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Abstract

The thesis addresses the problem of finding a small unsatisfiable core of an unsatisfi-
able CNF formula. The proposed algorithm, CoreTrimmer, iterates over each internal
node d in the resolution graph that ‘consumes’ a large number of clauses M (i.e. a
large number of original clauses are present in the unsat core, whose sole purpose is
proving d) and attempts to prove them without the M clauses. If this is possible, it
transforms the resolution graph into a new graph that does not have the M clauses at
its core. CoreTrimmer can be integrated into a fixpoint framework similarly to Malik
and Zhang’s fix-point algorithm (RUN_TILL_FIX). We call this option TRIM_TILL_FIX.
Experimental evaluation on a large number of industrial CNF unsatisfiable formulas
shows that TRIM_TILL_FIX doubles, on average, the number of reduced clauses in
comparison to RUN_TILL_FIX. It is also better when used as a component in a bigger

system that enforces short timeouts.
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Chapter 1
Introduction

Given an unsatisfiable CNF formula, an unsatisfiable core (UC) is any subset of these
clauses that is still unsatisfiable. The problem of finding a minimum, minimal or just
a small UC has been addressed rather frequently in the last few years [3, 11, 20, 13, 8],
partially due to its increasing importance in formal verification.

The decision problem corresponding to finding the minimum UC is a Yg-complete
problem [7] and we are not aware of an algorithms for finding it that scales. Finding
a minimal UC (any subset of clauses such that the removal of any one of them makes
the formula satisfiable), according to Papadimitriou and Wolfe [14], is DF-complete®.

It is questionable whether finding a minimal UC has a practical value, however,
since a non-minimal UC can be smaller than a minimal one, as long as it is not
contained in it. Therefore heuristics that do not guarantee minimality, can be both
faster and better than those that guarantee minimality. The latter are useful only
when their result is compared to the core from which they started, and thus can be
used, for example, after another, faster algorithm, has already extracted a small core
and cannot find a smaller one.

Typically UCs are needed as part of a larger system (such as an abstraction /refinement

loop as we will soon describe), and the influence of the size of the UC on the other

LD is the class containing all languages that can be considered as the difference between two
languages in NP, or equivalently, the intersection of a language in NP with a language in co-NP.



parts of the system is only vaguely known. Hence, although more computation time
can lead to finding smaller cores, it is not clear whether it is cost-effective in the over-
all system. This suggests once again that minimality per se is not so important in
practice. Algorithms for extracting small cores should be measured instead by their
velocity: how many clauses they remove from the initial formula per time unit, on
average. They should also be measured by how small they can make the core within a
time limit, in comparison with other algorithms, and whether they can contribute to
a setting in which several of these algorithms are run sequentially or even in parallel.
In Section 6 we measure our suggested technique, called CoreTrimmer, with these
criteria.

Before we describe previous work on this problem, let us mention some of the
typical usages of UCs. A small unsatisfiable core reflects a more precise and focused
explanation of the unsatisfiability of a given formula. In verification, it is used in
several contexts, some of which are the following. Amla and McMillan [2] suggest to
use UCs for a proof-based abstraction-refinement model-checking process: the UC of
an unsatisfiable BMC instance contains information on the state variables that are
sufficient for proving that no bug can be found up to a given depth; based on these
state variables they build a refined abstract model and continue to iterate. Kroening
et al. [9] use unsatisfiable cores for an iterative process of solving Presburger formu-
las: the UC is used for checking whether certain under-approximating restrictions on
the solution space were used in the proof of unsatisfiability. If the answer is yes, these
restrictions should be relaxed. A similar usage of UCs is by Grumberg et al. [6],
in a process of under-approximation and widening of BMC formulas corresponding
to a multi-threaded process (the UC here again is used for detecting whether the
proof of unsatisfiability relies on the underapproximating constraints). Outside veri-
fication, the identification of an inconsistent kernel can be important for solving the
inconsistency in any constraints satisfaction problem. Furthermore, looking beyond

the Propositional world, finding a small unsatisfiable set of constraints is important



for the efficiency of decision procedures like MathSat and CVC [18] that rely on ex-
planations of the reason of unsatisfiability in order to prune the search space. The
techniques we will discuss in this paper are equally relevant to such systems as they

are for systems based on propositional reasoning.

1.1 Related work

Lynce and Silva [11] suggested an approach for finding a minimal UC, in which a new
‘clause selector’ variable cs;, 1 < i < m, is added to each of the m clauses of the
formula (for example, the i'" clause (I; V l3) is replaced with (cs; VI3 V I3)). The cs
variable is set to TRUE if and only if the clause is not selected. They then use a SAT
solver that decides first on the cs variables. When all the clauses become satisfied, it
backtracks to the most recent cs variable set to true and changes its assignment to
false. If the solver reaches a conflict and consequently backtracks to the cs variables,
it means that an unsatisfiable core was found. In such a case it records the size of
the core and continues to search for a smaller one, after adding a clause over the
cs variables that blocks the solver from repeating the same core. A similar process
was suggested also by Oh et al. [13] (the ‘Amuse’ algorithm), although they modify
the backtracking mechanism so it performs a bottom-up search for a UC instead of
searching for a satisfying assignment. Different decision heuristics result in different
UCs, which are not necessarily minimal.

Huang suggests the ‘MUP’ (Minimal Unsatisfiability Prover) algorithm in [8].
Rather than using m clause selector variables, he suggests to augment the clauses with
minterms over log(m + 1) variables. The augmented formula, he proves, is minimally
unsatisfiable iff there are exactly m models over the y variables (because in this case
every clause that is removed makes the formula satisfiable). Hence, the problem of
proving that an existing set is minimal is reduced to that of model-counting, which
MUP performs with a variable elimination technique over BDDs. This technique

can be taken one step further towards finding a minimal core, by running it not



more than m times. MUP shows better experimental results than RUN_TILL_FIX (see
below), but only, apparently, on hand-made and relatively small formulas, like the
pigeonhole problem. None of the benchmarks reported in [8] has more than several
thousand clauses, and it is not clear how it scales to industrial problems.

A more practical approach is to find a small core without guaranteeing minimality,
while attempting to be efficient and produce intermediate valuable results in case the
external process does not wish to wait for the final result.

Zhang and Malik [20] were the first in the verification community, as far as we
know, to address this problem from a practical point of view. They suggested a
simple and effective iterative procedure for deriving a small unsatisfiable core: they
extract an unsatisfiable core from an unsatisfiability proof of the formula provided by
a SAT solver and then they run the SAT solver again starting from this core, which
may result in an even smaller core. Their script RUN_TILL_FIX repeats this process
until the core is equal to a core derived in the previous iteration, or, in other words,
until it reaches a fixpoint. The solution and its implementation seem to be the most
practical one available, and is indeed widely used. The experimental results that we

present in Section 6 are compared against RUN_TILL_FIX.

1.2 Thesis Outline

We describe a new heuristic, called CoreTrimmer, for finding a small UC. CoreTrim-
mer takes the role of zVerify in RUN_TILL_FIX. It can be either applied once (and
generate a core smaller or equal to that generated by zVerify) or as part of a fix-
point computation, in an algorithm we call TRIM_TILL_FIX. We will concentrate on
CoreTrimmer from hereon and return to TRIM_TILL_FIX in the description of the
experimental results.

The most common approach to solving SAT formulas (finding a satisfying assign-

ment or declaring that the formula is unsatisfiable) is DPLL-solving. Such a solver



performs a search for a satisfying assignment using constraint propagation, intelli-
gently backtracking and learning conflict clauses that prune the search space [12].
New conflict clauses are derived in a process called Conflict Analysis, by (con-
ceptually) traversing backwards the conflict graph and locating the reason for the
conflict. This process can be interpreted as a series of resolution steps [20]. The SAT
solver can output a graph reflecting the resolution steps, known as the resolution
graph. The nodes of a resolution graph represent clauses, and the single sink node of
this graph represents the empty clause. Each internal node has two parents, which
represent the clauses from which it was resolved. In practice this graph can represent
Hyper-resolution (a result of several resolution steps) and hence each node can have
more than two parents. The general idea of the CoreTrimmer algorithm, described
in detail in Section 4, is the following. CoreTrimmer locates internal nodes in the
resolution graph that dominate other nodes, called the minions (i.e., all the paths
from a minion node to the sink node go through the dominator), and checks whether
they can be proved without their minions. If the answer is yes, the minions can be
removed, and consequently the size of the UC is decreased. In such a case the reso-
lution graph has to be transformed so it reflects the new proof. This transformation
is the subject of Section 4.1. CoreTrimmer repeats this process until no changes in
the graph can be made. Experimental results show that integrating this procedure in
a fixpoint script in the style of RUN_TILL_FIX, is better than RUN_TILL_FIX, at least
with the relatively short timeouts we tried (30 and 60 minutes). CoreTrimmer has
the advantage that it generates intermediate results rather fast. Hence, while in many
cases RUN_TILL_FIX times out (i.e. it cannot finish the first iteration after the initial
core within the time limit), CoreTrimmer almost always finishes several iterations by

that time, even if in the long run RUN_TILL_FIX produces smaller cores.



