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Abstract

The thesis addresses the problem of finding a small unsatisfiable core of an unsatisfi-

able CNF formula. The proposed algorithm, CoreTrimmer , iterates over each internal

node d in the resolution graph that ‘consumes’ a large number of clauses M (i.e. a

large number of original clauses are present in the unsat core, whose sole purpose is

proving d) and attempts to prove them without the M clauses. If this is possible, it

transforms the resolution graph into a new graph that does not have the M clauses at

its core. CoreTrimmer can be integrated into a fixpoint framework similarly to Malik

and Zhang’s fix-point algorithm (run till fix). We call this option trim till fix.

Experimental evaluation on a large number of industrial CNF unsatisfiable formulas

shows that trim till fix doubles, on average, the number of reduced clauses in

comparison to run till fix. It is also better when used as a component in a bigger

system that enforces short timeouts.

viii



Chapter 1

Introduction

Given an unsatisfiable CNF formula, an unsatisfiable core (UC) is any subset of these

clauses that is still unsatisfiable. The problem of finding a minimum, minimal or just

a small UC has been addressed rather frequently in the last few years [3, 11, 20, 13, 8],

partially due to its increasing importance in formal verification.

The decision problem corresponding to finding the minimum UC is a Σ2-complete

problem [7] and we are not aware of an algorithms for finding it that scales. Finding

a minimal UC (any subset of clauses such that the removal of any one of them makes

the formula satisfiable), according to Papadimitriou and Wolfe [14], is DP -complete1.

It is questionable whether finding a minimal UC has a practical value, however,

since a non-minimal UC can be smaller than a minimal one, as long as it is not

contained in it. Therefore heuristics that do not guarantee minimality, can be both

faster and better than those that guarantee minimality. The latter are useful only

when their result is compared to the core from which they started, and thus can be

used, for example, after another, faster algorithm, has already extracted a small core

and cannot find a smaller one.

Typically UCs are needed as part of a larger system (such as an abstraction/refinement

loop as we will soon describe), and the influence of the size of the UC on the other

1
D

P is the class containing all languages that can be considered as the difference between two

languages in NP, or equivalently, the intersection of a language in NP with a language in co-NP.

1
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parts of the system is only vaguely known. Hence, although more computation time

can lead to finding smaller cores, it is not clear whether it is cost-effective in the over-

all system. This suggests once again that minimality per se is not so important in

practice. Algorithms for extracting small cores should be measured instead by their

velocity : how many clauses they remove from the initial formula per time unit, on

average. They should also be measured by how small they can make the core within a

time limit, in comparison with other algorithms, and whether they can contribute to

a setting in which several of these algorithms are run sequentially or even in parallel.

In Section 6 we measure our suggested technique, called CoreTrimmer , with these

criteria.

Before we describe previous work on this problem, let us mention some of the

typical usages of UCs. A small unsatisfiable core reflects a more precise and focused

explanation of the unsatisfiability of a given formula. In verification, it is used in

several contexts, some of which are the following. Amla and McMillan [2] suggest to

use UCs for a proof-based abstraction-refinement model-checking process: the UC of

an unsatisfiable BMC instance contains information on the state variables that are

sufficient for proving that no bug can be found up to a given depth; based on these

state variables they build a refined abstract model and continue to iterate. Kroening

et al. [9] use unsatisfiable cores for an iterative process of solving Presburger formu-

las: the UC is used for checking whether certain under-approximating restrictions on

the solution space were used in the proof of unsatisfiability. If the answer is yes, these

restrictions should be relaxed. A similar usage of UCs is by Grumberg et al. [6],

in a process of under-approximation and widening of BMC formulas corresponding

to a multi-threaded process (the UC here again is used for detecting whether the

proof of unsatisfiability relies on the underapproximating constraints). Outside veri-

fication, the identification of an inconsistent kernel can be important for solving the

inconsistency in any constraints satisfaction problem. Furthermore, looking beyond

the Propositional world, finding a small unsatisfiable set of constraints is important
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for the efficiency of decision procedures like MathSat and CVC [18] that rely on ex-

planations of the reason of unsatisfiability in order to prune the search space. The

techniques we will discuss in this paper are equally relevant to such systems as they

are for systems based on propositional reasoning.

1.1 Related work

Lynce and Silva [11] suggested an approach for finding a minimal UC, in which a new

‘clause selector’ variable csi, 1 ≤ i ≤ m, is added to each of the m clauses of the

formula (for example, the ith clause (l1 ∨ l2) is replaced with (csi ∨ l1 ∨ l2)). The cs

variable is set to true if and only if the clause is not selected. They then use a SAT

solver that decides first on the cs variables. When all the clauses become satisfied, it

backtracks to the most recent cs variable set to true and changes its assignment to

false. If the solver reaches a conflict and consequently backtracks to the cs variables,

it means that an unsatisfiable core was found. In such a case it records the size of

the core and continues to search for a smaller one, after adding a clause over the

cs variables that blocks the solver from repeating the same core. A similar process

was suggested also by Oh et al. [13] (the ‘Amuse’ algorithm), although they modify

the backtracking mechanism so it performs a bottom-up search for a UC instead of

searching for a satisfying assignment. Different decision heuristics result in different

UCs, which are not necessarily minimal.

Huang suggests the ‘MUP’ (Minimal Unsatisfiability Prover) algorithm in [8].

Rather than usingm clause selector variables, he suggests to augment the clauses with

minterms over log(m+ 1) variables. The augmented formula, he proves, is minimally

unsatisfiable iff there are exactly m models over the y variables (because in this case

every clause that is removed makes the formula satisfiable). Hence, the problem of

proving that an existing set is minimal is reduced to that of model-counting, which

MUP performs with a variable elimination technique over BDDs. This technique

can be taken one step further towards finding a minimal core, by running it not
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more than m times. MUP shows better experimental results than run till fix (see

below), but only, apparently, on hand-made and relatively small formulas, like the

pigeonhole problem. None of the benchmarks reported in [8] has more than several

thousand clauses, and it is not clear how it scales to industrial problems.

A more practical approach is to find a small core without guaranteeing minimality,

while attempting to be efficient and produce intermediate valuable results in case the

external process does not wish to wait for the final result.

Zhang and Malik [20] were the first in the verification community, as far as we

know, to address this problem from a practical point of view. They suggested a

simple and effective iterative procedure for deriving a small unsatisfiable core: they

extract an unsatisfiable core from an unsatisfiability proof of the formula provided by

a SAT solver and then they run the SAT solver again starting from this core, which

may result in an even smaller core. Their script run till fix repeats this process

until the core is equal to a core derived in the previous iteration, or, in other words,

until it reaches a fixpoint. The solution and its implementation seem to be the most

practical one available, and is indeed widely used. The experimental results that we

present in Section 6 are compared against run till fix.

1.2 Thesis Outline

We describe a new heuristic, called CoreTrimmer , for finding a small UC. CoreTrim-

mer takes the role of zVerify in run till fix. It can be either applied once (and

generate a core smaller or equal to that generated by zVerify) or as part of a fix-

point computation, in an algorithm we call trim till fix. We will concentrate on

CoreTrimmer from hereon and return to trim till fix in the description of the

experimental results.

