Notes in Comp. Sci.,
pages 341-355, 2003.

D. Le Berre and L. Simon. The essentials of the sat’03 competition. . In editor
A. Tacchella E. Giunchiglia, editor, Sizth International Conference on Theory
and Applications of Satisfiability Testing (SAT2003), volume 2919 of LNAI, pages
452-467. Springer-Verlag, 2003.

Daniel Le Berre and Laurent Simon. Fifty-five solvers in vancouver: The sat

2004 competition. In SAT (Selected Papers, pages 321-344, 2004.

Ronen I. Brafman. A simplifier for propositional formulas with many binary
clauses. In Proceedings of the International Joint Conference on Artifical Intel-

ligence, 2001.

E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Design,
Automation, and Test in Europe (DATE °02), pages 142-149, March 2002.

L.Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis,

Simon Fraser University, 2004.

o4

8]

95

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proc. Design Automation Conference (DAC’01), 2001.

J.P.M. Silva and K.A. Sakallah. GRASP - a new search algorithm for satisfia-
bility. Technical Report TR-CSE-292996, Univerisity of Michigen, 1996.

L. Simon, D. Le Berre, and E. Hirsch. The sat2002 competition. Accepted for
publication in Annals of Mathematics and Artificial Intelligence (AMAI), 43:343—
378, 2005.

Allen Van Gelder and Yumi K. Tsuji. Satisfiability Testing with More Reasoning

and Less Guessing.

R. Williams, C. Gomes, and Selman. Backdoors to typical case complexity.

IJCAI03, 2003.

N°PI0D TIN5 INIDT DR IN27 W1 1991 ,N°0R00AR 0 7197 IR 7INDY Op

X ,a8N72 .Berkmin npouo 1% 713012 ,7%0 0°127 DR 2019w 2197 uponIp
n>»ww Clause Move To Front — CMTF awa awIn ap 00010 22070
Berkmin 1 ,>7°91R 19182 ,701° 230 NHYVIDY 7200 INIRY

WIOW Opna 197 WK HaifaSat awa wn SAT 20192 Wwna pnn NIRYIN
2005 niw? SAT 9% MR, 1°27 Nnna

VI

M0 2P 2°9YOH KXY IR0 YW 01D YT HY 110 OX N1INK N1PRI0D
SMIRIAT A732 DO9AVD NROXA T DY

:0°111°0 1WA 197057 1YW MW

D°9°V57 MR 79,7252 9IRI°27 07 Pw 2wt nann BCP-a v abyona X
N2 2R (7732 22w 901 W MDN3) AT NN 3IP° M N0Y 79V
DNPINAIRA AWK MPIA Y (MW 2 IR MR 7092 DOV MR
onpni

PDOIN K17 OK O3 11N 12 WO QNAIRD 9 ,any-time D Wnayan anaRT .2
N7 1MV "N NWRIA AWK TR00°71T OV 22WN QN AR LI¥IT 910 219
VWO KDY 10T DR NINDY X357 NPIPOVT 1NI0AW 71 VPWIIW JATY Ona
M7 Y219 7T 127w 227N 120V TPRAN DR XYY M2wn w1991 ,I0IR
ONOMAYRT 5w N9

TIN2 UPAT NV YW ARU0°IT RIT OIWT aNOAIRT (V00 DR 2
271 SV NoDAN NYXIAT AR 0o T .DPLL — SAT nvno Hw an o
12 19IRTT IR NI 210 P27 1001 NIV WK LDV 1R WK 0207 SBIIRN
.NrnonR SAT nvya o mhxn DPLL

IN°1 7IP°90 N9 RADMY AN MAPRA DX 12777 NI DY 2°WIT77 2OWIN 1907 197
N27vn RO XM (N2 "pw") 7R OPI0DY M aNan 212319977 N0 Rk
SOXIIT D90 RPN, TN PO 990 O AP0

(Av x)A(BvV—x)
(Av B)

972 127 10°1 ,DPLL nwwa 72397 SAT "m? 1390 >n?2 CNF nno jnna
D°NNEY ,RIOIIN NPPIDD DOATA NPT 2NNE 13T 9732 .RI0NID QORNAT 21X
MY 778 NPI0D AN DY 1472 17401 WK U2°90237 1152100 DO3XN 01NN
DR NMIAZR NNINT A MR MAWRT P90 593 999 NIpn N1pioon
MNWRT 2O 2°NNEY MIRIRNAT NPPI0DIN DY NAIRA YW NOPI0DAY 7720
NIPI09:7 DR 31N T W W 9737 ,7P°90 KD 1011 YW 77PN .NI010]
JIW92 URPYPONP NIPPIDD QYAX1NT QWY 190N N7 QW17 NIRRT

