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Abstract—Finding a minimal (i.e., irreducible) unsatisfiable
core (MUC), and high-level minimal unsatisfiable core (also
known as group MUC, or GMUC), are well-studied problems
in the domain of propositional satisfiability. In contrast, in the
domain of SMT, no solver in the public domain produces a
minimal or group-minimal core. Several SMT solvers, like Z3,
produce a core but do not attempt to minimize it. The SMT solver
MATHSAT has an option to try to make the core smaller, but does
not guarantee minimality. In this article we present a method and
tool, HSMTMUC, for finding MUC and GMUC for SMT solvers.
The method is based on the well-known deletion-based MUC
extraction that is used in most propositional MUC extractors,
together with several new optimizations such as theory-rotation,
and an adaptive activation strategy based on measurements,
during execution, of the time consumed by various components,
combined with exponential smoothing. We implemented HSMT-
MUC on top of Z3 and MATHSAT, and evaluated its performance
with hundreds of SMT-LIB benchmarks.

I. INTRODUCTION

Given an unsatisfiable formula in conjunctive normal form
(CNF), an unsatisfiable core (UC) is any subset of these
clauses that is still unsatisfiable. In the case of propositional
formulas, the problem of finding a minimum core (or rather,
the decision problem associated with it) is a Xy-complete
problem [23] and there were several attempts to cope with it in
practice [28], [39]. Given the high-complexity of this problem,
there were several attempts to just find small cores, without
a guarantee of minimality [42], [11], [20]. A large body of
work has been dedicated to finding a minimal (i.e., irreducible)
unsat core (MUC), e.g., [34]], [30], [31], [32], which is easier
than finding the minimum core, and at least gives the user the
guarantee that no single constraint can be removed without
making the formula satisfiable. Indeed the only competition
ever held in this domain (as part of the SAT competition
in 2011) focused on MUC extractions, and now there are
several tools that provide this feature, such as MUSER2 [8]],
HAIFAMUC [31] and MCS-MUS [3]. Most applications of
core extraction do not rely on the core being minimal or
minimum per-ce, although a small core is desirable; hence
striking a balance between efficiency and size of the core is a
popular strategy.

The applications of minimal/minimum/small cores of propo-
sitional formulas are numerous, including abstraction refine-
ment for model checking [2]], [24], [6], formal equivalence ver-
ification [26], [[16l], decision procedures [[12]], bounded model-
checking of multi-threaded systems [22] and functional bi-
composition [[13] — see [36l], [30], [[1S)] for extensive surveys.

When it comes to satisfiability Modulo Theories (SMT),
we are aware of several SMT solvers that produce a core,

including Z3 [18], CVC3 [5] and YICES [19] but do not
attempt to minimize it. A method suggested by Cimatti et
al. [15] and implemented in MATHSAT attempts to make the
core smaller, but still does not guarantee minimality. We will
describe this method in detail and our implementation and
experiments with it in Sec. We are aware of one tool, called
DFS-FINDER [41], [40]], for extracting minimal SMT cores.
That tool and the benchmarks it was tested with are not in the
public domain. It is based on a deletion-based strategy, and
was implemented on top of the SMT solver ARGOLIB [29].
Their focus is on the order in which clauses are removed,
which is orthogonal to the techniques we present here.

Whether minimality is important for SMT remains to be
seen. As mentioned above most applications of propositional
MUC do not rely on minimality, but still use a minimal
core extractor, since they aspire to use a small core as a
‘rule of thumb’, namely it is assumed that a small core is
better for the rest of the application. Since SMT is used now
in many applications that require a core it is reasonable to
expect that a tool that finds minimal cores reasonably fast
will be used. Microsoft’s tool YOGI, for example, a software
property-checking tool based on static analysis and testing
technology, uses unsat cores in its refinement process [21
Another example is the UFO software model-checker, which
uses it to generalize the proof before interpolation [1]. More
generally minimality is essential to avoid unnecessary effort
in analyzing constraints that are irrelevant for the conflict.