The most common approach to solving SAT formulas (finding a satisfying assign-

ment or declaring that the formula is unsatisfiable) is DPLL-solving. Such a solver
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performs a search for a satisfying assignment using constraint propagation, intelli-

gently backtracking and learning conflict clauses that prune the search space [12].

New conflict clauses are derived in a process called Conflict Analysis, by (con-

ceptually) traversing backwards the conflict graph and locating the reason for the

conflict. This process can be interpreted as a series of resolution steps [20]. The SAT

solver can output a graph reflecting the resolution steps, known as the resolution

graph. The nodes of a resolution graph represent clauses, and the single sink node of

this graph represents the empty clause. Each internal node has two parents, which

represent the clauses from which it was resolved. In practice this graph can represent

Hyper-resolution (a result of several resolution steps) and hence each node can have

more than two parents. The general idea of the CoreTrimmer algorithm, described

in detail in Section 4, is the following. CoreTrimmer locates internal nodes in the

resolution graph that dominate other nodes, called the minions (i.e., all the paths

from a minion node to the sink node go through the dominator), and checks whether

they can be proved without their minions. If the answer is yes, the minions can be

removed, and consequently the size of the UC is decreased. In such a case the reso-

lution graph has to be transformed so it reflects the new proof. This transformation

is the subject of Section 4.1. CoreTrimmer repeats this process until no changes in

the graph can be made. Experimental results show that integrating this procedure in

a fixpoint script in the style of run till fix, is better than run till fix, at least

with the relatively short timeouts we tried (30 and 60 minutes). CoreTrimmer has

the advantage that it generates intermediate results rather fast. Hence, while in many

cases run till fix times out (i.e. it cannot finish the first iteration after the initial

core within the time limit), CoreTrimmer almost always finishes several iterations by

that time, even if in the long run run till fix produces smaller cores.



Chapter 2

Preliminaries

This thesis relies on propositional logic and, to be more specific, CNF (Conjunctive

Normal Form) formulas. Following are 6 definitions adapted from Gallier [4].

Definition 1

Boolean variable vi - or just variable, is a propositional symbol

Literal li - is either a propositional symbol vj or the negation ¬vj of a propositional

symbol

Clause ci - a disjunction of literals, that can be represented as a set of literals

ci = (l1 ∨ . . . ∨ lk) LSci = {l1, . . . , lk}

CNF formula ϕ - a conjunction of clauses, that can be represented as a set of

clauses

ϕ = (c1 ∧ . . . ∧ cn) CSϕ = {c1, . . . , cn}

It can be shown that every propositional formula can be converted to an equally

satisfiable Conjunctive Normal Form in polynomial time [19].

Definition 2 The set of truth values is the set {T, F}. Each logical connective

X is interpreted as a function HX with range {T, F}. The logical connectives are

6
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interpreted as follows:

P Q H¬(P ) H∧(P,Q) H∨(P,Q)

T T F T T

T F F F T

F T T F T

F F T F F

Definition 3 A truth assignment is a function v : PS → {F, T} assigning a truth

value to all the propositional symbols. Every assignment v extends to a unique func-

tion ṽ : PROP → {F, T}, where PROP is a set of propositional formulae (proposi-

tions), satisfying the following clauses for all A,B ∈ PROP :

ṽ(⊥) = F

ṽ(P ) = v(P ),∀P ∈ PS

ṽ(¬A) = H¬(ṽ(A))

ṽ((A ∧B)) = H∧(ṽ(A), ṽ(B))

ṽ((A ∨B)) = H∨(ṽ(A), ṽ(B))

Definition 4 A proposition A is satisfiable if there is a truth assignment v such that

ṽ(A) = T . Such an assignment is called a satisfying assignment. A proposition is

unsatisfiable if it is not satisfied by any assignment.

The problem of determining whether any arbitrary proposition is satisfiable is called

the satisfiability problem or, in short, SAT.

Definition 5 Given a set of propositions Γ, we say that A is logically implied by

Γ, denoted by Γ |= A, if for all assignments v, ṽ(B) = T for all B ∈ Γ implies that

ṽ(A) = T .

Definition 6 A clause is conflicting with regard to an assignment v

if ∀lj ∈ {l1, . . . , lk} ṽ(lj) = F .

Definition 7 An empty clause is a clause consisting of ⊥. This clause is unsatisfi-

able - it is conflicting for any assignment.
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Definition 8 An unsatisfiable core of an unsatisfiable CNF formula ϕ, CSϕ =

{c1, . . . , cn}, is also a CNF formula ψ, CSψ = {ci, . . . , cj}, where 1 ≤ i < j ≤ n, so

that {ci, . . . , cj} ⊆ {c1, . . . , cn} and ψ is also unsatisfiable.

Resolution is a proof system for CNF formulas with one inference rule:

(A ∨ x) (B ∨ ¬x)

(A ∨B)

where A,B are disjunctions of literals (possibly with 0 disjuncts, i.e. the constant

false). The clause (A ∨ B) is the resolvent, and (A ∨ x) and (B ∨ ¬x) are the

resolving clauses. The resolvent of the clauses (x) and (¬x) is the empty clause (⊥).

Each application of the resolution rule is called a resolution step.

Lemma 1 A propositional CNF formula is unsatisfiable if and only if there exists a

finite sequence of resolution steps ending with the empty clause.

A sequence of resolution steps, each one uses the result of the previous step as one

of the resolving clauses of the current step, is called Hyper-resolution. For example,

from

(x1 ∨ x2 ∨ x3)(¬x1 ∨ x4)(¬x2 ∨ x5)

we can derive (x3 ∨ x4 ∨ x5) by two resolution steps (first over x1, then over x2), or

by one hyper-resolution step.

The hyper-resolution steps leading to the derivation of the empty clause can be

depicted in a Hyper-resolution graph (or, simply, a resolution graph). From hereon,

we use the terms node and clause interchangeably, since every node represents a

clause.

Definition 9 A Hyper-resolution graph corresponding to an unsatisfiability proof by

resolution, is a Directed acyclic Graph G(V,E, s) with a single sink node s ∈ V ,

in which the nodes represent CNF clauses: the leaf nodes (the sources) represent

original clauses, the inner nodes represent clauses derived by resolution, and the sink

represents the empty clause. Each node can be inferred from its parent nodes by some

sequence of resolution steps.
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1 2 43

9

8765

14

12 13

1110

The empty clause

Conflict clauses

Original clauses

Figure 2.1: A resolution graph

Modern DPLL-based SAT solvers can output a Hyper-resolution proof of unsat-

isfiability. The intermediate clauses in this proof are the conflict clauses that were

generated during the run, and that are on a path from the leafs to the empty clause.

We now generalize resolution graphs to Clause Implication Graphs :

Definition 10 (Clause Implication Graph) A Clause-Implication Graph (CIG)

G(V,E, s) is a directed acyclic graph with a single sink node s ∈ V , in which the

nodes represent CNF clauses, and each node is logically implied by the conjunction of

clauses represented by its parents.

A CIG is less restrictive than hyper-resolution graphs. They can have such edges as

shown in Figure 2.2, where Φ1,Φ2 are disjunctions of literals, and p, x are variables.