Chapter 2
Preliminaries

This thesis relies on propositional logic and, to be more specific, CNF (Conjunctive

Normal Form) formulas. Following are 6 definitions adapted from Gallier [4].

Definition 1

Boolean variable v; - or just variable, is a propositional symbol

Literal l; - s either a propositional symbol v; or the negation —v; of a propositional
symbol
Clause ¢; -  a disjunction of literals, that can be represented as a set of literals
Ci:(ll\/...\/lk) LSci:{ll,...,lk}
CNF formula ¢ - a conjunction of clauses, that can be represented as a set of
clauses
o= (1 N...\N¢cp) CS,=A{c1,...,cn}

It can be shown that every propositional formula can be converted to an equally

satisfiable Conjunctive Normal Form in polynomial time [19].

Definition 2 The set of truth values is the set {T, F}. FEach logical connective

X s interpreted as a function Hx with range {T,F}. The logical connectives are

6



interpreted as follows:

PlQ|H.(P) | H\(P,Q) | Hi(P,Q)
T|T| F T T
T|F| F F T
F|T| T F T
F|F| T F F

Definition 3 A truth assignment is a function v : PS — {F,T} assigning a truth
value to all the propositional symbols. FEvery assignment v extends to a unique func-
tion v : PROP — {F, T}, where PROP is a set of propositional formulae (proposi-
tions), satisfying the following clauses for all A, B € PROP :

(L) = F
(P) = v(P),YP € PS
(=4) = H.(0(4A
(AAB)) = Ha(8(A),9(B))
0((AV B)) = Hy(o(A

S <

(o4t

Definition 4 A proposition A is satisfiable if there is a truth assignment v such that
0(A) = T. Such an assignment is called a satisfying assignment. A proposition is
unsatisfiable if it is not satisfied by any assignment.

The problem of determining whether any arbitrary proposition is satisfiable is called

the satisfiability problem or, in short, SAT.

Definition 5 Given a set of propositions I, we say that A is logically implied by
[, denoted by T = A, if for all assignments v, 0(B) = T for all B € T implies that
0(A)=T.

Definition 6 A clause is conflicting with regard to an assignment v

if VZJ S {ll, . ,lk} ﬁ(l]) =F

Definition 7 An empty clause is a clause consisting of L. This clause is unsatisfi-

able - it is conflicting for any assignment.



Definition 8 An unsatisfiable core of an unsatisfiable CNF formula ¢, CS, =
{c1,...,¢en}, is also a CONF formula ¢, CSy = {ci,...,c;}, where 1 <i < j<mn, so
that {c;,...,c;} C{cr,..., e} and ¢ is also unsatisfiable.

Resolution is a proof system for CNF formulas with one inference rule:

(AVz) (BV-x)
(AV B)

where A,B are disjunctions of literals (possibly with 0 disjuncts, i.e. the constant
FALSE). The clause (A V B) is the resolvent, and (A V z) and (B V —x) are the
resolving clauses. The resolvent of the clauses (x) and (—z) is the empty clause (L).

Each application of the resolution rule is called a resolution step.

Lemma 1 A propositional CNF' formula is unsatisfiable if and only if there exists a

finite sequence of resolution steps ending with the empty clause.

A sequence of resolution steps, each one uses the result of the previous step as one
of the resolving clauses of the current step, is called Hyper-resolution. For example,
from

(Il V ) V .I‘g)(_lxl vV .T4)(_|$2 V (L’5>

we can derive (z3 V 24 V x5) by two resolution steps (first over 1, then over x3), or
by one hyper-resolution step.

The hyper-resolution steps leading to the derivation of the empty clause can be
depicted in a Hyper-resolution graph (or, simply, a resolution graph). From hereon,
we use the terms node and clause interchangeably, since every node represents a

clause.

Definition 9 A Hyper-resolution graph corresponding to an unsatisfiability proof by
resolution, is a Directed acyclic Graph G(V, E,s) with a single sink node s € V,
in which the nodes represent CNF' clauses: the leaf nodes (the sources) represent
original clauses, the inner nodes represent clauses derived by resolution, and the sink
represents the empty clause. Each node can be inferred from its parent nodes by some

sequence of resolution steps.



The empty clause 14

Conflict clauses 0 0
D ¢ @

5 0 s

Figure 2.1: A resolution graph

Modern DPLL-based SAT solvers can output a Hyper-resolution proof of unsat-
isfiability. The intermediate clauses in this proof are the conflict clauses that were
generated during the run, and that are on a path from the leafs to the empty clause.

We now generalize resolution graphs to Clause Implication Graphs:

Definition 10 (Clause Implication Graph) A Clause-Implication Graph (CIG)
G(V,E,s) is a directed acyclic graph with a single sink node s € V', in which the
nodes represent CNF clauses, and each node is logically implied by the conjunction of

clauses represented by its parents.

A CIG is less restrictive than hyper-resolution graphs. They can have such edges as
shown in Figure 2.2, where &, ®5 are disjunctions of literals, and p, x are variables.

(®1Vx) (@) w

A A

( (@) ) ( (@) ) (@1Vx) (®2Vx)

Reflexive
implication

Subsumption Resolution + Subsumption

Figure 2.2: CIG Edges

Other implications forbidden by hyper-resolution are also possible. Figure 2.3 depicts

an example of a Clause Implication Graph.
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(cVd)
A

Vo) (Vo

Figure 2.3: A Clause Implication Graph (CIG)

Let L denote the leaf nodes of a CIG, and assume that the sink node s represents
the empty clause. By definition of CIG, the conjunction of the L clauses is unsat-
isfiable, and hence there exists a corresponding resolution proof of unsatisfiability
starting from the same nodes. Therefore, for the purpose of finding small UCs, CIGs
are sufficient for the analysis. Our construction will begin from the hyper-resolution
graph, which can be derived from the resolution trace given to us by the SAT solver,

but will transform it to a CIG as the algorithm progresses.



Chapter 3
Dominators

Prosser [16] introduced the notion of dominance in the context of Flowgraph analysis
(originally a term related to code analysis and compilers). A Flowgraph G = (V, E, )
is a directed graph such that every vertex is reachable from a distinguished root vertex
re V. Avertex d € V dominates v € V, v # d, if every path from r to v includes d.
d immediately dominates v if it dominates v and there is no other node on the path
between them that dominates v. We name v a minion of d. The set of minions of d
is denoted by M (d). Note that there is a total order of dominance within the set of
dominators of every vertex. A node is called a dominator if it dominates at least one
node.

In order to adapt the notion of dominators to CIGs, we conceptually reverse the
edges of the CIG. Thus, the sink node now becomes the root. Note that CIGs, in
contrast to Flowgraphs, are acyclic, although this does not change the definition of
dominators. Figure 3.1 presents a Dominator Tree, which represents the immediate

dominance relation, of a CIG.

11
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Figure 3.1: A Dominator Tree over a reversed CIG. Solid edges belong to the CIG,
dashed edges belong to the Dominator Tree. There is a dashed arrow from clause ¢
to ¢ in Dominator Tree if ¢ is the immediate dominator of ¢'.

3.1 Finding Dominators

3.1.1 An Intuitive Algorithm

Aho and Ullman [1] and Purdom and Moore [15] describe a straightforward algorithm
for finding dominators in O(|V| - |E|) time:

For each vertex v # 7:

1. Determine, by means of a search from r, the set S of vertices reachable from r

by paths which avoid v.

2. The vertices in V — v — S are exactly those which v dominates.

3.1.2 The Simple Lengauer-Tarjan Algorithm

The algorithm is based on the concept of semidominators, which give an initial ap-
proximation to the immediate dominators:
Suppose that all the nodes in a flowgraph G are numbered from 1 to n during a

DFS from the root node in the order, in which they are reached during the search, and



13

that the nodes are identified by these numbers. A path P = (u = vg,v1,. .., Vg, Uk =
v) in G is a semidominator path if, according to this preorder node numbering, v; > v

for 1 <i<k—1. The semidominator of v is defined as
sdom(v) = min{u|there is a semidominator path from u to v}

The algorithm consists of the following general four steps:
Step 1 Carry out a depth-first search of the problem graph. Number the vertices
from 1 to n as they are reached during the search.
Step 2 Compute the semidominators of all vertices. Carry out the computation
vertex by vertex in decreasing order by number.
Step 3 Implicitly define the immediate dominator of each vertex.
Step 4 Explicitly define the immediate dominator of each vertex, carrying out the
computation vertex by vertex in increasing order by number.