In the current article we show a method for finding a
minimal core of SMT formulas, based on the popular deletion-
based strategy that is used in several propositional MUC
extractors. The basic idea is illustrated in Fig. |I} Given an
initial core C, in which all the clauses are unmarked, we
remove an unmarked clause ¢ € C' and check for satisfiability
of the remaining formula. If the result is SAT, we mark c as
necessary for the minimal core, and introduce it back to C.
Otherwise (the remaining formula is unsat), we remove clauses
outside the new core and continue.

There are many possible optimizations to this basic algo-
rithm, as surveyed in [32], with varying relevance to the case of
SMT. Most of them rely on access to a proof (e.g., resolution)
and cannot be implemented without changing the SMT solver
itself. An exception is Belov and Marques-Silva’s recursive
model rotation technique [7]] (from hereon—rotation), which
is both effective and does not require changes to the solver.
Indeed we show in Sect. [[l|a generalization of this technique,
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Fig. 1. Deletion-based core extraction. C' is an inconsistent set of clauses,
all of which are initially unmarked.

which we call theory rotation, to the case of SMT. It turns
out to be not as effective in the SMT case owing to the
cost of checking the T-consistency of assignments, as we
will show in Sec. but it still improves the run time by
about 10% on average, depending on the theory. We used a
novel adaptive technique to decide when to activate it based
on measurements, during execution, of the time consumed by
various components.

We implemented our tool on top of Z3, while relying solely
on its API We did not change Z3 itself, with the hope
of supporting other SMT solvers in the future. Z3 has a
large user-base and is one of the best solvers, for a large
number of theories, according to the latest competitions results
of the last few years, and hence is a natural choice. Our
results, which we will present in Sect. show that our
tool HSMTMUC, available from [25]], reduces the size of the
core by 45% on average. In addition, we support a route via
MATHSAT, which turns out to be even faster. It is based
on MATHSAT’s implementation of Cimatti et al.’s method
mentioned above [[15], [[14] for finding a small core, and then
minimizing it with HSMTMUC. We will describe this hybrid
approach towards the end of this article, in Sec. [[V-E]

II. MINIMIZING SMT UNSATISFIABLE CORES

The standard input language of SMT solvers is that corre-
sponding to the SMT-LIB2 standard [4]], which is generally
not clausal. A formula is stated via an assert statement.
Multiple such statements are interpreted as a conjunction
between their respective formulas. Z3 tracks which of the
assertion statements were used in the proof, and this is what
it returns upon a call to (get-unsat-core).

We support two types of core minimizations: minimizing
the set of assertions that are inconsistent, and minimizing the
set of clauses that result from transforming them to CNF. The

2Specifically, we used the following API functions:
Z3_solver_check_assumptions, Z3_solver_get_unsat_core, Z3_solver _reset,
Z3_solver_assert, Z3_get_app_decl, Z3_get_app_num_args, Z3_get_app_arg,
Z3_mk_not, Z3_mk_or, and Z3_is_eq_ast. To translate the input formula
to CNF we apply simplification before and after: tactic t = tactic(ctx,
“simplify”), tactic(ctx, “tseitin-cnf”), tactic(ctx, “simplify”); Z3_mk_tactic,
Z3_tactic_and_then, Z3_tactic_apply.

first of these goals can be thought of as an application of
High-level minimal unsatisfiable core [30] (sometimes called
group-MUC), a problem in which the goal is to minimize the
number of high-level constraints in the core, where in this case
each assertion is such a constraint. This variant is more useful
for human-reading of the output, as it maintains the connection
to the original input. The clausal variant can also be useful. For
example, one can think of a refinement process that extracts the
participating variables from the core, or an engine that extracts
the interpolant from the last unsatisfiability proof rather than
from the original one, which is likely to make the interpolant
smaller. In such applications the mapping of the core to the
original formula is not necessary.