(Φ1)

(Φ1 V x)

(Φ1)

(Φ1)

(Φ1 V x)

(Φ1 V Φ2 V p)

(Φ2 V ¬x)

Subsumption
Reflexive 

implication
Resolution + Subsumption

Figure 2.2: CIG Edges

Other implications forbidden by hyper-resolution are also possible. Figure 2.3 depicts

an example of a Clause Implication Graph.
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(a V b) (¬b V c)

(a V c)

(¬a)

(c V d)

(¬a)

Figure 2.3: A Clause Implication Graph (CIG)

Let L denote the leaf nodes of a CIG, and assume that the sink node s represents

the empty clause. By definition of CIG, the conjunction of the L clauses is unsat-

isfiable, and hence there exists a corresponding resolution proof of unsatisfiability

starting from the same nodes. Therefore, for the purpose of finding small UCs, CIGs

are sufficient for the analysis. Our construction will begin from the hyper-resolution

graph, which can be derived from the resolution trace given to us by the SAT solver,

but will transform it to a CIG as the algorithm progresses.



Chapter 3

Dominators

Prosser [16] introduced the notion of dominance in the context of Flowgraph analysis

(originally a term related to code analysis and compilers). A Flowgraph G = (V,E, r)

is a directed graph such that every vertex is reachable from a distinguished root vertex

r ∈ V . A vertex d ∈ V dominates v ∈ V, v 6= d, if every path from r to v includes d.

d immediately dominates v if it dominates v and there is no other node on the path

between them that dominates v. We name v a minion of d. The set of minions of d

is denoted by M(d). Note that there is a total order of dominance within the set of

dominators of every vertex. A node is called a dominator if it dominates at least one

node.

In order to adapt the notion of dominators to CIGs, we conceptually reverse the

edges of the CIG. Thus, the sink node now becomes the root. Note that CIGs, in

contrast to Flowgraphs, are acyclic, although this does not change the definition of

dominators. Figure 3.1 presents a Dominator Tree, which represents the immediate

dominance relation, of a CIG.

11



12

1 3

9

86

14

12 13

1110

Figure 3.1: A Dominator Tree over a reversed CIG. Solid edges belong to the CIG,
dashed edges belong to the Dominator Tree. There is a dashed arrow from clause c
to c′ in Dominator Tree if c is the immediate dominator of c′.

3.1 Finding Dominators

3.1.1 An Intuitive Algorithm

Aho and Ullman [1] and Purdom and Moore [15] describe a straightforward algorithm

for finding dominators in O(|V | · |E|) time:

For each vertex v 6= r:

1. Determine, by means of a search from r, the set S of vertices reachable from r

by paths which avoid v.

2. The vertices in V − v − S are exactly those which v dominates.

3.1.2 The Simple Lengauer-Tarjan Algorithm

The algorithm is based on the concept of semidominators, which give an initial ap-

proximation to the immediate dominators:

Suppose that all the nodes in a flowgraph G are numbered from 1 to n during a

DFS from the root node in the order, in which they are reached during the search, and
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that the nodes are identified by these numbers. A path P = (u = v0, v1, . . . , vk1 , vk =

v) in G is a semidominator path if, according to this preorder node numbering, vi > v

for 1 ≤ i ≤ k − 1. The semidominator of v is defined as

sdom(v) = min{u|there is a semidominator path from u to v}

The algorithm consists of the following general four steps:

Step 1 Carry out a depth-first search of the problem graph. Number the vertices

from 1 to n as they are reached during the search.

Step 2 Compute the semidominators of all vertices. Carry out the computation

vertex by vertex in decreasing order by number.

Step 3 Implicitly define the immediate dominator of each vertex.

Step 4 Explicitly define the immediate dominator of each vertex, carrying out the

computation vertex by vertex in increasing order by number.

The algorithm is described in detail by Lengauer and Tarjan [10] and its variants

are discussed by Georgiadis [5].

3.2 Dominators in a Clause-Implication Graph

We will refer from hereon to a clause set and the formula obtained by conjoining the

clauses in the set as the same thing, when the meaning is clear from the context.

Let LM(d) ⊆ L denote the leaf minions of some dominator d. By definition

of a CIG,
∧
l∈L l |= d. The significance of a dominator d ∈ V in a CIG is that if

L \ LM(d) |= d, then
∧
l∈(L\LM(d)) l |= d. In other words, if d is implied by the leafs

which are not its minions, then LM(d) are redundant in the Unsatisfiable Core. Yet

removing LM(d) from the CIG is not sufficient, if we want to repeat this process. The

problem is that such a removal does not leave us with a valid CIG. The CoreTrimmer

algorithm, presented in the next section, iterates over dominators in the CIG, and

substitutes whenever possible (i.e. when L \ LM(d) |= d) the old proof of the

dominator d with a proof of L \ LM(d) |= d.



Chapter 4

The CoreTrimmer algorithm

Our algorithm for decreasing the size of the UC is sketched in Figure 4.1.

2. Find Dominators in R

4. Select next dominator d 

from dominator queue

5. Find all leaf minions of d: LM(d)

6. SAT (L\LM(d) {¬d})?

yes

7. Create Resolution Graph Rd

8. Transform Rd into proof of d: TRd

9. Remove from R: 

- M(d) and their adjacent edges,

- incoming edges to d

no

End

no such d

10. Embed TRd into R 

3. Create dominator queue

Dominators are 

sorted according 

to their number 

of leaf minions, 

in descending 

order

L – leaves of the 

current graph R

1. Input: Resolution Graph R

Output: Current 

leaves L of R

M(d) – all the 

minions of d

Figure 4.1: The CoreTrimmer algorithm

14
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Until Step 5 CoreTrimmer is self explanatory. Step 6 Checks whether a dominator

d has an alternative proof without LM(d), which amounts to checking the satisfiability

of ϕ′ : ((L\LM(d))∪{¬d}), where {¬d} denotes the set of unit clauses corresponding

to the negation of the clause d. For example, if d = (z1∨ . . .∨zn) is a dominator, then

{¬d} are the clauses (¬z1) . . . (¬zn), which, for a reason that will soon be clear, we

refer to as the assumptions. If ϕ′ is satisfiable, the attempt failed and it proceeds to the

next dominator in the queue. Otherwise, the solver creates a proof of unsatisfiability

of ϕ′ - the resolution graph Rd. Then, relying on the equivalence

((L \ LM(d)) ∪ {¬d}) |= ⊥ ⇐⇒ L \ LM(d) |= d,

in Step 8 CoreTrimmer transforms the resolution graph Rd into a proof of d, and

builds a corresponding CIG TRd. A transformation is needed because the proof of ϕ′’s

unsatisfiability, Rd, as generated by the SAT solver, is a proof of the empty clause that

uses assumptions. We have to transform it into a proof of d without the assumptions,

TRd. We discuss two different methods for performing this transformation in Section

4.1. In step 9 CoreTrimmer removes from R the graph elements corresponding to the

old proof of d and replaces it with the new one, TRd, in step 10. That is, it removes

all the minions of d together with their adjacent edges and incoming edges to d, and

embeds TRd into R instead.

Definition 11 (Graph embedding) The embedding of a graph G(V,E) in another

graph G′(V ′, E ′), is a graph G′′(V ′′, E ′′) such that V ′′ = V ∪ V ′ and E ′′ = E ∪ E ′.