The algorithm is described in detail by Lengauer and Tarjan [10] and its variants
are discussed by Georgiadis [5].

3.2 Dominators in a Clause-Implication Graph

We will refer from hereon to a clause set and the formula obtained by conjoining the
clauses in the set as the same thing, when the meaning is clear from the context.

Let LM(d) C L denote the leaf minions of some dominator d. By definition
of a CIG, A\,c. ! = d. The significance of a dominator d € V in a CIG is that if
L\ LM(d) = d, then N\ ipnparay ! F d- In other words, if d is implied by the leafs
which are not its minions, then LM (d) are redundant in the Unsatisfiable Core. Yet
removing LM (d) from the CIG is not sufficient, if we want to repeat this process. The
problem is that such a removal does not leave us with a valid CIG. The CoreTrimmer
algorithm, presented in the next section, iterates over dominators in the CIG, and
substitutes whenever possible (i.e. when L\ LM(d) | d) the old proof of the
dominator d with a proof of L\ LM (d) |= d.



Chapter 4
The CoreTrimmer algorithm

Our algorithm for decreasing the size of the UC is sketched in Figure 4.1.

/ 1. Input: Resolution Graph R /

\Dominators are | v

|sorted according 2. Find Dominators in R

|to their number 1

(of leaf minions, e X

in descending 1 3. Create dominator queue
lorder Y

- B 4. Select next dominator d

from dominator queue no such v

1 Output: Current
leaves L of R
YéS 15, Find all leaf minions of d: LM(d)

6. SAT (L\LM(d) U {~d})?

L — leaves of the |

\current graph R e |7. Create Resolution Graph Ry |

v
|8. Transform Ry into proof of d: TRy |

9. Remove from R:
- _¢-M(d) and their adjacent edges,
IM(d)—allthe | / | -incoming edges to d

\minions ofd &~ ;"

10. Embed TRyinto R

/’/

Figure 4.1: The CoreTrimmer algorithm

14
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Until Step 5 CoreTrimmer is self explanatory. Step 6 Checks whether a dominator
d has an alternative proof without LM (d), which amounts to checking the satisfiability
of ' : (L\ LM (d))U{—d}), where {—=d} denotes the set of unit clauses corresponding
to the negation of the clause d. For example, if d = (z; V...V z,) is a dominator, then
{—d} are the clauses (—z1)...(—z,), which, for a reason that will soon be clear, we
refer to as the assumptions. If ¢’ is satisfiable, the attempt failed and it proceeds to the
next dominator in the queue. Otherwise, the solver creates a proof of unsatisfiability

of ¢’ - the resolution graph R;. Then, relying on the equivalence
(L\LM@)U{-d) L =  L\LM(d) d,

in Step 8 CoreTrimmer transforms the resolution graph R, into a proof of d, and
builds a corresponding CIG T'Ry. A transformation is needed because the proof of ¢'’s
unsatisfiability, Ry, as generated by the SAT solver, is a proof of the empty clause that
uses assumptions. We have to transform it into a proof of d without the assumptions,
T Ry. We discuss two different methods for performing this transformation in Section
4.1. In step 9 CoreTrimmer removes from R the graph elements corresponding to the
old proof of d and replaces it with the new one, TRy, in step 10. That is, it removes
all the minions of d together with their adjacent edges and incoming edges to d, and

embeds T R, into R instead.

Definition 11 (Graph embedding) The embedding of a graph G(V, E) in another
graph G'(V'  E"), is a graph G"(V", E") such that V" =V UV’ and E" = EU E".

Figure 4.4 illustrates an example of the embedding operation.

After the old proof is replaced with the new one, the new graph is still a CIG, but
has fewer leafs, and hence a smaller unsatisfiable core than the original graph.

To implement this idea CoreTrimmer uses three types of Conflict Implication

Graphs:

e The Main CIG R, which initially is a resolution graph, and in subsequent steps
holds the CIG with the smallest unsatisfiability core currently known of the

original formula,
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e The Small CIG R,, which corresponds to a proof of unsatisfiability of
((L\ LM(d)) U{~d}) for some dominator d,

e The Transformed CIG TRy, which is the transformation of R4 into a CIG
corresponding to a proof of L\ LM (d) = d.

Note that in Step 3 of the algorithm the next dominator is selected according to
a predefined order. We tried 3 types of ordering: beginning with the dominator with
the largest number of leaf minions - HIGH, with the least number of leaf minions
- LOW, and selecting dominators at random - RANDOM. The results can be seen
in the Experimental Results section 6.3.2. LOW when compared to HIGH showed
definite degradation in performance both with regard to velocity and core reduction.
RANDOM definitely worsens core reduction too, without increasing velocity, in com-
parison with HIGH. Supported by these results, our algorithm uses HIGH ordering,

which makes our algorithm greedy.

4.1 Transforming the Resolution Graph

Recall that in Step 8 CoreTrimmer is required to transform the resolution graph
R, corresponding to a proof of ((L\ LM(d)) U{~d}) = L, into a CIG TR, that
corresponds to a proof of L\ LM (d) |= d. We present two possible ways to derive T'R,4
from Ry. Let d = (21 V...V z,) be the dominator, and assume that no two literals in

this clause are the same. As before we call the unit clauses in {—d}, assumptions.

4.1.1 Simple Transformation

When ((L \ LM(d)) U {—d}) is proven to be unsatisfiable, a subset L' C L\ LM(d)
has paths to the empty clause in the resolution graph. This implies that L' U {—d}
is unsatisfiable, or equivalently, that L’ implies d. Thus, TR4(V, E) is defined by
V=L Udandforalll’ € L', (I',d) € E. Embedding this graph into R corresponds
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to adding edges from the L’ clauses to d itself. The following drawing illustrates a

simple transformation and embedding for dominator node 13:

RO [ R |
° o d | Unit clauses with

negated literals
from the
dominator 13

An empty
clause |

O ® @ *
ONOIOMONMON OOl
E Removi ;roof of & Transformation
® [TRus |

® ® +

Figure 4.2: The Simple Transformation

The disadvantage of this method is that it is too coarse. See Section 6.3.1 for
the relevant experimental results. Since it disregards the conflict clauses, it loses the
information about the way these original clauses imply the dominator. Consequently
it provides little opportunity for removing more dominators in the main resolution
graph. On the other hand, we cannot simply add the conflict clauses, because some
of them are derived from the assumptions. What we need is a method for deriving a
resolution proof of d from L’. We suggest the Bubble transformation method for this

derivation.

4.1.2 Bubble Transformation

For a given clause d = {z1, ..., 2t} and clauses {c, ..., ¢, } we build an assumption set

A={(—21),...,(—z)} and a new formula F' = {¢1, ...,c,} U A.
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The Convert recursive transformation, which appears below, converts a resolution
proof II of the unsatisfiability of F' provided by a SAT solver, to a new proof of
d. Tt is initially called with the empty clause. Note that Convert is never called
with an assumption leaf and that the assumption leaves do not participate in the
transformed graph. The reason for that is that there can be no resolution between
two assumptions, because they do not share any variables. Therefore, any node can
have at most one assumption as a child and such cases are covered in lines 3 and 4.
The Resolve step resolves between two transformed clauses on the same variable as
the original resolution variable, if it still exists in both clauses in different polarity. In
the end of this section we give an intuitive description of an implementation of this
procedure, while for now we concentrate on correctness. The relevance of this general
procedure to our case is clear: d is the dominator, A is {—=d} and {c,...,c,} are the

clauses of L\ LM(d).

1: procedure CONVERT(Node: n )

2: if n is leaf then return NewNode( n )

@

if left(n) = (—z;) then return Convert(right(n))

e

if right(n) = (—z;) then return Convert(left(n))
5: return NewNode( Resolve(Convert(right(n), Convert(left(n)))) )

The following drawing demonstrates a bubble transformation with Convert, where
z €ed:
The following drawing illustrates a bubble transformation and embedding for domi-

nator node 13:

Proposition 1 Let L denote the empty clause of the proof I1 (the proof of F'’s unsat-
isfiability). Then Convert(L) returns a valid resolution proof Il of {c1,..., ¢} E &,
so that literals(d’) C literals(d).

Proof We use the term proof of unsatisfiability in order to emphasize that our

proof is based on a resolution graph, not a hyper-resolution graph. The information
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(ave) (2 ) (b))

Figure 4.3: A bubble proof transformation, where z € d

Unit clauses with

| | negated literals
from the

dominator 13

@ Remove minions {_} T ‘ "
of dominator 13 ransformation

®

Figure 4.4: The Bubble Transformation
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provided by the SAT solver is enough for reconstructing any of these graphs. In order
to simplify presentation of the proof even more, we use set notation for clauses to
represent their literal sets.