Our implementation begins by simplifying the input formula
and transforming it to CNF. This is done with the help of
Z3’s tactics (“simplify” and “tseitin-cnf”). The resulting CNF
C is over theory literals and new auxiliary Boolean variables
resulting from the Tseitin encoding. Each theory literal [ is
associated with a propositional variable that encodes whether
this literal is true or false in the current assignment . To
enjoy the incrementality of Z3, we build the formula such
that each clause is guarded with an auxiliary variable, which
is then passed as an assumption to the solver. We introduce the
guard as a negated auxiliary variable, hence deleting a clause
amounts to changing its associated assumption from TRUE to
FALSE.

We follow the basic deletion-based method as explained in
the introduction and illustrated in Fig. [T] (the center rectangle
SAT(C') now corresponds to an SMT call). When solving the
high-level variant, each time we remove the whole set of
clauses that are associated with a single high-level constraint.
On top of that, we implemented an optimization that we call
theory rotation, for both the high-level and clausal variants of
the problem. It does not require any change in Z3 itself. This
optimization is the topic of the next subsection.

A. Theory rotation

Suppose that a set of T-clauses C' is unsatisfiable, and
removing an unmarked clause ¢ € C' makes the formula
satisfiable. According to Fig. [I] at this point we should now
mark ¢ and put it back in C. In Alg. [T we show a basic
method by which additional clauses can potentially be marked
without additional SMT calls. This method generalizes the
rotation (37| and recursive model rotation [I] techniques,
which were introduced and proven effective in the domain
of propositional MUC extraction.

The idea is the following: given the (propositional) assign-
ment « that satisfies C'\ {c}, in line[3|we swap in « the value of
one of the variables in ¢, and call the new assignment o’. This
necessarily means that o/ |= c. If it happens to be the case that
o’ is T-satisfiable, and contradicts a single unmarked clause
¢ € C\ {c}, then we can conclude that ¢’ is also necessary
for the core and hence can be marked. The reason is that
while C is unsatisfiable, we found a T'-satisfiable assignment
o' such that o/ = C'\ {¢'}. Hence in line [5|we mark ¢’. In the
line that follows we call T-ROTATE, recursively with the new



assignment o’. The check in line |4 is done lazily, from left
to right. Note that the fact that we check in line [ that ¢’ is
unmarked guarantees termination, because 1) each clause can
only be marked once, 2) a clause can never be unmarked, and
3) a recursive call happens only after marking a clause.

We continue by suggesting an improvement to this basic
procedure, based on the observation that T-ROTATE; gives
up once « is not T-satisfiable. There is an obvious trade-
off between the time invested in attempting to fix o’ so that
it becomes T'-satisfiable and the time it saves by reducing the
number of SMT calls. Algorithm T-ROTATE, which appears in
Alg.|2| gives the user control over the amount of effort through
the bound flipT hreshold (see line[6|and the fourth parameter
of FLIP). In our winning strategy we set this threshold to two,
meaning that we allow for flipping one additional variable in
our attempt to make o’ T-satisfiable. This strategy increases
the number of marked clauses by close to 10% on average, as
will be evident in the next section.

The functions T-ROTATE and FLIP in Alg. [2] are mutually
recursive, and FLIP is also self-recursive. T-ROTATE is the one
called from the main core minimization loop when the removal
of ¢ makes C satisfiable. T-ROTATE takes c as input and marks
clauses (including c itself), i.e., mark that they belong to the
MUC. For each literal [ € c, it calls FLIP in line [

The conditions checked by FLIP in line [§] are different than
those checked in T-ROTATE;, because we want to continue
even if o’ is not T-consistent (note that in such a case it is
possible that UnsatSet(C,a’) = 0). In such a case we call
FLIP recursively with each of the literals in the core (lines
—[13), with the hope that after flipping it the new assignment
will satisfy all the conditions required for reaching line [I0]
This invokes FLIP for each literal in the core, which justifies
the low value of flipT hreshold mentioned above.