Figure 4.4 illustrates an example of the embedding operation.

After the old proof is replaced with the new one, the new graph is still a CIG, but

has fewer leafs, and hence a smaller unsatisfiable core than the original graph.

To implement this idea CoreTrimmer uses three types of Conflict Implication

Graphs:

• The Main CIG R, which initially is a resolution graph, and in subsequent steps

holds the CIG with the smallest unsatisfiability core currently known of the

original formula,
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• The Small CIG Rd, which corresponds to a proof of unsatisfiability of

((L \ LM(d)) ∪ {¬d}) for some dominator d,

• The Transformed CIG TRd, which is the transformation of Rd into a CIG

corresponding to a proof of L \ LM(d) |= d.

Note that in Step 3 of the algorithm the next dominator is selected according to

a predefined order. We tried 3 types of ordering: beginning with the dominator with

the largest number of leaf minions - HIGH, with the least number of leaf minions

- LOW, and selecting dominators at random - RANDOM. The results can be seen

in the Experimental Results section 6.3.2. LOW when compared to HIGH showed

definite degradation in performance both with regard to velocity and core reduction.

RANDOM definitely worsens core reduction too, without increasing velocity, in com-

parison with HIGH. Supported by these results, our algorithm uses HIGH ordering,

which makes our algorithm greedy.

4.1 Transforming the Resolution Graph

Recall that in Step 8 CoreTrimmer is required to transform the resolution graph

Rd, corresponding to a proof of ((L \ LM(d)) ∪ {¬d}) |= ⊥, into a CIG TRd that

corresponds to a proof of L\LM(d) |= d. We present two possible ways to derive TRd

from Rd. Let d = (z1 ∨ . . .∨ zn) be the dominator, and assume that no two literals in

this clause are the same. As before we call the unit clauses in {¬d}, assumptions.

4.1.1 Simple Transformation

When ((L \ LM(d)) ∪ {¬d}) is proven to be unsatisfiable, a subset L′ ⊆ L \ LM(d)

has paths to the empty clause in the resolution graph. This implies that L′ ∪ {¬d}

is unsatisfiable, or equivalently, that L′ implies d. Thus, TRd(V,E) is defined by

V = L′ ∪ d and for all l′ ∈ L′, (l′, d) ∈ E. Embedding this graph into R corresponds
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to adding edges from the L′ clauses to d itself. The following drawing illustrates a

simple transformation and embedding for dominator node 13:
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Figure 4.2: The Simple Transformation

The disadvantage of this method is that it is too coarse. See Section 6.3.1 for

the relevant experimental results. Since it disregards the conflict clauses, it loses the

information about the way these original clauses imply the dominator. Consequently

it provides little opportunity for removing more dominators in the main resolution

graph. On the other hand, we cannot simply add the conflict clauses, because some

of them are derived from the assumptions. What we need is a method for deriving a

resolution proof of d from L′. We suggest the Bubble transformation method for this

derivation.

4.1.2 Bubble Transformation

For a given clause d = {z1, ..., zk} and clauses {c1, ..., cn} we build an assumption set

A = {(¬z1), ..., (¬zk)} and a new formula F = {c1, ..., cn} ∪ A.
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The Convert recursive transformation, which appears below, converts a resolution

proof Π of the unsatisfiability of F provided by a SAT solver, to a new proof of

d. It is initially called with the empty clause. Note that Convert is never called

with an assumption leaf and that the assumption leaves do not participate in the

transformed graph. The reason for that is that there can be no resolution between

two assumptions, because they do not share any variables. Therefore, any node can

have at most one assumption as a child and such cases are covered in lines 3 and 4.

The Resolve step resolves between two transformed clauses on the same variable as

the original resolution variable, if it still exists in both clauses in different polarity. In

the end of this section we give an intuitive description of an implementation of this

procedure, while for now we concentrate on correctness. The relevance of this general

procedure to our case is clear: d is the dominator, A is {¬d} and {c1, . . . , cn} are the

clauses of L \ LM(d).

1: procedure Convert(Node: n )

2: if n is leaf then return NewNode( n )

3: if left(n) = (¬zi) then return Convert(right(n))

4: if right(n) = (¬zi) then return Convert(left(n))

5: return NewNode( Resolve(Convert(right(n), Convert(left(n)))) )

The following drawing demonstrates a bubble transformation with Convert, where

z ∈ d:

The following drawing illustrates a bubble transformation and embedding for domi-

nator node 13:

Proposition 1 Let ⊥ denote the empty clause of the proof Π (the proof of F ’s unsat-

isfiability). Then Convert(⊥) returns a valid resolution proof Π′ of {c1, . . . , cn} |= d′,

so that literals(d′) ⊆ literals(d).

Proof We use the term proof of unsatisfiability in order to emphasize that our

proof is based on a resolution graph, not a hyper-resolution graph. The information
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Figure 4.3: A bubble proof transformation, where z ∈ d
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provided by the SAT solver is enough for reconstructing any of these graphs. In order

to simplify presentation of the proof even more, we use set notation for clauses to

represent their literal sets.

Let n′ = Convert(n). We will prove the proposition by induction on the resolution

graph structure using the following invariant:

• n′ is well-defined

• n ⊆ n′ ⊆ (n ∪ d).

Base step: if n is a leaf then n′ = n, which is well-defined and, trivially,

n ⊆ n′ ⊆ (n ∪ d)

Induction step: there are two different cases - one for lines 3 and 4, and the other -

for line 5.

Lines 3 and 4: Suppose that n is an inner node that was resolved by the two clauses

nl and nr using the resolution variable t. Let n′
r = Convert(nr) and n′

l = Convert(nl).

If w.l.o.g. nl = (¬zi), then, according to the algorithm: (1) n′ = n′
r. Since the

proof is a DAG, n′ is well-defined by the induction hypothesis. Also, by induction:

(2) nr ⊆ n′
r ⊆ (nr ∪ d). It must hold that t = zi, since this is the only variable

that might be common to nl and nr. Therefore: (3) n ∪ {zi} = nr. Combining these

expressions we get

n
(3)

⊆ nr
(2)

⊆ n′
r

(2)

⊆ (nr ∪ d)
(3)
= (n ∪ {zi}) ∪ d

zi∈d= (n ∪ d)

Therefore

n ⊆ n′
r

(1)
= n′ ⊆ (n ∪ d)

Line 5: Assuming that the invariant holds for n′
r and n′

l, we need to prove that a

resolution step is valid on clauses n′
r and n′

l, i.e. that, they have opposite literals of

at least one variable. Now, since Π was a valid proof, it must hold that there exists

a literal t so that w.l.o.g t ∈ nr and ¬t ∈ nl. Since nr ⊆ n′
r and nl ⊆ n′

l, it holds that
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t ∈ n′
r and ¬t ∈ n′

l. Therefore n′ can be derived by resolution between n′
l and n′

r on

the same t, and n′ is well-defined.