Let n’ = Convert(n). We will prove the proposition by induction on the resolution

graph structure using the following invariant:
e 1’ is well-defined
e nCn' C(nUd).
Base step: if n is a leaf then n” = n, which is well-defined and, trivially,
nCn' C(nUd)

Induction step: there are two different cases - one for lines 3 and 4, and the other -

for line 5.

Lines 3 and 4: Suppose that n is an inner node that was resolved by the two clauses
n; and n, using the resolution variable t. Let n,. = Convert(n,) and n; = Convert(n;).
If wlo.g. n; = (—z;), then, according to the algorithm: (1) n’ = n.. Since the
proof is a DAG, n' is well-defined by the induction hypothesis. Also, by induction:
(2) n, € nl C (n,Ud). It must hold that ¢t = z;, since this is the only variable
that might be common to n; and n,. Therefore: (3) nU {z;} = n,. Combining these

expressions we get
!/ 3 ZiGd
n, C (n,Ud) = (nU{z})ud = (nUd)

Therefore

—
—
~—

n Cn. = n C (nUAd

Line 5: Assuming that the invariant holds for n] and n;, we need to prove that a
resolution step is valid on clauses n). and nj, i.e. that, they have opposite literals of
at least one variable. Now, since II was a valid proof, it must hold that there exists

a literal ¢ so that w.l.o.g t € n, and -t € n;. Since n, C n, and n; C nj, it holds that
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t € n,. and —t € n;. Therefore n’ can be derived by resolution between nj and n; on
the same t, and n’ is well-defined.

We need to prove that n Cn’ C (nUd). Indeed,

Induction

p PRI (o Un) \ {t,~t}) T C  ((nhun)\ {t,t}) TR

Induction

W= () \ L=t E ((nUd) U (m U d))\ {t, 1)
= (e Un)\ {L, =) U@\ {t,~1}) = (nU(@\{t,~t})) € (nUd)

In particular, the invariant implies that for the empty clause L :

Convert(L) C (Lud) = d

Convert can also be implemented with the following, more intuitive procedure:
1: for each assumption (—z;), 1 <i <nin R4 do
2: Add z; to all clauses on all the paths from (—z;) to the sink node.

3: Remove the assumption (—z;) from the graph.



Chapter 5

Variations and Optimizations

5.1 Successful Optimizations

The following optimizations proved useful in improving performance, as can be seen

in the experimental result section 6.3. Our tool includes all of them.

5.1.1 Dominator Ordering

In step 3 of the algorithm (Figure 4.1) dominators are ordered in a queue according
to a given criterion and then every time the algorithm reaches step 4, a dominator is
selected from that queue. The dominators are ordered according to their respective

number of leaf minions, in decreasing order.

5.1.2 Incremental Solving

In step 6 of the algorithm (Figure 4.1) rather than checking just

((L\ LM (d))u{=d}), CoreTrimmer conjoins with this formula all the conflict clauses
in R that are not on any path from the minions to the sink node. This addition does
not change the satisfiability of the formula, because these clauses are logically implied
by L\ LM(d). But they make the SAT solving stage incremental[17], and hence far

more efficient.
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5.1.3 CIG Renewal

In step 8, if none of the assumptions participate in the proof, CoreTrimmer takes a
different route. In this case R;, which is the proof of unsatisfiability of

((L\ LM(d)) U {—d}), can also be seen as the proof of unsatisfiability of L\ LM (d),
which are a subset of the clauses in the original formula. Let L' C L\ LM(d) be
the leaves of Ry. L' is a UC of L'\ LM (d), but also of the original formula, and it is
smaller than the smallest core known so far (because the core of the current R is L).

So, CoreTrimmer assigns R = R4 and returns to line 2.

5.1.4 Minion Caching

After every successful trial the main graph is changed and, therefore, the dominators
are recomputed. On account of this, the set of minions of many dominators has not
changed, or has even increased. Therefore, caching the leaf minions of dominators
after unsuccessful trials helps prevent the abovementioned redundant trials. The next
time a dominator is selected for trial, its current leaf minions are compared to the
cached ones. If the current minions include cached minions, then there is no use

trying this dominator, since the result will be “satisfiable” again.

Proposition 2 Let L be the current leaves, LM(d) - the current leaf minions, L' -

the previous leaves and LM'(d) - the cached leaf minions.
LM'(d) C LM(d) and Za,al (L'\LM'(d)U{-~d}) =

38,6 = (L\ LM(d)) U{~d})

Proof Since that trial was unsuccessful, there is an assignment a so that:

a = ((L'\ LM'(d)) U {—d}). Since leaves are only removed, L C L’. Moreover,
from the definition of leaf minions LM (d) C L. Hence, if LM'(d) C LM(d) then
LM'(d) € LM(d) € L C I'. From this follows (L \ LM(d)) C (L' \ LM'(d)).
Therefore, o = ((L \ LM (d)) U {—~d}).
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5.2 Less Successful Variations

The following variations were tried, but have not yielded significant improvements:

5.2.1 Refinement

If the result of the trial at step 6 is “satisfiable”, the trial can be refined by removing

only part of the minions. This can be done in several ways:

e Repeat the trial, but add back those leaf minions that are not satisfied by the
assignment that made the trial’s result “satisfiable”. This will ensure that the
assignment does not satisfy the new formula, and will increase the chances that
the formula is unsatisfiable. There is at least one such unsatisfied minion, as

suggested by the following proposition:

Proposition 3

Ja,a = (L\LM(d)U{~d})) = ol LM(d)

Proof Let a be the satisfying assignment o = ((L \ LM (d)) U {~d}). Assume
by contradiction that this truth assignment satisfies all the leaf minions:

a = LM (d). Then it follows that

af= (LN LM(d)U{~d}) ULM(d) = al(LU{~d}) = afkL,

in contradiction to the fact that L is an unsatisfiable core.

O

e Retry with all the leaf minions added back - the formula to check is L U {—d}.
Since L is unsatisfiable, this formula is also unsatisfiable. If there is a nonempty
set of leaf minions LM’(d) C LM (d) that do not participate in the resolution of
the empty clause, then they can be removed from the core, and the new proof

of d, with sources in L \ LM’(d), can be added to the main graph. However,
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if all the leaf minions of d are involved in the resolution, the trial is considered
unsuccessful, since it provides no new information in addition to the already

known fact that the dominator is implied by the leaves of the CIG.

e Try to add back minions iteratively - add back one minion, if the formula
is still satisfiable then add back another minion without stopping the solver,
because all the learned conflict clauses are still valid. Continue these sub-
trials until one of them succeeds or until all the clauses are added back. If
the latter is the case, the trial is considered unsuccessful. However, due to the
fact that a dominator may have many leaf minions, which implies many such
iterative sub-trials, immediate minions can be used instead. Try adding back
immediate minions of the dominator, which are not satisfied by the satisfying
assignment, one by one, beginning, for instance, with immediate minions that
in turn dominate the least number of leaf minions. The reason for adding back
immediate minions is that they, in a way, represent their respective leaf minions.
If an immediate minion is needed for proving the dominator, then its minions
are needed too, and instead of trying unsuccessfully a group of leaf minions,
they are added back all at once, when the appropriate immediate minion is
added back. However, the fact that an immediate minion is not needed does
not necessarily mean that its leaf minions are not needed. Therefore, there
are cases where some immediate minions can be removed, but none of the leaf

minions can.

5.2.2 Lazy Dominator Evaluation

In every successful trial the main CIG is modified (minions are removed and a sub-
graph is added). Unfortunately, every such modification invalidates the dominator
tree and, hence, the dominators are recomputed. In order to minimize the number
of these costly computations, we tried “lazy evaluation” of dominators. After every
successful trial, when the graph was changed following the embedding, we marked

as irrelevant all the dominators in the dominator queue, which might have become
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invalidated. In addition to the dominator nodes that have been actually removed,
these are the nodes that used to dominate the new sources of the dominator, as can
be seen in Figure 5.1. So, for the following trial we select a dominator, which has
not been invalidated, from the queue. Only when the queue is empty, the dominator
queue is recomputed and the dominators are inserted into the dominator queue.
However, this technique modifies the dominator ordering strategy. Dominators
are selected according to their historic number of minions, which does not necessarily

reflect the current state.
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Figure 5.1: Lazy Dominator Evaluation - example. Node 13 - dominator, nodes 1
and 10 are its new parents. Node 1 is no longer dominated by node 9, and node 10
is no longer dominated by node 12.



Chapter 6

Experimental Results

6.1 Experimental Results

The implementation of the dominator algorithm in our tool TRIMMER is the SLT
variant of the Lengauer-Tarjan algorithm[10] (which runs in O(|E|log|V]) time), as
provided by the authors of [5] and published on their web site.