Some implementation details: To compute
UnsatSet(C,«’), we maintain for each literal a set of
clauses in which it appears. Hence if we flip [ to —I, we
check for (propositional) satisfiability of all the clauses that
contain [, in addition to the clause that was unsatisfiable
at the entrance to FLIP (when called from T-ROTATE, that
clause is guaranteed to become satisfiable after flipping
l, by construction. It is not necessarily the case when
T-ROTATE is called recursively). Furthermore, since each
clause is potentially checked multiple times, under similar
assignments, we maintain a map from each clause cl that we
check, to the literal /it that satisfies it. When revisiting cl, we
first check if [t is still satisfied by the current assignment.
If not, we revert to scanning the clause and update the map
with a new satisfied literal, if one exists.

B. Theory rotation over high-level constraints

Our implementation of theory rotation for high-level the-
ory constraints appears in Alg. It is a generalization of
Alg. based on the propositional high-level rotation that
was described in [35], [33]. If, after removing the clauses
associated with a high-level constraint H, the formula becomes
satisfiable, then we find the set of literals in the intersection

of all the clauses in H that are unsatisfied by the current
assignment «. We then flip the assignment of each of these
literals separately, and check each time if it is both T-
consistent and makes a single high-level constraint H’ unsat,
and H' is unmarked. If both conditions are true, then H' is
marked as necessary. The FLIP function that is called in line [§]
has the same code as in Alg. 2] except that C' is now a set of
high-level constraints.

C. Adaptive activation of theory rotation

Our initial experiments showed that T'-rotation is frequently
not cost-effective, despite the fact that it is polynomial and
saves SMT calls which are worst-case exponential. This stands
in contrast to the propositional case, where rotation is gener-
ally very cost-effective. Reasons for this difference include

o the theory check in line [ is potentially expensive (yet
for most theories still polynomial),

« the success rate is smaller than in the propositional case,
because of the additional requirement that the assignment
« 18 T'-consistent,

« the attempts to fix « so it becomes T'-consistent (line
may be expensive if flipThreshold is not small.

Analyzing the logs of our experiments shows that T'-rotation
has a large impact in the beginning (by ‘beginning’ we mean
after having the initial core from Z3), when there are still
many unmarked clauses, but it diminishes through time. The
overhead of calling 7T'-rotation while being ineffective at later
steps frequently outweighs the initial gain. To overcome this
problem, we attempt to stop 7'-rotation when it is no longer
cost-effective. We experimented with two strategies:

o fail bound: when x consecutive activations of T-ROTATE
produce no marked clauses, we stop.

« exponential smoothing: Let ¢,,,; be the average time it
takes to check T-satisfiability of C'\ {c}, ¢, the average
time it takes to run T-ROTATE, and n,. the average number
of clauses that it marks (not including the initial clause
c). Had these figures been known and constant throughout
the run, we would use 7 -rotation only if

bt > . ()

T

Since this is not the case, then as a second best choice
we measure these figures at run time, and use them
as the basis for estimating (I). They are not purely
monotonic, however, and hence terminating 7-rotation
once does not hold is not a good strategy. On the
other hand the number of marked clauses n,., as hinted
before, has a clear trend: in practice we see that it
is reduced to near O after a while, when the set of
unmarked clauses becomes small. The solution we chose
is based on exponential smoothing, a known technique in
statistics that was also used recently in a SAT branching
heuristic [27]. The input data can be seen as a stream
of tuples (t0,,,t%, n0), (t} .. tL nl) ..., where the su-
=10

perscript denotes the time index. We define 70, = t9, .



Algorithm 1 A basic theory rotation algorithm.

1: function T-ROTATE(clause-set C, clause ¢, assignment «)
2: for each [ € ¢ do
o = all + -l;

mark ¢;
T-ROTATE,, (C,c,a');

AN

if UnsatSet(C,o’) = {c'} and ¢’ is unmarked and T-SAT(«) then

Algorithm 2 Theory rotation, in which certain effort is invested in fixing the assignment « so it becomes 7'-consistent and

consequently leads to marking of additional clauses.