We need to prove that n ⊆ n′ ⊆ (n ∪ d). Indeed,

n
Resolution

= ((nr ∪ nl) \ {t,¬t})
Induction

⊆ ((n′
r ∪ n

′
l) \ {t,¬t})

Resolution
= n′

n′ = ((n′
r ∪ n

′
l) \ {t,¬t})

Induction

⊆ (((nr ∪ d) ∪ (nl ∪ d)) \ {t,¬t})

= (((nr ∪ nl) \ {t,¬t}) ∪ (d \ {t,¬t})) = (n ∪ (d \ {t,¬t})) ⊆ (n ∪ d)

In particular, the invariant implies that for the empty clause ⊥ :

Convert(⊥) ⊆ (⊥ ∪ d) = d

Convert can also be implemented with the following, more intuitive procedure:

1: for each assumption (¬zi), 1 ≤ i ≤ n in Rd do

2: Add zi to all clauses on all the paths from (¬zi) to the sink node.

3: Remove the assumption (¬zi) from the graph.



Chapter 5

Variations and Optimizations

5.1 Successful Optimizations

The following optimizations proved useful in improving performance, as can be seen

in the experimental result section 6.3. Our tool includes all of them.

5.1.1 Dominator Ordering

In step 3 of the algorithm (Figure 4.1) dominators are ordered in a queue according

to a given criterion and then every time the algorithm reaches step 4, a dominator is

selected from that queue. The dominators are ordered according to their respective

number of leaf minions, in decreasing order.

5.1.2 Incremental Solving

In step 6 of the algorithm (Figure 4.1) rather than checking just

((L\LM(d))∪{¬d}), CoreTrimmer conjoins with this formula all the conflict clauses

in R that are not on any path from the minions to the sink node. This addition does

not change the satisfiability of the formula, because these clauses are logically implied

by L \ LM(d). But they make the SAT solving stage incremental[17], and hence far

more efficient.

22
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5.1.3 CIG Renewal

In step 8, if none of the assumptions participate in the proof, CoreTrimmer takes a

different route. In this case Rd, which is the proof of unsatisfiability of

((L \ LM(d)) ∪ {¬d}), can also be seen as the proof of unsatisfiability of L \LM(d),

which are a subset of the clauses in the original formula. Let L′ ⊆ L \ LM(d) be

the leaves of Rd. L
′ is a UC of L \ LM(d), but also of the original formula, and it is

smaller than the smallest core known so far (because the core of the current R is L).

So, CoreTrimmer assigns R = Rd and returns to line 2.

5.1.4 Minion Caching

After every successful trial the main graph is changed and, therefore, the dominators

are recomputed. On account of this, the set of minions of many dominators has not

changed, or has even increased. Therefore, caching the leaf minions of dominators

after unsuccessful trials helps prevent the abovementioned redundant trials. The next

time a dominator is selected for trial, its current leaf minions are compared to the

cached ones. If the current minions include cached minions, then there is no use

trying this dominator, since the result will be “satisfiable” again.

Proposition 2 Let L be the current leaves, LM(d) - the current leaf minions, L′ -

the previous leaves and LM ′(d) - the cached leaf minions.

LM ′(d) ⊆ LM(d) and ∃α, α |= ((L′ \ LM ′(d)) ∪ {¬d}) =⇒

∃β, β |= ((L \ LM(d)) ∪ {¬d})

Proof Since that trial was unsuccessful, there is an assignment α so that:

α |= ((L′ \ LM ′(d)) ∪ {¬d}). Since leaves are only removed, L ⊆ L′. Moreover,

from the definition of leaf minions LM(d) ⊆ L. Hence, if LM ′(d) ⊆ LM(d) then

LM ′(d) ⊆ LM(d) ⊆ L ⊆ L′. From this follows (L \ LM(d)) ⊆ (L′ \ LM ′(d)).

Therefore, α |= ((L \ LM(d)) ∪ {¬d}).
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5.2 Less Successful Variations

The following variations were tried, but have not yielded significant improvements:

5.2.1 Refinement

If the result of the trial at step 6 is “satisfiable”, the trial can be refined by removing

only part of the minions. This can be done in several ways:

• Repeat the trial, but add back those leaf minions that are not satisfied by the

assignment that made the trial’s result “satisfiable”. This will ensure that the

assignment does not satisfy the new formula, and will increase the chances that

the formula is unsatisfiable. There is at least one such unsatisfied minion, as

suggested by the following proposition:

Proposition 3

∃α, α |= ((L \ LM(d)) ∪ {¬d}) =⇒ α 6|= LM(d)

Proof Let α be the satisfying assignment α |= ((L \ LM(d)) ∪ {¬d}). Assume

by contradiction that this truth assignment satisfies all the leaf minions:

α |= LM(d). Then it follows that

α |= (((L \ LM(d)) ∪ {¬d}) ∪ LM(d)) =⇒ α |= (L ∪ {¬d}) =⇒ α |= L,

in contradiction to the fact that L is an unsatisfiable core.

• Retry with all the leaf minions added back - the formula to check is L ∪ {¬d}.

Since L is unsatisfiable, this formula is also unsatisfiable. If there is a nonempty

set of leaf minions LM ′(d) ⊂ LM(d) that do not participate in the resolution of

the empty clause, then they can be removed from the core, and the new proof

of d, with sources in L \ LM ′(d), can be added to the main graph. However,
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if all the leaf minions of d are involved in the resolution, the trial is considered

unsuccessful, since it provides no new information in addition to the already

known fact that the dominator is implied by the leaves of the CIG.

• Try to add back minions iteratively - add back one minion, if the formula

is still satisfiable then add back another minion without stopping the solver,

because all the learned conflict clauses are still valid. Continue these sub-

trials until one of them succeeds or until all the clauses are added back. If

the latter is the case, the trial is considered unsuccessful. However, due to the

fact that a dominator may have many leaf minions, which implies many such

iterative sub-trials, immediate minions can be used instead. Try adding back

immediate minions of the dominator, which are not satisfied by the satisfying

assignment, one by one, beginning, for instance, with immediate minions that

in turn dominate the least number of leaf minions. The reason for adding back

immediate minions is that they, in a way, represent their respective leaf minions.

If an immediate minion is needed for proving the dominator, then its minions

are needed too, and instead of trying unsuccessfully a group of leaf minions,

they are added back all at once, when the appropriate immediate minion is

added back. However, the fact that an immediate minion is not needed does

not necessarily mean that its leaf minions are not needed. Therefore, there

are cases where some immediate minions can be removed, but none of the leaf

minions can.

5.2.2 Lazy Dominator Evaluation

In every successful trial the main CIG is modified (minions are removed and a sub-

graph is added). Unfortunately, every such modification invalidates the dominator

tree and, hence, the dominators are recomputed. In order to minimize the number

of these costly computations, we tried “lazy evaluation” of dominators. After every

successful trial, when the graph was changed following the embedding, we marked

as irrelevant all the dominators in the dominator queue, which might have become
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invalidated. In addition to the dominator nodes that have been actually removed,

these are the nodes that used to dominate the new sources of the dominator, as can

be seen in Figure 5.1. So, for the following trial we select a dominator, which has

not been invalidated, from the queue. Only when the queue is empty, the dominator

queue is recomputed and the dominators are inserted into the dominator queue.