We used version 2004.11.15 of zChaff, zVerify and RUN_TILL_FIX for both the
comparison and the extraction of the resolution traces.

The benchmark suite is composed of 120 unsatisfiable CNF instances from the
industrial category of the SAT competitions, from IBM formal verification bench-
marks, and BMC instances from the Sun’s PicoJava benchmarks that were used in
[2]. We did not include benchmarks that timed-out with both CoreTrimmer and
RUN_TILL_FIX. The initial number of clauses ranges from 1,300 to 800,000, and the
largest initial core size, which is our starting point, has around 160,000 clauses.

We measured two parameters: core reduction (the difference between the final
and the initial number of clauses) and average velocity (core reduction divided by
the time spent on the reduction). We used two different timeouts - 1,800 seconds
and 3,500 seconds. Since UCs are typically used within a larger system in which
they are extracted many times, relatively short timeouts reflect what is practically

done for best overall tuning. For such systems velocity seems to be more relevant,

28
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assuming the process of decreasing the size of the UC is interrupted after a while,
without waiting for the smallest core possible. The timeouts do not include the time
of the first run of the solver that extracts the first resolution trace, since this step is
common to all tools.

The competing systems in our benchmark are:

(T) A single run of TRIMMER.
(Z) RUN_TILL_FIX.

(A) TRIM_TILL_FIX:

Running TRIMMER until it terminates, then running zChaff on the new core,
then rerunning (T) starting from the new resolution graph, and so on until

either a fixpoint or a timeout is reached.

(A||Z) Running (A) and (Z) in parallel (on different machines) until the first one stops
or a timeout is reached. The smallest core produced by the two programs so far
is the resulting core of (A]|Z). This approach can be useful if (A) and (Z) are

sufficiently different, and neither one dominates the other.

The following table summarizes our results with time-out of 3500 sec. Core re-
duction measures the number of clauses removed from the initial core, hence a larger
number is better. An intriguing result is the superiority of (A) over (A||Z) when it
comes to clause reduction. This is because the number of clauses counted for (A||Z) is
due to the system that finishes first, which may remove fewer clauses than the other
system.

The comparison between (Z) and (A) reveals that TRIM_TILL_FIX removes twice
as many clauses on average as RUN_TILL_FIX but RUN_TILL_FIX is 50% faster. Note,
however, the medians: the median of TRIM_TILL_FIX is 5 times larger on core reduc-
tion and 14 times larger on velocity, which is important in the realm of short timeouts.
In other words, if we ran these benchmarks with a shorter timeout, the results would

favor TRIM_TILL_FIX much stronger. This is also evident from Figure 6.6: although



System Velocity Core Reduction

Median | Average | Median | Average
(Z) 1.1 200.8 729 3126.8
(A) 14.5 130.3 3404 6212.1
(A]|Z) 14.6 239.3 3310 5985.3
(T) 33.0 160.8 1464 3863.1

Table 6.1: Experimental results summary

counted as 0 velocity in our calculations.

30

(Z)’s velocity is typically better, it suffers from a large number of timeouts, which is
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Figure 6.1 presents the total number of clauses removed as a function of time, if all
the benchmarks were run in parallel. We can clearly see that the total number of
clauses removed from cores grows more rapidly with TRIM_TILL_FIX and continues to

grow even after TRIM_TILL_FIX stabilizes.

700000

600000

500000

400000

—— Trim-till-fix

—m— Run-till-fix

Total removed clauses

300000

200000

100000

Figure 6.1: Total clauses removed

Following are some examples of the experimental results, where x-axis is time and
y-axis is the number of clauses in the unsatisfiable core produced by the respective
program, TRIM_TILL_FIX (A) or RUN_TILL_FIX (Z):

In diagrams of figure 6.2 we can see that the graduate core reduction by TRIM_TILL_FIX
is a disadvantage at first, but becomes its advantage afterwards, when it is able to
continue even after RUN_TILL_FIX quits.

Figure 6.3 shows an example run of TRIM_TILL_FIX versus RUN_TILL_FIX, where the

first core produced by ZVERIFY is very hard for the solver, so that the next reduction
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Figure 6.2: Example runs 1

occurs after almost 3000 seconds (the two points with RUN_TILL_FIX’s results are en-
circled). However, our TRIMMER starts reducing the initial core almost immediately.
By the first half-hour TRIMMER has managed to reduce about 5000 clauses, whereas
RUN_TILL_FIX still has no new core.

Figure 6.4 shows two runs where there is no advantage of TRIM_TILL_FIX over RUN_TILL_FIX.
The right diagram is an example of a run where the first step of RUN_TILL_FIX is so
lucky, that TRIM_TILL_FIX can’t catch up with it. The left diagram shows an example
run where TRIMMER cannot do much and, except for a couple of initial iterations,
TRIM_TILL_FIX is pretty much similar to RUN_TILL_FIX. It is evident from the large
time gaps between the points, that the TRIMMER does not find appropriate dom-
inators, but just extracts resolution graph leaves and continues with them, just as

RUN_TILL_FIX does.
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Figure 6.3: Example runs 2
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Figure 6.4: Example runs 3

6.2 Statistical Analysis of the Experimental Re-

sults

6.2.1 Ordinary Sign Test

The ordinary sign test is a nonparametric method for hypothesis testing, which does
not rely on assumptions about the population from which the samples are drawn.
We tested hypotheses about median differences in core reduction and in velocity. For
each benchmark, we measured the differences in core reduction and velocity between
every pair of systems (s1,s2). These differences are then classified into one of two
categories - “success” (+) means that (s;) has higher velocity, or achieved larger core

reduction, while “failure” (—) means that (s;) has lower velocity, or achieved smaller
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core reduction. Samples with zero differences are discarded. The parameters are the
probability of “success”, denoted by p,, and the probability of “failure”, p_. The
occurrences of “success” or “failure” are assumed to follow a Bernoulli process.

We use the following one-sided test:

The null hypothesis is Hy: py=p_
The alternative hypothesis is  Hy : py > p_

S; = the number of plus signs observed

The null hypothesis is rejected in favor of the alternative hypothesis if the p-value,
which is the probability of obtaining a sample result as large or larger than S, under
the null hypothesis Hy, is less than a = 0.01.

If the test statistic S is significantly smaller than its expected value 0.5*n, where

n is the number of samples, then we use the opposite one-sided test:

The null hypothesis is Hy: py=p_
The alternative hypothesis is  Hy : py <p_

S_ = the number of minus signs observed

We ran a detailed statistical analysis on the results, with the ordinary sign test.
The results, referring to the differences in the medians of velocity and core reduction,
are summarized in Figure 6.5. We see that there is a statistically significant difference
between the competing programs both in velocity and in core reduction, with (A)
and (A||Z) being the winners. Note that this result is consistent with our previous
conclusions. However, analyzing Figure 6.6 shows us that most of the difference
stems from the fact that (Z) reaches a timeout before producing even one trimmed
core on many more cases than the other programs. In these cases both the velocity
and core reduction is 0, which is much lower than the results of the programs that

create at least one trimmed core.
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Figure 6.5: Results summary of the statistical analysis of the difference in median
values of velocity and core reduction. The nodes represent the competing systems,
and an edge from a to b represents 99% confidence (i.e. a = 0.01) in a’s superiority
over b. med is the median of the difference of values between the parent and its child.
P’ is the estimated probability of the parent’s success (which is equal to the ratio of
its success). The results without parentheses correspond to a timeout of 3,500 sec.,
and within parentheses to 1,800 sec. (A) is the ultimate leader in core reduction, and
(T) and A||Z are the fastest.

6.3 Variations and Optimizations

6.3.1 Bubble Transformation vs. Simple Transformation

T _bubble_T simple _CoreSign - one run: “success” is defined as “bubble trans-

formation run resulted in higher core reduction”.

Hy: py=p-
Hy : p.>p_

S, = the number of plus signs observed
The result: p-value < a = 0.01, therefore, Hy is rejected in favor of H;. We can con-

clude that there is a difference in core reduction in favor of bubble transformation run.

T _bubble_T simple_VelSign - one run: “success” is defined as “bubble transfor-

mation run resulted in higher velocity”.

Hy:py=p-
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Bivariate Fit of T_diff By Z_diff
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Figure 6.6: Core Reduction (top) and Velocity (bottom) of A, A||Z and T compared

to Z

H1:p+ <p_

Test statistic S_ = number of minus signs observed

The result: p-value = 0.1734 > a = 0.01, therefore, Hy cannot be rejected in favor of

H,. We cannot conclude that there is a difference in velocities.

A bubble_A simple_CoreSign - trim_till fix:

“success” is defined as “bubble

transformation TRIM_TILL_FIX run resulted in higher core reduction”.