Require: C is unsat, and o |= C'\ ¢
1:  void T-ROTATE(clause-set C, clause ¢, assignment «)

2 mark c;
3: for each literal [ € ¢ do
4 FLIP(C, I, o, 0);

Require: « does not satisfy zero or one clauses from C'
5. void FLIP(clause-set C, lit [, assignment «, int depth)

> User-defined threshold

> Theory-checking of o/
> ¢’ must exist here

> core = unsat core of line [9]

6 if depth > flipThreshold then return ;

7: o = all + —l;

8 if (UnsatSet(C,a’) = {c'} and ¢’ is unmarked) or UnsatSet(C,a’) = () then
9: if (T-SAT(/)) then

10: T-ROTATE (C, ¢, &');

11: else

12: for each literal I’ in core do

13: FLIP(C, U/, o/, depth + 1);

Algorithm 3 High-level theory rotation, in which certain effort is invested in fixing the assignment « so it becomes T'-consistent

and consequently leads to marking of additional clauses.

Require: C is unsat, and o = C'\ ¢

1: void T-ROTATE(constraint-set C', constraint ¢, assignment «)

mark c;
intersection := Lit(c)
for each clause cl € c do
if a [~ ¢l then
intersection = intersection N Lit(cl)

for each literal | € intersection do
FLIP(C, I, «, 0);

AN A ol

> Lit(c) is the set of literals that appear in ¢

> at least one such clause exists since a [~ ¢
> Lit(cl) is the set of literals that appear in cl

and

L i—1

Tslmt =o- tf‘;mt + (1 - Oé) smt (2)
where « is a parameter in the range [0..1]: the closer it
is to 1, the closer the value of T7%,,, is to the current
input ¢! .. Conversely the closer « is to 0, the more
‘smooth’ 77, . becomes. Similarly we define T and N/,
with respect to the ¢, and n, sequences, respectively. We
continue with T'-rotation while
‘ i
Tt > ~— -

¥ 3)

In our experiments we used o = 0.1.

III. EXPERIMENTS

We experimented with the same 561 benchmarks used
in [15], which were selected from SMT-LIB, and include
instances from the quantifier-free theories LRA, UF, RDL, LIA
and IDL. From those we removed 63 instances that Z3 cannot
solve in 10 minutes (our timeout), i.e., solve the formula
itself augmented with the auxiliary guard variables. This left
us with 498 benchmarks. All experiments and graphs in this
section were conducted via HBENCH [38]], a performance-
benchmarking platform.

For the clausal variant of the problem, Fig. 2] (left) shows
a comparison of the size of the default core given by Z3 and
the minimal core that our tool, HSMTMUC, emits. Overall



the average reduction in core size is 45%. The plot on the
right shows the impact of theory rotation on the number of
iterations. Overall the average reduction in the number of
iterations is 34%. Although the diagram shows that rotation
always reduces the number of iterations (or at least does not
increase it), in theory a point to the left of the diagonal is
possible. This is because rotation may change the order in
which clauses are chosen for removal. This, in turn, may
impact the run of the SMT solver and produce a different
core if the formula is unsatisfiable.

Table [l shows more detailed results for the clausal variant.
The ‘base’ configuration is a simple deletion-based strategy,
and all others include rotation. The ‘b =’ label means that
we activate the ‘fail bound’ strategy with a bound z, and the
‘exp’ label means that we activate the exponential smoothing
strategy, both explained in the previous section. Overall, all
the rotation strategies that we used improve upon the base
configuration, with the ‘exp‘ strategy having the least number
of fails within the 10 min. timeout. The ‘T-conflict resolved’
column presents the number of cases that lines in T-
ROTATE led to additional marked clauses. Whereas the avg.
time it takes to compute the minimal core (the Time column)
is close to 30 sec., the avg. time it takes Z3 to compute the
initial core is ~ 2.5 sec.

A detailed analysis shows that the effect of theory rotation
depends on the theory itself (to the extent that the benchmarks
themselves are representative of the theory). We refer the
reader to [25] for detailed results.