However, this technique modifies the dominator ordering strategy. Dominators

are selected according to their historic number of minions, which does not necessarily

reflect the current state.
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Figure 5.1: Lazy Dominator Evaluation - example. Node 13 - dominator, nodes 1
and 10 are its new parents. Node 1 is no longer dominated by node 9, and node 10
is no longer dominated by node 12.



Chapter 6

Experimental Results

6.1 Experimental Results

The implementation of the dominator algorithm in our tool Trimmer is the SLT

variant of the Lengauer-Tarjan algorithm[10] (which runs in O(|E| log |V |) time), as

provided by the authors of [5] and published on their web site.

We used version 2004.11.15 of zChaff, zVerify and run till fix for both the

comparison and the extraction of the resolution traces.

The benchmark suite is composed of 120 unsatisfiable CNF instances from the

industrial category of the SAT competitions, from IBM formal verification bench-

marks, and BMC instances from the Sun’s PicoJava benchmarks that were used in

[2]. We did not include benchmarks that timed-out with both CoreTrimmer and

run till fix. The initial number of clauses ranges from 1, 300 to 800, 000, and the

largest initial core size, which is our starting point, has around 160,000 clauses.

We measured two parameters: core reduction (the difference between the final

and the initial number of clauses) and average velocity (core reduction divided by

the time spent on the reduction). We used two different timeouts - 1, 800 seconds

and 3, 500 seconds. Since UCs are typically used within a larger system in which

they are extracted many times, relatively short timeouts reflect what is practically

done for best overall tuning. For such systems velocity seems to be more relevant,

28
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assuming the process of decreasing the size of the UC is interrupted after a while,

without waiting for the smallest core possible. The timeouts do not include the time

of the first run of the solver that extracts the first resolution trace, since this step is

common to all tools.

The competing systems in our benchmark are:

(T) A single run of Trimmer.

(Z) run till fix.

(A) trim till fix:

Running Trimmer until it terminates, then running zChaff on the new core,

then rerunning (T) starting from the new resolution graph, and so on until

either a fixpoint or a timeout is reached.

(A‖Z) Running (A) and (Z) in parallel (on different machines) until the first one stops

or a timeout is reached. The smallest core produced by the two programs so far

is the resulting core of (A‖Z). This approach can be useful if (A) and (Z) are

sufficiently different, and neither one dominates the other.

The following table summarizes our results with time-out of 3500 sec. Core re-

duction measures the number of clauses removed from the initial core, hence a larger

number is better. An intriguing result is the superiority of (A) over (A‖Z) when it

comes to clause reduction. This is because the number of clauses counted for (A‖Z) is

due to the system that finishes first, which may remove fewer clauses than the other

system.

The comparison between (Z) and (A) reveals that trim till fix removes twice

as many clauses on average as run till fix but run till fix is 50% faster. Note,

however, the medians: the median of trim till fix is 5 times larger on core reduc-

tion and 14 times larger on velocity, which is important in the realm of short timeouts.

In other words, if we ran these benchmarks with a shorter timeout, the results would

favor trim till fix much stronger. This is also evident from Figure 6.6: although
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System Velocity Core Reduction
Median Average Median Average

(Z) 1.1 200.8 729 3126.8
(A) 14.5 130.3 3404 6212.1
(A‖Z) 14.6 239.3 3310 5985.3
(T) 33.0 160.8 1464 3863.1

Table 6.1: Experimental results summary

(Z)’s velocity is typically better, it suffers from a large number of timeouts, which is

counted as 0 velocity in our calculations.
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Figure 6.1 presents the total number of clauses removed as a function of time, if all

the benchmarks were run in parallel. We can clearly see that the total number of

clauses removed from cores grows more rapidly with trim till fix and continues to

grow even after trim till fix stabilizes.
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Figure 6.1: Total clauses removed

Following are some examples of the experimental results, where x-axis is time and

y-axis is the number of clauses in the unsatisfiable core produced by the respective

program, trim till fix (A) or run till fix (Z):

In diagrams of figure 6.2 we can see that the graduate core reduction by trim till fix

is a disadvantage at first, but becomes its advantage afterwards, when it is able to

continue even after run till fix quits.

Figure 6.3 shows an example run of trim till fix versus run till fix, where the

first core produced by zVerify is very hard for the solver, so that the next reduction
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Figure 6.2: Example runs 1

occurs after almost 3000 seconds (the two points with run till fix’s results are en-

circled). However, our Trimmer starts reducing the initial core almost immediately.

By the first half-hour Trimmer has managed to reduce about 5000 clauses, whereas

run till fix still has no new core.

Figure 6.4 shows two runs where there is no advantage of trim till fix over run till fix.

The right diagram is an example of a run where the first step of run till fix is so

lucky, that trim till fix can’t catch up with it. The left diagram shows an example

run where Trimmer cannot do much and, except for a couple of initial iterations,

trim till fix is pretty much similar to run till fix. It is evident from the large

time gaps between the points, that the Trimmer does not find appropriate dom-

inators, but just extracts resolution graph leaves and continues with them, just as

run till fix does.
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6.2 Statistical Analysis of the Experimental Re-

sults

6.2.1 Ordinary Sign Test

The ordinary sign test is a nonparametric method for hypothesis testing, which does

not rely on assumptions about the population from which the samples are drawn.

We tested hypotheses about median differences in core reduction and in velocity. For

each benchmark, we measured the differences in core reduction and velocity between

every pair of systems (s1, s2). These differences are then classified into one of two

categories - “success” (+) means that (s1) has higher velocity, or achieved larger core

reduction, while “failure” (−) means that (s1) has lower velocity, or achieved smaller
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core reduction. Samples with zero differences are discarded. The parameters are the

probability of “success”, denoted by p+, and the probability of “failure”, p−. The

occurrences of “success” or “failure” are assumed to follow a Bernoulli process.

We use the following one-sided test:

The null hypothesis is H0 : p+ = p−

The alternative hypothesis is H1 : p+ > p−

S+ = the number of plus signs observed

The null hypothesis is rejected in favor of the alternative hypothesis if the p-value,

which is the probability of obtaining a sample result as large or larger than S+ under

the null hypothesis H0, is less than α = 0.01.

If the test statistic S+ is significantly smaller than its expected value 0.5∗n, where

n is the number of samples, then we use the opposite one-sided test:

The null hypothesis is H0 : p+ = p−

The alternative hypothesis is H1 : p+ < p−

S− = the number of minus signs observed

We ran a detailed statistical analysis on the results, with the ordinary sign test .

The results, referring to the differences in the medians of velocity and core reduction,

are summarized in Figure 6.5. We see that there is a statistically significant difference

between the competing programs both in velocity and in core reduction, with (A)

and (A‖Z) being the winners. Note that this result is consistent with our previous

conclusions. However, analyzing Figure 6.6 shows us that most of the difference

stems from the fact that (Z) reaches a timeout before producing even one trimmed

core on many more cases than the other programs. In these cases both the velocity

and core reduction is 0, which is much lower than the results of the programs that

create at least one trimmed core.
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Figure 6.5: Results summary of the statistical analysis of the difference in median
values of velocity and core reduction. The nodes represent the competing systems,
and an edge from a to b represents 99% confidence (i.e. α = 0.01) in a’s superiority
over b. med is the median of the difference of values between the parent and its child.
p′ is the estimated probability of the parent’s success (which is equal to the ratio of
its success). The results without parentheses correspond to a timeout of 3, 500 sec.,
and within parentheses to 1, 800 sec. (A) is the ultimate leader in core reduction, and
(T) and A‖Z are the fastest.