Hy:py =p-
Hy:p.>p_

Test statistic S, = number of plus signs observed

The result: p-value < a = 0.01, therefore, Hy is rejected in favor of H;. We can

TRIM_TILL_FIX run.

conclude that there is a difference in core reduction in favor of bubble transformation
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Estimated Difference LCevel Hypothesized
Timeout Level Count Probability Median L tested Probability p-valquMeaning
1800 [Tvs.Z Velocity + 56 0.79 Prob <=p + 0.5 0.00|[HO is rejected in favor of H1.
[Cls/sec] - 15 0.21 IT velocity is mostly higher
Total 7 1.00 5.65] than that of Z.
Core + 34 0.48 Prob <=p + 0.5 0.68|(H0 cannot be rejected.
[CIs] - 37 0.52 Prob <=p - 0.5 0.41|[There is not enough evidence for
Total 24l 1.00 0l leither core reduction being larger.
Avs.Z |Velocity + 53 0.74 [Prob <= p + 0.5 0.00|[HO is rejected in favor of H1.
[Cls/sec] - 19 0.26 A velocity is mostly higher
Total 72 1.00 0.94| than that of Z.
Core + 59 0.83 Prob <=p + 0.5 0.00|[HO is rejected in favor of H1.
[CIs] - 12 0.17 core reduction is mostly larger
Total 71 1.00 233 than that of Z.
Al|Z vs. Z |Velocity + 56 1.00 [Prob<=p  + 05  0.00|[HO is rejected in favor of H1.
[Cls/sec] - 0 0.00 A]|Z velocity is mostly higher
Total 56 1.00 1.31 than that of Z.
Core + 47 0.85 Prob <=p + 0.5 0.00|[HO is rejected in favor of H1.
[Cls] - 8 0.15 IA||Z core reduction is mostly larger
Total 55 1.00 158 than that of Z.
Avs.T |Velocity + 14 0.22 HO is rejected in favor of H1(-).
[Cls/sec] - 50 0.78 Prob <=p - 0.5 0.00||A velocity is mostly lower
Total 64 1.00 -5.42] than that of T.
Core + 64 1.00 [Prob <= P + 0.5 0.00|{HO is rejected in favor of H1.
[Cls] - 0 0.00 A core reduction is mostly larger
Total 64 1.00 922 than that of T.
A|[Z vs. T |Velocity + 25 0.38 HO cannot be rejected.
[Cls/sec] - 40 0.62 Prob <=p - 0.5 0.04|[There is not enough evidence for
Total 65 1.00 -0.40| either velocity being higher.
Core + 59 0.92 Prob <=p + 0.5 0.00|(HO is rejected in favor of H1.
[Cls] - 5 0.08 |A[|Z core reduction is mostly larger
Total 64 1.00 811 than that of T.
Al|Z vs. A|Velocity + 33 0.92 [Prob <=p + 0.5 0.00[[HO is rejected in favor of H1.
[Cls/sec] - 3 0.08 IA]|Z velocity is mostly higher
Total 36 1.00 0.00| than that of A.
Core + 6 0.22 HO is rejected in favor of H1(-).
[CIs] - 21 0.78 Prob <=p - 0.5 0.00|{A||Z core reduction is mostly smaller
Total 27 1.00 0| than that of A.

Figure 6.7: Statistical Analysis of the Experimental Results with Timeout 1800 sec.

A bubble_A simple_VelSign - trim_till fix: “success” is defined as “bubble trans-

formation TRIM_TILL_FIX run resulted in higher velocity”.

Hy:py =p-
Hy:p.>p_

Test statistic S, = number of plus signs observed

The result: p-value < a = 0.01, therefore, Hy is rejected in favor of H;. We can
conclude that there is a difference in velocity in favor of bubble transformation

TRIM_TILL_FIX run.

Conclusions: Experimental results confirm our expectations - core reduction is much
larger using Bubble Transformation, and whereas there is no definite difference in

velocity with one run, TRIM_TILL_FIX runs yield better velocity too.
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Estimated  Difference Level Hypothesized
Timeout Level Count Probability Median L tested Probability p-valueJ[Meaning
3500 |Tvs.Z [Velocity + 57 0.79 [Prob <= [ + 0.5 0.00|[HO is rejected in favor of H1.
[Cls/sec] - 15 0.21 IT velocity is mostly higher
Total 72 1.00 5.76| than that of Z.
Core + 31 0.43 HO cannot be rejected.
[Cls] - 41 0.57 Prob <=p - 0.5 0.14|[There is not enough evidence for
Total 72 1.00 -53| leither core reduction being larger.
Avs.Z (Velocity + 53 0.74 [Prob <= p + 0.5 0.00|[HO is rejected in favor of H1.
[Cls/sec] - 19 0.26 A velocity is mostly higher
Total 72 1.00 1.13] than that of Z.
Core + 58 0.82 Prob <= p + 0.5 0.00|[HO is rejected in favor of H1.
[CIs] - 13 0.18 IA core reduction is mostly larger
Total 71 1.00 261 than that of Z.
AllZ vs. Z|Velocity + 56 1.00 [Prob <= p ¥ 05  0.00|[HO is rejected in favor of H1.
[Cls/sec] 0 0.00 IA]|Z velocity is mostly higher
Total 56 1.00 1.77| than that of Z.
Core + 46 0.84 Prob <=p + 0.5 0.00|[HO is rejected in favor of H1.
[Cls] - 9 0.16 IA||Z core reduction is mostly larger
Total 55 1.00 200 than that of Z.
Avs.T [Velocity + 15 0.21 HO is rejected in favor of H1(-).
[Cls/sec] - 58 0.79 Prob <= p - 0.5 0.00||A velocity is mostly lower
Total 73 1.00 -7.51 than that of T.
Core + 67 0.99 [Prob <= p + 0.5 0.00|(HO is rejected in favor of H1.
[Cls] - 1 0.01 A core reduction is mostly larger
Total 68 1.00 970 than that of T.
A||Z vs. T [Velocity + 26 0.36 HO cannot be rejected.
[Cls/sec] - 46 0.64 Prob <= p - 0.5 0.01|[There is not enough evidence for
Total 72 1.00 -1.64] leither velocity being higher.
Core + 60 0.92 Prob <= p + 0.5 0.00|(HO is rejected in favor of H1.
[Cls] - 5 0.08 IA||Z core reduction is mostly larger
Total 65 1.00 887 than that of T.
Al|Z vs. A]Velocity + 33 0.92 [Prob <=p + 0.5 0.00[[HO is rejected in favor of H1.
[Cls/sec] - 3 0.08 IA]|Z velocity is mostly higher
Total 36 1.00 0.00| than that of A.
Core + 6 0.23 HO is rejected in favor of H1.
[Cls] - 20 0.77 Prob <=p - 0.5 0.00JA||Z core reduction is mostly smaller
Total 26 1.00 0l than that of A.

Figure 6.8: Statistical Analysis of the Experimental Results with Timeout 3500 sec.

6.3.2 Dominator Ordering

High low _core: “success” is defined as “dominator ordering from the highest to the
lowest number of minions resulted in higher core reduction than dominator ordering

from the lowest to the highest number of minions”.

Ho:py =p-
Hy:p.>p_

Test statistic S, = number of plus signs observed

The result: p-value = 0.0003 < a = 0.01, therefore, Hy is rejected in favor of H;.
We can conclude that there is a difference in core reduction in favor of dominator

ordering from the highest to the lowest number of minions.