We also experimented with the high-level variant. We
removed benchmarks that have a single assert statement,
which left us with 395 benchmarks, out of which 41 timed-
out. The last line of the table shows our results. Note that
the number of iterations in the high-level variant is an order
of magnitude smaller comparing to the clausal variant, which
is expected given the nature of the problem (i.e., rather than
removing a single clause in each iteration, we remove many).
In our experiments rotation had negligible effect in this variant,
which is expected given the low number of iterations. We again
refer the reader to [25]] for detailed results.

Unfortunately we cannot make a full comparison to [41],
[40] because neither the tool nor the benchmarks that were
used to evaluate it are in the public domain. We could only
compare the 15 sample benchmarks for which detailed results
were published in [40]. The results show that our tool is
over two orders of magnitude faster. Detailed results are
available in [25]. We emphasize that [41], [40] is based on
a different, less competitive SMT solver (ARGOLIB), and
that they used different hardware, hence the comparison only
approximates the relation between the tools, not the MUC
extraction algorithms themselves

31t seems that they also used a different conversion to CNF, because the
number of clauses that they report is different than ours (to both directions),
despite the fact that we start from the same SMT-LIB benchmark.

IV. A COMPARISON TO A MINIMIZATION OF THE BOOLEAN
ENCODING, AND A HYBRID APPROACH

We now describe in detail our implementation and experi-
ments with a method suggested by Cimatti et. al in [[15] that
was implemented in MATHSAT, which finds a small SMT
core, that is not necessarily minimal. As we will show, our
implementation of this method based on Z3 is not competitive
with the one in MATHSAT, but a hybrid approach, in which
we run HSMTMUC to minimize the result of MATHSAT, is
the best configuration we found.

A. Boolean-encoding minimization

Recall that an SMT solver combines a propositional SAT
solver and a decision procedure DPr for a conjunction of 7-
terms, for each supported theory T'. It begins by associating
with each T'-literal [ a new propositional variable which we
denote by e(l). Overloading the notation, we denote by e(y)
a T-formula ¢ after all of its literals are encoded this way.
Hence e(yp) is a propositional abstraction of . We call e(yp)
the propositional skeleton of .

Cimatti et al.’s method for extracting a small unsat SMT
core, is based on using a propositional MUC extractor for
minimizing e(¢) A e(L), where L denotes the lemmas gen-
erated during the run of the SMT solver. The e¢(L) clauses
are discarded from the core, because L corresponds to theory
lemmas that are by construction 7'-valid, and hence can always
be conjoined to the formula. The rest of the core can be
mapped back to a set of clauses ¢’ C (, which is guaranteed to
be unsatisfiable. This method has a major practical advantage
as it leverages existing tools for minimizing propositional
cores and is easy to implement if the SMT solver can emit
e(L) (Z3 does not support such an option, but we will explain
how this can be achieved with Z3 later on). Nevertheless,
as noted by the authors, this process does not guarantee
minimality of the SMT core. We demonstrate this fact with
two examples.

Example 1. Quoting example 5 from [15l], consider

o= ((z=0)V(@=1)A(=(&=0)V(x=1)A

(@=0)V-(z=1)A(@=0)v-(w=1). @

It is clear that e(p) is unsatisfiable, and further that all the
clauses in e(p) are necessary for maintaining unsatisfiability.
Nevertheless the last clause is not necessary and hence this is
not a minimal core of . O

The example above demonstrates the fact that whereas 7-
valid clauses cannot be part of a minimal core (because they
are always implied anyway and therefor can be removed), the
information that they are valid is lost once the search for a core
focuses on the propositional abstraction of . This particular
problem can be easily fixed by removing 7T'-valid clauses from
the resulting core (by calling D Pr for each clause separately),
but this still does not guarantee minimality as we show next.

A bigger problem is that once we minimize e(p) Ae(L), we
are restricted to the lemmas in L, which are not necessarily
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Fig. 2. (left) Z3’s default core vs. the minimal core that our tool HSMTMUC emits. (right) The number of iterations with and without theory-rotation.