M0 NPPI0D 172 PR 170 DD NIPXIRNT 73 DX MIRI? 1001, 701 ¥a1 932
P21712 TR0 DX MW 1P N1PPI0D 17 1702 MINAR NPPI0D WK
DN W XPIV0AR NAXMY AN DWW MO I 1702 NIATIR N1PRI00)
Ppnn

17 377 NPPIDDT DW PXPI00ARD BPPYE1P N1RPIDD NIRAY IN°I TR RN 3105
TN .(9W £°127 YW PEPOV0AR RIT 9032 9170 DX 93 ,NI0R 0°9n2) 1
NINPR2 0°27 QAN IAPR NROND WAwNAT NTOY/A0We YW 3170 HTn R

NPPI0D NXN NI MATPNT T7°2700 NI22 N°H9 1700 02IRNM 1R L7907
7R ,Berkmin np w01 By 970 5w 21w 2°R% IR .D00R 90170
AN SAT MW 3WwWs 7397 7107 3108 N2°N2 NV M0 NP 0o

v

92PN

772790 71301 NPIRD12 A0 AR (NI 00N W v nova X1 SAT n»va
279 %y SAT >md (A0 DR NPD0R D2 INWwn? ARDA Inwn DR ,m7d)

3% 711 :Conjunctive Normal Form — CNF 2 nvix®912 nxno vops 0¥hapn
N D7IRP12 DoAnwn 2w (MIRT) N2 TR RO 1R DR 92 WK LNpios Hw ("an")
TIANTY .onYhY

(X, VX) A (X)) A (=X, VXV Xy)

Swn X7 ,NRT R01IY NRPD0N AW .07IRA 221NN O X, ... X4 TWRD
x=0, x,=1, x;=1, x,=0

70 5V 217919 NN 191 YIOW ,NAOKR L1100 N1 DW 27 190w 772 KD

MY T MIRADNY 772w IR L,(NP 2 7992 90 ,7wyn?) N1 pIos NIRAon

TIDWH 200K PR 02 (AN DINWA PDPR NINA) TIRA MINTA 7 TOWYNIN
MIRADIT 7132 271 27072 NP 2w M9 20 NNRT Nwva SAT o b amy
.°20 1AT2 11INDY NN OWYNTN NN

WX ,SAT N2 NP N5Y 2°ANNOR DWH 27ANI0R P1W 290X 1IN NNT 7702
timksrikiviiRla)lok

ow oW X Hyperbinfast ,y¥1mi7 anaoK:I :(pre-processing) 07pm M2y .1
°195 CNF - 77 nno nx vwon wR ,Bachus & Winter >7° 5V YXI17W an o83
JINIR 2NDY
IR TTATT DR DWNT SNPRT QNIRRT NP0
CNF — 77 10112 n1v°27 DPPI0DI 070 DY 79WInT 11197 973 R I8 90
D°NN¥T 077 ,3N2°0W 197 ,N1IR1AT N1PIDDTA AR YDA JINWH 9D (X277 1DIN2
NW 20N (oL v F) TMRAN NPP10D 737 119000 NMNTAIN MINAT MNWPE A3
:mnwp

a—>pfp foa
(9732 Manon MNWR MInon M)

M0 DR BWDY 1001 1971 2YIPW 77 2avnaa 29970990 oW AR AT 9732 2Avn
.ORNA2

259911, 77912 X 7INWR 93 MaY X 7Inwa? T 77 20wn PR annoRa
NRT Anwn 007y 19K 71727 °70 (BCP) Boolean Constraint Propagation
NPT AnIY AP0 101 LT 7o T 7y 920pw y manwn 9% .00
T2V YR PRANT IMT IDIND) Ly 7 X 1 AW DWP A1 NIRP NOPI0D
202n ,TAWAT DR DV QNIRRT ,MNWRT o0 R L(F 7vn 5w mnwn

v

N»NI72 WY apnan
TNMY 19 "7
2WnAn Sy TuIPoa

SIONWITI 720757 D207 %NT O 111005 1T N
ON2°%0N DNIP20 0NN OV nIown? 00 TN

STUYT) 977777 5V 0300w 99 170 70

III

ST90D NIYIRY 2D
SAT ny'va bw

PN 9 M0

TRINT NRAPY MWTR B ophn M1 aws
WISV DWINY 00N

VRWNA 3219

DRIWOD SN0 197 - 11°I0V1T VID? WA
2007 2x1725 791 1"'own vaw

II

	thesis
	roman2