6.3 Variations and Optimizations

6.3.1 Bubble Transformation vs. Simple Transformation

T bubble T simple CoreSign - one run: “success” is defined as “bubble trans-

formation run resulted in higher core reduction”.

H0 : p+ = p−

H1 : p+ > p−

S+ = the number of plus signs observed

The result: p-value < α = 0.01, therefore, H0 is rejected in favor of H1. We can con-

clude that there is a difference in core reduction in favor of bubble transformation run.

T bubble T simple VelSign - one run: “success” is defined as “bubble transfor-

mation run resulted in higher velocity”.

H0 : p+ = p−
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Figure 6.6: Core Reduction (top) and Velocity (bottom) of A, A‖Z and T compared
to Z

H1 : p+ < p−

Test statistic S− = number of minus signs observed

The result: p-value = 0.1734 > α = 0.01, therefore, H0 cannot be rejected in favor of

H1. We cannot conclude that there is a difference in velocities.

A bubble A simple CoreSign - trim till fix: “success” is defined as “bubble

transformation trim till fix run resulted in higher core reduction”.

H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value < α = 0.01, therefore, H0 is rejected in favor of H1. We can

conclude that there is a difference in core reduction in favor of bubble transformation

trim till fix run.



37

Timeout Level Count

Estimated 

Probability

Difference 

Median

Level 

tested

Hypothesized 

Probability p-value Meaning

1800 T vs. Z Velocity + 56 0.79 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls/sec] - 15 0.21 T velocity is mostly higher 

Total 71 1.00 5.65 than that of Z.

Core + 34 0.48 Prob <= p  + 0.5 0.68 H0 cannot be rejected.

[Cls] - 37 0.52 Prob <= p  - 0.5 0.41 There is not enough evidence for

Total 71 1.00 0 either core reduction being larger.

A vs. Z Velocity + 53 0.74 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls/sec] - 19 0.26 A velocity is mostly higher 

Total 72 1.00 0.94 than that of Z.

Core + 59 0.83 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls] - 12 0.17 A core reduction is mostly larger 

Total 71 1.00 233 than that of Z.

A||Z vs. Z Velocity + 56 1.00 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls/sec] - 0 0.00 A||Z velocity is mostly higher 

Total 56 1.00 1.31 than that of Z.

Core + 47 0.85 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls] - 8 0.15 A||Z core reduction is mostly larger 

Total 55 1.00 158 than that of Z.

A vs. T Velocity + 14 0.22 H0 is rejected in favor of H1(-).

[Cls/sec] - 50 0.78 Prob <= p  - 0.5 0.00 A velocity is mostly lower 

Total 64 1.00 -5.42 than that of T.

Core + 64 1.00 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls] - 0 0.00 A core reduction is mostly larger 

Total 64 1.00 922 than that of T.

A||Z vs. T Velocity + 25 0.38 H0 cannot be rejected.

[Cls/sec] - 40 0.62 Prob <= p  - 0.5 0.04 There is not enough evidence for

Total 65 1.00 -0.40 either velocity being higher.

Core + 59 0.92 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls] - 5 0.08 A||Z core reduction is mostly larger 

Total 64 1.00 811 than that of T.

A||Z vs. A Velocity + 33 0.92 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls/sec] - 3 0.08 A||Z velocity is mostly higher 

Total 36 1.00 0.00 than that of A.

Core + 6 0.22 H0 is rejected in favor of H1(-).

[Cls] - 21 0.78 Prob <= p  - 0.5 0.00 A||Z core reduction is mostly smaller 

Total 27 1.00 0 than that of A.

Figure 6.7: Statistical Analysis of the Experimental Results with Timeout 1800 sec.

A bubble A simple VelSign - trim till fix: “success” is defined as “bubble trans-

formation trim till fix run resulted in higher velocity”.

H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value < α = 0.01, therefore, H0 is rejected in favor of H1. We can

conclude that there is a difference in velocity in favor of bubble transformation

trim till fix run.

Conclusions: Experimental results confirm our expectations - core reduction is much

larger using Bubble Transformation, and whereas there is no definite difference in

velocity with one run, trim till fix runs yield better velocity too.
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Timeout Level Count

Estimated 

Probability

Difference 

Median

Level 

tested

Hypothesized 

Probability p-value Meaning

3500 T vs. Z Velocity + 57 0.79 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls/sec] - 15 0.21 T velocity is mostly higher 

Total 72 1.00 5.76 than that of Z.

Core + 31 0.43 H0 cannot be rejected.

[Cls] - 41 0.57 Prob <= p  - 0.5 0.14 There is not enough evidence for

Total 72 1.00 -53 either core reduction being larger.

A vs. Z Velocity + 53 0.74 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls/sec] - 19 0.26 A velocity is mostly higher 

Total 72 1.00 1.13 than that of Z.

Core + 58 0.82 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls] - 13 0.18 A core reduction is mostly larger 

Total 71 1.00 261 than that of Z.

A||Z vs. Z Velocity + 56 1.00 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls/sec] 0 0.00 A||Z velocity is mostly higher 

Total 56 1.00 1.77 than that of Z.

Core + 46 0.84 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls] - 9 0.16 A||Z core reduction is mostly larger 

Total 55 1.00 200 than that of Z.

A vs. T Velocity + 15 0.21 H0 is rejected in favor of H1(-).

[Cls/sec] - 58 0.79 Prob <= p  - 0.5 0.00 A velocity is mostly lower 

Total 73 1.00 -7.51 than that of T.

Core + 67 0.99 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls] - 1 0.01 A core reduction is mostly larger 

Total 68 1.00 970 than that of T.

A||Z vs. T Velocity + 26 0.36 H0 cannot be rejected.

[Cls/sec] - 46 0.64 Prob <= p  - 0.5 0.01 There is not enough evidence for

Total 72 1.00 -1.64 either velocity being higher.

Core + 60 0.92 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls] - 5 0.08 A||Z core reduction is mostly larger 

Total 65 1.00 887 than that of T.

A||Z vs. A Velocity + 33 0.92 Prob <= p  + 0.5 0.00 H0 is rejected in favor of H1.

[Cls/sec] - 3 0.08 A||Z velocity is mostly higher 

Total 36 1.00 0.00 than that of A.

Core + 6 0.23 H0 is rejected in favor of H1.

[Cls] - 20 0.77 Prob <= p  - 0.5 0.00 A||Z core reduction is mostly smaller 

Total 26 1.00 0 than that of A.

Figure 6.8: Statistical Analysis of the Experimental Results with Timeout 3500 sec.

6.3.2 Dominator Ordering

High low core: “success” is defined as “dominator ordering from the highest to the

lowest number of minions resulted in higher core reduction than dominator ordering

from the lowest to the highest number of minions”.

H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value = 0.0003 < α = 0.01, therefore, H0 is rejected in favor of H1.

We can conclude that there is a difference in core reduction in favor of dominator

ordering from the highest to the lowest number of minions.