Config. # fails | Time | Iterations | Rotation | Cls. Marked | 7-Conflicts T'-check Init Final

(sec.) Calls By Rotation Resolved Time (Sec.) core core
(base) 108 30.5 559.2 0.0 0.0 0.0 0.0 820.2 | 454.2
T-ROTATE 108 29.7 372.0 472.2 203.7 20.8 14 820.2 | 454.4
T-ROTATE b 5 108 28.9 435.9 168.8 130.8 10.2 1.0 820.2 | 454.5
T-ROTATE b 7 109 29.2 417.1 194.4 143.2 12.3 1.2 820.2 | 454.4
T-ROTATE exp 107 29.6 4243 244.8 151.8 11.2 1.2 820.2 | 454.5

[ HL (base) [ 41 [ 7.2 [ 45.4 [ 0.0 [ 0.0 [ 0.0 [ 0.0 [ 41.8 [ 26.7 ]
TABLE I

THE TOP FIVE ROWS REFLECT RESULTS WITH DIFFERENT CONFIGURATIONS, OVER 498 SMT BENCHMARKS. OTHER THAN THE # FAILS COLUMN, THE
DATA REFLECTS AVERAGES. THE LAST TWO COLUMNS REFERS ONLY TO BENCHMARKS SOLVED BY ALL CONFIGURATIONS. ‘INIT CORE’ IS THE SIZE OF
THE INITIAL CORE EMITTED BY Z3. THE LAST ROW REFERS TO THE HIGH-LEVEL VARIANT, AND IS ONLY OVER THE (395) BENCHMARKS THAT HAVE
MORE THAN ONE assert STATEMENT.

minimal themselves. The following example demonstrates this
problem.

Example 2. For x1,...,x4 € R, let

372) A\ (.TQ = 33‘4) A\ ($1 = 373) AN
1‘4) A\ _‘(l‘l = 1‘4) .

(21
(w3

v )

Suppose now that the following lemma, which is simply a
negation of , was learned during the search

L 562)\/"(132 :.’,E4) \/_\(ZCl 21‘3)\/

24)V (z1 = 24) .

—\(xl
—|(x3

(6)

This is a T-valid statement, although it is not minimal. Now
e(¢) N e(L) is unsatisfiable, and a minimal core at the
propositional level, after discarding the e(L) clauses, is all
the clauses of ¢. This core is not minimal with respect to p,
however, because, e.g., the first two clauses can be removed.
This could have been prevented had the solver inferred the
shorter lemma L':

L, = —|(1‘1

(7
O

133) \% _‘(1‘3 = Q?4) V (Il = 564) 5
but there is no guarantee for this to happen.

B. Z3’s lemmas and proofs

As described in [14], MATHSAT has a built-in support for
logging all the T-Lemmas produced during ¢’s satisfiability
check. However, in the case of Z3, this logging is bypassed,

and instead Z3 maintains proof objects during conflict reso-
lution, as described in [17].

A detailed description of Z3’s language and proofs has
been given in [17], [9], [10]. Z3’s language is a many-
sorted FOL based on the SMT-LIB language. Z3’s proof terms
represent natural deduction proof currently using 34 axioms
and inference rules. These inference rules range from simple
rules such as MP (modus ponens), to complex rules that ab-
breviate multiple reasoning steps such as Rewrite for standard
simplification rules, and other theory-specific reasoning, such
as Transitivity.

Given an unsatisfiable formula ¢, Z3’s proof is a directed
acyclic graph (D AG) with a single root. Each node is labeled
with a formula: leafs are labeled with either a T'-valid formula
or one of the original clauses in ¢, internal nodes are labeled
with a consequent of some T-inference rule, and the root is
labeled with L, i.e., false. In the discussion below we will
not make the distinction between a node and its label. An
edge from a node n to a node n’ in the proof represents the
fact that n’ was used as a premise of an inference rule whose
consequent is n. Hence, if n has k children n;..ny, then

(e(n1) A+~ ANe(ng)) — e(n) (8)

represents an encoding of a valid T-implication. Let e(L) be
the set of implications of the form (8) corresponding to the
entire set of internal nodes and the set of T'—valid leafs in the
proof graph. Then e(p) A e(L) must be unsatisfiable.