High_low_vel: “success” is defined as “dominator ordering from the highest to the
lowest number of minions resulted in higher velocity than dominator ordering from

the lowest to the highest number of minions”.
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Level Count Prob

+ 99 0.83193

- 20 0.16807

Total 119 1.00000
2 Levels

Test Probabilities

Level Estim Prob Hypoth Prob
+ 0.83193 0.50000
- 0.16807 0.50000

Binomial Test Level Tested Hypoth Prob p-Value

Prob <=p +

T_bubble_T_simple_VelSign

Frequencies

Level Count Prob
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Level  Estim Prob Hypoth Prob
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- 0.54867 0.50000

Binomial Test Level Tested Hypoth Prob p-Value

Prob <=p -
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Level  Estim Prob Hypoth Prob

+ 0.78512 0.50000
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0.1734

Binomial Test Level Tested Hypoth Prob p-Value

Prob <=p +

0.50000

<.0001

Figure 6.9: Bubble Transformation versus Simple Transformation
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99.5% 21457 99.5% 1235 99.5% 29263 99.5% 1164
97.5% 11646 97.5% 881 97.5% 16274 97.5% 802
90.0% 2073 90.0% 39 90.0% 1258 90.0% 81
75.0% quartile 387 75.0% quartile 10 75.0% quartile 310 75.0% quartile 24
50.0% median 8 50.0% median -0 50.0% median 100 50.0% median 3
25.0% quartile 0 25.0% quartile -1 25.0% quartile 7 25.0% quartile 0
10.0% -20 10.0% -43 10.0% -57 10.0% -4
2.5% -280 2.5% -90 2.5% -225 2.5% -61
0.5% -436 0.5% -139 0.5% -1966 0.5% -140
0.0%  minimum -436 0.0%  minimum -139 0.0%  minimum -1966 0.0%  minimum -140
Moments Moments Moments Moments
Mean 884.06667 Mean 35.672417 Mean 960.61789 Mean 51.077642
Std Dev 2945.6975 Std Dev 189.18517 Std Dev 3824.979 Std Dev 178.64445
Std Err Mean 268.90416 Std Err Mean 17.270165 Std Err Mean 344.88674 Std Err Mean 16.107828
upper 95% Mean 1416.5238 upper 95% Mean 69.869068 upper 95% Mean 1643.3556 upper 95% Mean 82.964696
lower 95% Mean  351.60958 lower 95% Mean 1.4757658 lower 95% Mean  277.88014 lower 95% Mean  19.190589
N 120 N 120

N 123

N 123
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Figure 6.10: Bubble Transformation versus Simple Transformation difference dis-

tribution

Hy
H,

“Db+ = DP-
Ip+ > P

Test statistic S, = number of plus signs observed

The result: p-value = 0.0023 < a = 0.01, therefore, H is rejected in favor of H;. We

can conclude that there is a difference in velocity in favor of dominator ordering from

the highest to the lowest number of minions.

High rand _core: “success” is defined as “dominator ordering from the highest to the

lowest number of minions resulted in higher core reduction than random dominator

ordering”.

Hy:py =p-
Hy:p.>p_

Test statistic S, = number of plus signs observed

The result: p-value = 0.0019 < « = 0.01, therefore, Hy is rejected in favor of H.

We can conclude that there is a difference in core reduction in favor of dominator
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ordering from the highest to the lowest number of minions.

High rand vel: “success” is defined as “dominator ordering from the highest to
the lowest number of minions resulted in higher velocity than random dominator

ordering”.

Hy:py =p-
Hy:p,>p_

Test statistic S, = number of plus signs observed

The result: p-value = 0.1481 > a = 0.01, therefore, Hy cannot be rejected in favor of

H;. We cannot conclude that there is a difference in velocities.

Conclusions: The ordinary sign test analysis of the experimental results shows that
the greedy strategy - first trying to remove the largest number of minions at once -
is definitely better than the opposite strategy, both in core reduction and in velocity.
The greedy strategy is also better in core reduction than randomly selecting domi-
nators for trials. However, there is no statistically significant difference in velocity
between these two strategies. Therefore, we can conclude that the greedy strategy is

the best of the three dominator ordering strategies.



DominatorOrdering- Distribution
Distributions

High_low_core

Frequencies

Level Count Prob

+ 24 0.82759

- 5 0.17241

Total 29 1.00000
2 Levels

Test Probabilities

Level  Estim Prob Hypoth Prob
+ 0.82759 0.50000
- 0.17241 0.50000

Binomial Test Level Tested Hypoth Prob p-Value

Prob <=p +

High_low_vel

Frequencies

Level Count Prob

+ 25 0.75758

- 8 0.24242

Total 33 1.00000
2 Levels

Test Probabilities

Level Estim Prob  Hypoth Prob
+ 0.75758 0.50000

High_rand_core

Frequencies

Level Count Prob

+ 22 0.78571

- 6 0.21429

Total 28 1.00000
2 Levels

Test Probabilities
Level  Estim Prob Hypoth Prob

+ 0.78571 0.50000

- 0.21429 0.50000

Binomial Test Level Tested Hypoth Prob p-Value
Prob <=p + 0.50000
High_rand_vel

Frequencies

Level Count Prob

+ 20 0.60606

- 13 0.39394

Total 33 1.00000
2 Levels

Test Probabilities

Level  Estim Prob Hypoth Prob
+ 0.60606 0.50000
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- 0.24242 0.50000 _ 0.39394 0.50000

Binomial Test Level Tested Hypoth Prob p-Value

Binomial Test Level Tested Hypoth Prob p-Value
Prob <=p + 0.50000 0.0023

Prob <=p + 0.50000 0.1481

Figure 6.11: Dominator ordering
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Quantiles Quantiles Quantiles Quantiles
100.0% maximum 651.0 100.0% maximum 446.0 100.0% maximum 853.0 100.0% maximum 461.6
99.5% 651.0 99.5% 446.0 99.5% 853.0 99.5% 461.6
97.5% 651.0 97.5% 446.0 97.5% 853.0 97.5% 461.6
90.0% 356.2 90.0% 282.2 90.0% 493.0 90.0% 194.0
75.0% quartile 114.5 75.0% quartile 775 75.0% quartile 78.6 75.0% quartile 66.4
50.0% median 25.0 50.0% median 12.0 50.0% median 0.6 50.0% median 0.0
25.0% quartile 0.0 25.0% quartile 0.0 25.0% quartile 0.0 25.0% quartile -1.6
10.0% -17.0 10.0% -17.4 10.0% -6.3 10.0% -4.2
2.5% -279.0 2.5% -236.0 2.5% -85.2 2.5% -52.5
0.5% -279.0 0.5% -236.0 0.5% -85.2 0.5% -525
0.0% minimum -279.0 0.0% minimum -236.0 0.0% minimum -85.2 0.0%  minimum -52.5
Moments Moments Moments Moments
Mean 81 Mean 53.151515 Mean 106.54886 Mean 49.011613
Std Dev 168.64997 Std Dev 127.44683 Std Dev 218.76615 Std Dev 113.87796
Std Err Mean 29.358192 Std Err Mean 22.185646 Std Err Mean 38.082298 Std Err Mean 19.823608
upper 95% Mean 140.80068 upper 95% Mean 98.342197 upper 95% Mean 184.11996 upper 95% Mean 89.390981
lower 95% Mean  21.199321 lower 95% Mean 7.9608334 lower 95% Mean 28.977756 lower 95% Mean  8.6322437
N 33 N 33 N 33 N 33

Figure 6.12: Dominator ordering - differences distribution

6.3.3 Minion Caching

We compared the minion caching technique described in Section 5 item 5.1.4 with no
caching at all.

Minion caching versus no caching Figure 6.13:

T_satM_T _noPrev_CoreSign - one run: “success” is defined as “minion caching

resulted in higher core reduction”.

Hy:py=p-
H12p+>p,

Test statistic S, = number of plus signs observed

The result: p-value = 0.1662 > a = 0.01, therefore, Hy cannot be rejected in favor of

H,. We cannot conclude that there is a difference in core reduction.

T _satM_T _noPrev_VelSign - one run: Velocity with minion caching was higher
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than that without caching on all instances.
A satM_A noPrev_CoreSign - trim_till fix: “success” is defined as “minion

caching TRIM_TILL_FIX run resulted in higher core reduction”.

Hy:py =p-
Hy:p.>p_

Test statistic S, = number of plus signs observed

The result: p-value < a = 0.01, therefore, H, is rejected in favor of H;. We
can conclude that there is a difference in core reduction in favor of minion caching

TRIM_TILL_FIX run.

A satM_A noPrev_VelSign - trim_till fix: “success” is defined as “minion caching

TRIM_TILL_FIX run resulted in higher velocity”.

Hy:py =p-
Hy:p.>p_

Test statistic S, = number of plus signs observed

The result: p-value = 0.0207 > a = 0.01, therefore, Hy cannot be rejected. We
cannot conclude that there is a difference in velocity.
Conclusions: We can infer from the statistical analysis that the minion caching

strategy improves velocity and, at least, doesn’t hurt core reduction.
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Frequencies

Level Count Prob

+ 11 0.64706

- 6 0.35294

Total 17 1.00000
2 Levels

Test Probabilities

Level Estim Prob  Hypoth Prob
+ 0.64706 0.50000
- 0.35294 0.50000
Binomial Test Level Tested Hypoth Prob p-Value
Prob <=p + 0.50000 0.1662
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Frequencies

Level Count Prob

+ 17 0.94444

- 1 0.05556

Total 18 1.00000
2 Levels

Test Probabilities

Level  Estim Prob Hypoth Prob
+ 0.94444 0.50000
- 0.05556 0.50000

Binomial Test Level Tested Hypoth Prob p-Value
Prob <=p + 0.50000 <.0001

T_satM_T_noPrev_VelSign

Frequencies

Level Count Prob

+ 20 1.00000

Total 20 1.00000
1 Levels

Test Probabilities
Level  Estim Prob Hypoth Prob

+ 1.00000 1.00000

Test ChiSquare DF Prob>Chisq
Likelihood Ratio 0.0000 0 0.0000
Pearson 0.0000 0 0.0000

Method: Fix hypothesized values, rescale omitted
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Frequencies

Level Count Prob

+ 15 0.75000

- 5 0.25000

Total 20 1.00000
2 Levels

Test Probabilities

Level Estim Prob Hypoth Prob
+ 0.75000 0.50000
- 0.25000 0.50000

Binomial Test Level Tested Hypoth Prob p-Value
Prob <=p + 0.50000 0.0207

Figure 6.13: Minion caching versus no caching
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6.3.4 Refinement

T _satM_T ref CoreSign - one run: “success”’ is defined as “no refinement run

resulted in higher core reduction”.