High low vel: “success” is defined as “dominator ordering from the highest to the

lowest number of minions resulted in higher velocity than dominator ordering from

the lowest to the highest number of minions”.
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Figure 6.9: Bubble Transformation versus Simple Transformation
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Figure 6.10: Bubble Transformation versus Simple Transformation difference dis-
tribution

H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value = 0.0023 < α = 0.01, therefore, H0 is rejected in favor of H1. We

can conclude that there is a difference in velocity in favor of dominator ordering from

the highest to the lowest number of minions.

High rand core: “success” is defined as “dominator ordering from the highest to the

lowest number of minions resulted in higher core reduction than random dominator

ordering”.

H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value = 0.0019 < α = 0.01, therefore, H0 is rejected in favor of H1.

We can conclude that there is a difference in core reduction in favor of dominator
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ordering from the highest to the lowest number of minions.

High rand vel: “success” is defined as “dominator ordering from the highest to

the lowest number of minions resulted in higher velocity than random dominator

ordering”.

H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value = 0.1481 > α = 0.01, therefore, H0 cannot be rejected in favor of

H1. We cannot conclude that there is a difference in velocities.

Conclusions: The ordinary sign test analysis of the experimental results shows that

the greedy strategy - first trying to remove the largest number of minions at once -

is definitely better than the opposite strategy, both in core reduction and in velocity.

The greedy strategy is also better in core reduction than randomly selecting domi-

nators for trials. However, there is no statistically significant difference in velocity

between these two strategies. Therefore, we can conclude that the greedy strategy is

the best of the three dominator ordering strategies.
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Figure 6.11: Dominator ordering
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Figure 6.12: Dominator ordering - differences distribution

6.3.3 Minion Caching

We compared the minion caching technique described in Section 5 item 5.1.4 with no

caching at all.

Minion caching versus no caching Figure 6.13:

T satM T noPrev CoreSign - one run: “success” is defined as “minion caching

resulted in higher core reduction”.

H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value = 0.1662 > α = 0.01, therefore, H0 cannot be rejected in favor of

H1. We cannot conclude that there is a difference in core reduction.

T satM T noPrev VelSign - one run: Velocity with minion caching was higher
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than that without caching on all instances.

A satM A noPrev CoreSign - trim till fix: “success” is defined as “minion

caching trim till fix run resulted in higher core reduction”.

H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value < α = 0.01, therefore, H0 is rejected in favor of H1. We

can conclude that there is a difference in core reduction in favor of minion caching

trim till fix run.

A satM A noPrev VelSign - trim till fix: “success” is defined as “minion caching

trim till fix run resulted in higher velocity”.

H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value = 0.0207 > α = 0.01, therefore, H0 cannot be rejected. We

cannot conclude that there is a difference in velocity.

Conclusions: We can infer from the statistical analysis that the minion caching

strategy improves velocity and, at least, doesn’t hurt core reduction.
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Figure 6.13: Minion caching versus no caching
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6.3.4 Refinement

T satM T ref CoreSign - one run: “success” is defined as “no refinement run

resulted in higher core reduction”.

H0 : p+ = p−

H1 : p+ < p−

Test statistic S− = number of minus signs observed

The result: p-value < α = 0.01, therefore, H0 is rejected in favor of H1. As expected,

we can conclude that there is a difference in core reduction in favor of refinement.

T satM T ref VelSign - one run: “success” is defined as “no refinement run

resulted in higher velocity”.

H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value < α = 0.01, therefore, H0 is rejected in favor of H1. We can

conclude that there is a difference in velocities in favor of no refinement.

A satM A ref CoreSign - trim till fix: “success” is defined as “no refinement

trim till fix run resulted in higher core reduction”.

H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value = 0.0851 > α = 0.01, therefore, H0 cannot be rejected in favor of

H1. We cannot conclude that there is a difference in core reduction.

A satM A ref VelSign - trim till fix: “success” is defined as “no refinement

trim till fix run resulted in higher velocity”.
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H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value < α = 0.01, therefore, H0 is rejected in favor of H1. We can con-

clude that there is a difference in velocities in favor of no refinement trim till fix

run.

Conclusions: The tests confirm our expectations, that refinement improves core re-

duction in a single run, while decreasing velocity. On the other hand, in trim till fix

the benefit of core reduction is lost, and the decreased velocity remains. Therefore,

we can conclude that there is no much use in refinement, but for short single runs,

where core size is much more important than velocity.
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Figure 6.14: No Refinement versus Refinement Sign Test
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Figure 6.15: No Refinement versus Refinement Distribution

6.3.5 Lazy Evaluation

T satM T lazySatM CoreSign - one run: “success” is defined as “not lazy re-

sulted in higher core reduction”.

H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value < α = 0.01, therefore, H0 is rejected in favor of H1. We can

conclude that there is a difference in core reduction in favor of not lazy dominator

evaluation.

T satM T lazySatM VelSign - one run: “success” is defined as “not lazy run

resulted in higher velocity”.

H0 : p+ = p−
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H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value = 0.4637 > α = 0.01, therefore, H0 cannot be rejected in favor of

H1. We cannot conclude that there is a difference in velocities.

A satM A lazySatM CoreSign - trim till fix: “success” is defined as “not lazy

trim till fix run resulted in higher core reduction”.

H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value < α = 0.01, therefore, H0 is rejected in favor of H1. We can

conclude that there is a difference in core reduction in favor of not lazy dominator

evaluation.

A satM A lazySatM VelSign - trim till fix: “success” is defined as “not lazy

trim till fix run resulted in higher velocity”.

H0 : p+ = p−

H1 : p+ > p−

Test statistic S+ = number of plus signs observed

The result: p-value = 0.2037 > α = 0.01, therefore, H0 cannot be rejected in favor of

H1. We cannot conclude that there is a difference in velocities.

Conclusions: The ordinary sign test analysis of the experimental results shows that

lazy evaluation worsens core reduction without significantly improving velocity.
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Figure 6.16: Normal versus Lazy dominator evaluation
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Figure 6.17: Normal versus Lazy dominator evaluation - differences distribution



Chapter 7

Conclusions

The thesis presented a family of techniques for reducing the unsatisfiable core of an

unsatisfiable CNF formula, with the goal of reducing the core further and faster than

currently possible. The basic idea is to replace subgraphs in the resolution proof

with alternative proofs that use less original clauses. This technique has two main

advantages over run till fix (the only competing technique in a practical setting):

it removes more clauses on average, and is faster on average in the realm of short

time-outs. This result is important in the context of the typical usage of unsatisfiable

core algorithms, in which the effect of reducing the core on the overall system is only

vaguely known, and hence beyond a certain (short) time-out it is typically not cost-

effective to continue reducing the core. Our statistical analysis of the results (based

on the simple-sign-test) show the significance of various alternatives of this algorithm.

Although the problem of minimizing the core has gained significant attention in

the last few years, for many applications in formal verification it is more important

to minimize the number of variables, rather than clauses, in the core. A possible ex-

tension of the current thesis is thus to adapt these ideas to the problem of minimizing

the number of variables in the core.
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Appendix A

Implementation

The code of Trimmer is in the attached CDROM. A flowgraph with some imple-

mentation details is given in Figure 1.1.
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