C. Implementation using Z3’s proof

To implement Cimatti et. el.’s method on top of Z3, we
traverse the proof graph produced by Z3E], and replace each
inference with a corresponding propositional lemma (8. Hav-
ing extracted e(L), it is now possible to apply propositional
MUC extraction on e(p) A e(L), as described in Sect.
Finally, given the propositional MUC, we translate it back to
the original T'-clauses and check whether it is a minimal core
with HSMTMUC. Since we are only interested in the question
whether the core is already minimal, for this experiment we
terminate HSMTMUC early with “not minimal” once we find
a clause that can be removed.

D. Experimental results

We ran our implementation on top of Z3 of the method
of [14], with the same 498 benchmarks that were mentioned
in Sect. For the propositional MUC extractor we used
HMuc [32]]. We note that the fact that we ask Z3 to log
the proof, has an overhead. In experiments reported in [17]], it
was shown that the memory overhead is x3 to x40 greater,
with corresponding slowdowns of x1.1 to x3. The detailed
results appear in Table Overall it is not competitive with
the implementation in MATHSAT, as will be seen next.

E. Experiments with a hybrid solution

We tested two more configurations: the original implemen-
tation of [[14] in MATHSAT, and another version in which after
running MATHSAT we invoke HSMTMUC to minimize the re-
sulting core. We refer to the two stages of this hybrid solution
as Hybrid-M (MATHSAT) and Hybrid-H (HSMTMUC). The
number of fails are:

HSMTMUC (base) Hybrid
171 138

Note that those numbers are out of the full set of 561
benchmarks. Hence the 171 fails of HSMTMUC is made of
the 108 fails reported in Table [I| + 63 cases in which Z3 could
not produce the initial core within the time limit. The 138 fails
of the hybrid approach include 98 fails of MATHSAT itself.
Hence, we can see that from the perspective of the number
of fails, the hybrid approach is better than HSMTMUC alone
for finding a minimal core. In Table we examine more
closely the cases that all three approaches succeeded. As can
be seen, we achieve a reduction of 20.9% on average in core
size with the hybrid approach, comparing to MATHSAT alone
(which, recall, is not necessarily minimal), and a reduction of
9% comparing to HSMTMUC. The total average time of the
hybrid approach (11.2 sec. + 16.7 sec.) is larger, however, than
invoking HSMTMUC alone (22.9 sec).

Comparing MATHSAT to our implementation on top of Z3,
we see that the former is better: it has less fails (98 vs. 164),
better run-time on those instances it completes (11.2 sec. vs.
40.4 sec) and smaller average core size (523.0 vs. 723.7). It
seems that MATHSAT simply finds proofs that use a smaller

4Using the methods
fun_decl::decl_kind()

expr::num_args(), expr::arg(i), expr::decl(),

number of facts from the original formula . It also does not
have the overhead of reconstructing the proof as explained
in Sec. and it uses a different propositional extractor
(MUSER2 vs. HMUC).

V. CONCLUSIONS AND FUTURE WORK

We presented an algorithm for extracting a minimal un-
satisfiable core from SMT unsatisfiable formulas, which is
based on a combination of a deletion-based strategy and theory
rotation. Many other optimizations exist for the propositional
case, such as those published in [8]], [32], but they can only
be used in the context of SMT if the SMT solver itself is
changed. We refrained so far from such changes, with the
hope of supporting other SMT solvers that provide a similar
API. A highly desirable situation is one in which the initial
run of the SMT solver is already biased towards a small core,
the same way that the SAT solver is biased towards finding
a minimal core in HaifaMuc [32]. For example, make the
theory solver return lemmas that contradict as few unmarked
clauses as possible. Such an optimization requires theory-
specific changes, however, which we leave for future research.
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