Hy:py =p-
Hy:p. <p_

Test statistic S_ = number of minus signs observed

The result: p-value < o = 0.01, therefore, H is rejected in favor of H;. As expected,

we can conclude that there is a difference in core reduction in favor of refinement.

T _satM_T ref VelSign - one run: “success” is defined as “no refinement run

resulted in higher velocity”.

Hy:py=p-
H1Ip+>p,

Test statistic S, = number of plus signs observed

The result: p-value < a = 0.01, therefore, Hy is rejected in favor of H;. We can

conclude that there is a difference in velocities in favor of no refinement.

A satM_A ref CoreSign - trim_till fix: “success” is defined as “no refinement

TRIM_TILL_FIX run resulted in higher core reduction”.

Hy:py =p-
Hy:p.>p_

Test statistic S, = number of plus signs observed

The result: p-value = 0.0851 > a = 0.01, therefore, Hy cannot be rejected in favor of

H,. We cannot conclude that there is a difference in core reduction.

A satM_A ref VelSign - trim _till fix: “success” is defined as “no refinement

TRIM_TILL_FIX run resulted in higher velocity”.
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Hy:py =p-
Hy:p.>p_

Test statistic S, = number of plus signs observed

The result: p-value < o = 0.01, therefore, Hy is rejected in favor of H;. We can con-
clude that there is a difference in velocities in favor of no refinement TRIM_TILL_FIX

rumn.

Conclusions: The tests confirm our expectations, that refinement improves core re-
duction in a single run, while decreasing velocity. On the other hand, in TRIM_TILL_FIX
the benefit of core reduction is lost, and the decreased velocity remains. Therefore,
we can conclude that there is no much use in refinement, but for short single runs,

where core size is much more important than velocity.
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+ 0.60550 0.50000 + 0.72269 0.50000
- 0.39450 0.50000 - 0.27731 0.50000

Binomial Test Level Tested

Prob <=p +

Figure 6.14: No Refinement versus Refinement Sign Test

Hypoth Prob  p-Value
0.50000 0.0173

Binomial Test Level Tested

Prob <=p +

0.50000

Hypoth Prob  p-Value

<.0001
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satM_ref_3500- Distribution 2

Distributions
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97.5% 4861 97.5% 371.8 97.5% 17950 97.5% 291.9
90.0% 1359 90.0% 220.8 90.0% 4718 90.0% 1225
75.0% quartile 0 75.0% quartile 68.4 75.0% quartile 315 75.0% quartile 30.7
50.0% median -78 50.0% median 19.7 50.0% median 4 50.0% median 46
25.0% quartile -493 25.0% quartile 0.6 25.0% quartile -19 25.0% quartile -0.0
10.0% -1156 10.0% -1.3 10.0% -178 10.0% -6.4
2.5% -2122 2.5% -77.2 2.5% -332 2.5% -61.0
0.5% -5795 0.5% -138.8 0.5% -5795 0.5% -139.4
0.0%  minimum -5795 0.0%  minimum  -138.8 0.0%  minimum -5795 0.0%  minimum  -139.4
Moments Moments Moments Moments
Mean 102.225 Mean 57.379 Mean 1702.2764 Mean 33.084553
Std Dev 2250.6753 Std Dev 113.02688 Std Dev 5721.6446 Std Dev 87.805632
Std Err Mean 205.45761 Std Err Mean 10.317895 Std Err Mean 515.90332 Std Err Mean 7.9171672
upper 95% Mean 509.05158 upper 95% Mean 77.809462 upper 95% Mean 2723.5586 upper 95% Mean 48.757376
lower 95% Mean -304.6016 lower 95% Mean 36.948538 lower 95% Mean 680.99428 lower 95% Mean  17.41173
N 120 N 120 N 123 N 123

Figure 6.15: No Refinement versus Refinement Distribution

6.3.5 Lazy Evaluation

T _satM_T lazySatM_CoreSign - one run: “success” is defined as “not lazy re-

sulted in higher core reduction”.

Hy:py =p-
H12p+>p,

Test statistic S, = number of plus signs observed

The result: p-value < a = 0.01, therefore, Hy is rejected in favor of H;. We can
conclude that there is a difference in core reduction in favor of not lazy dominator

evaluation.

T _satM_T lazySatM _VelSign - one run: “success” is defined as “not lazy run

resulted in higher velocity”.

Hy:py=p-
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Hy:p.>p_

Test statistic S, = number of plus signs observed

The result: p-value = 0.4637 > o = 0.01, therefore, Hy cannot be rejected in favor of

H,. We cannot conclude that there is a difference in velocities.

A satM_A lazySatM _CoreSign - trim_till fix: “success” is defined as “not lazy

TRIM_TILL_FIX run resulted in higher core reduction”.

Hy:py=p-
H12p+>p,

Test statistic S; = number of plus signs observed

The result: p-value < a = 0.01, therefore, Hy is rejected in favor of H;. We can
conclude that there is a difference in core reduction in favor of not lazy dominator

evaluation.

A satM_A lazySatM _VelSign - trim_till fix: “success” is defined as “not lazy

TRIM_TILL_FIX run resulted in higher velocity”.

Hy:py =p-
Hy:p,>p_

Test statistic S, = number of plus signs observed

The result: p-value = 0.2037 > a = 0.01, therefore, Hy cannot be rejected in favor of
H,. We cannot conclude that there is a difference in velocities.
Conclusions: The ordinary sign test analysis of the experimental results shows that

lazy evaluation worsens core reduction without significantly improving velocity.
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Figure 6.16: Normal versus Lazy dominator evaluation
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97.5% 3033 97.5% 105.7 97.5% 6687 97.5% 724
90.0% 1974 90.0% 6.3 90.0% 2523 90.0% 71
75.0% quartile 492 75.0% quartile 0.6 75.0% quartile 89 75.0% quartile 1.3
50.0% median 53 50.0% median -4.7 50.0% median 0 50.0% median -0.5
25.0% quartile 1 25.0% quartile -28.6 25.0% quartile -9 25.0% quartile 9.9
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0.0% minimum -529 0.0% minimum -419.1 0.0%  minimum -2034 0.0%  minimum -429.7
Moments Moments Moments Moments
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Std Dev 1196.0834 Std Dev 74.652994 Std Dev 4609.0355 Std Dev 70.566511
Std Err Mean 126.78459 Std Err Mean 7.9132015 Std Err Mean 483.1582 Std Err Mean 7.3973804
upper 95% Mean 761.71054 upper 95% Mean  -8.650692 upper 95% Mean 1967.1309 upper 95% Mean -3.582164
lower 95% Mean  257.79508 lower 95% Mean  -40.10234 lower 95% Mean 47.374645 lower 95% Mean  -32.97454
N 89 N 89 N 91 N 91

Figure 6.17: Normal versus Lazy dominator evaluation - differences distribution



Chapter 7
Conclusions

The thesis presented a family of techniques for reducing the unsatisfiable core of an
unsatisfiable CNF formula, with the goal of reducing the core further and faster than
currently possible. The basic idea is to replace subgraphs in the resolution proof
with alternative proofs that use less original clauses. This technique has two main
advantages over RUN_TILL_FIX (the only competing technique in a practical setting):
it removes more clauses on average, and is faster on average in the realm of short
time-outs. This result is important in the context of the typical usage of unsatisfiable
core algorithms, in which the effect of reducing the core on the overall system is only
vaguely known, and hence beyond a certain (short) time-out it is typically not cost-
effective to continue reducing the core. Our statistical analysis of the results (based
on the simple-sign-test) show the significance of various alternatives of this algorithm.

Although the problem of minimizing the core has gained significant attention in
the last few years, for many applications in formal verification it is more important
to minimize the number of variables, rather than clauses, in the core. A possible ex-
tension of the current thesis is thus to adapt these ideas to the problem of minimizing

the number of variables in the core.
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Appendix A
Implementation

The code of TRIMMER is in the attached CDROM. A flowgraph with some imple-

mentation details is given in Figure 1.1.
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