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SUMMARY

Proving the equivalence of successive, closely related versions of a program has the potential of being
easier in practice than functional verification, although both problems are undecidable. There are three
main reasons for this claim: 1) it circumvents the problem of specifying what the program should do,
2) the problem can be naturally decomposed and hence is computationally easier, and 3) there is an
automatic invariant that enables to prove equivalence of loops and recursive functions in most practical
cases. Theoretical and practical aspects of this problem are considered. Copyright © 0000 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Proving the equivalence of successive, closely related versions of a program has the potential of
being easier in practice than applying functional verification to the newer version against a user-
defined, high-level specification. There are three reasons for this claim. First, it mostly circumvents
the problem of specifying what the program should do. The user can take a no-action ‘default
specification’ by which the outputs of the program should remain unchanged if the two programs
are run with the same inputs. Second, as shown in this article, there are various opportunities for
abstraction and decomposition that are only relevant to the problem of proving equivalence between
similar programs, and these techniques make the computational burden less of a problem. Finally,
loops and recursion typically do not pose a problem for a fully-automatic proof. The reason for
this, intuitively, is that equivalence itself is typically an inductive invariant. In other words, if the
recursive calls of two recursive functions return the same values given the same inputs at depth ¢ for
some ¢ > 0, typically the same holds for recursion depth ¢ — 1.

Both functional verification and program equivalence of general programs are undecidable.
Coping with the former was declared in 2003 by Tony Hoare as a “grand challenge” to the computer
science community [1]. Program equivalence can be thought of as a grand challenge in its own
right, but there are reasons to believe, as indicated above, that it is a ‘lower hanging fruit’. The
observation that equivalence is easier to establish than functional correctness is supported by past
experience with two prominent technologies: regression testing [2, 3] — the most popular automated
testing technique for software — and equivalence checking — the most popular formal verification
technique for hardware. In both cases the reference is a previous version of the system. Equivalence
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2 GODLIN AND STRICHMAN

checking also demonstrates the difference in the computational effort: it is computationally easier
than model-checking, at least under the same assumption made here, namely that the two compared
systems are mostly similar. One may argue, however, that the notion of correctness is weaker: rather
than proving that a model is ‘correct’, it is proven that it is ‘as correct’ as the previous version. In
contrast one may argue that it can still expose functional errors since failing to comply with the
equivalence specification indicates that something is wrong with the assumptions of the user. In any
case, it might be a feasible venue even in cases where the alternative of functional verification is
not.

The problem of proving the equivalence of closely related programs was coined regression
verification by the authors in a position paper related to the above-mentioned grand challenge [4].
Solving it can be useful wherever regression testing is useful, and in particular for checking
backward compatibility. A special case is when a programmer introduces a new performance
optimizations or applies refactoring [5], which is not supposed to have an impact on the external
behavior of the program. It can also be used for change impact analysis, i.e., the task of identifying
the potential consequences of a change in order to know which functions should be retested.

The idea of proving equivalence between programs is not new, and in fact preceded the idea of
functional verification.! A detailed survey of earlier work will be given later in this section, but it
should be mentioned that as far as the authors are aware no one has focused so far on coping with
this problem for general programs in real programming languages nor on how to exploit the fact
that large parts of the code in the two compared programs are identical. Ideally the complexity of
the solution should be dominated by the (semantic) difference between the two compared programs
rather than on their size.

A precise definition of the problem addressed here is the following:

Definition 1 (Regression verification)

Given two programs with corresponding sets of functions {fi,...,f,} and {fi,...,f.}, a
(possibly partial) mapping maps between them and a definition of function equivalence, Regression
verification is the problem of finding the set

{(fi, £;) | (fi, ;) € mapy, f; and f] are equivalent} .

There are many different ways to define the notion of Input/Output equivalence (six different
notions of equivalence were defined by the authors in a previous publication [7]). In this paper the
focus is on the following definition:

Definition 2 (Partial equivalence of functions)
Two functions* f and f’ are said to be partially equivalent (p-equiv for short) if any two terminating
executions of f and f’ starting from the same inputs, emit the same outputs.

The problem of function (or program) equivalence according to this definition can be reduced
to one of functional verification of a single program P rather easily: P should simply call the
two compared functions consecutively with nondeterministic but equal inputs, and assert that they
return the same output. The problem with this direct approach is that it makes no use of the
expected similarity of the code. Rather, it solves a monolithic functional verification problem
without decomposition. As shown in this article, the similar code structure can be beneficial exactly
for this reason.

The rest of the article is structured as follows. Sect. 2 describes briefly an inference rule for
proving the partial equivalence of recursive programs. This rule is obviously not complete, but
turns out to be strong enough for proving partial equivalence in many realistic cases. In Sect. 3 an
algorithm for decomposing the equivalence proof — ideally to the granularity of pairs of functions

TIn his 1969 paper about axiomatic basis for computer programming [6], Hoare points to previous works from the late
50’s on axiomatic treatment of the problem of proving equivalence between programs.

¥The term “function’ is used here in the same way that it is used in most programming languages, which means that it
can have multiple outputs and not necessarily terminate. A C function, for example, can have as outputs a return value,
global variables to which it writes, and variables that are passed to it by reference.
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REGRESSION VERIFICATION 3

— will be presented. Some experiments with the Regression Verification Tool (RVT) that was
developed by the authors and with Microsoft’s SymDiff [8]% are reported in Sect. 4, including a
small case study that demonstrates the output of RVT.

Many details about RVT are left out, as well as more references to earlier works. The interested
reader may find them in the first author’s thesis [9]. The theoretical background on the inference rule
that is used, including detailed semantics of the assumed programming language, can be found in a
previous publication by the authors [7]. The emphasis here is on the new decomposition algorithm
and on the tool RVT.

Related work This article extends an earlier proceedings version [10] in several ways. Most
importantly, it generalizes it to programs with mutual recursion, both in the description of the
inference rule and in the decomposition algorithm. It also adds a proof of correctness for the
main decomposition algorithm. The inference rules that are used, which were described and
proved formally elsewhere [7], are described here for the first time in a way that emphasizes their
resemblance to Hoare’s rule for recursive functions. This description seems clearer. Finally, a case
study as mentioned above is included.

As mentioned earlier, the idea of proving equivalence between programs is not new. It is a rather
old challenge in the theorem-proving community. A lot of attention has been given to this problem
in the ACL2 community (see, e.g., [11, 12, 13]). These works are mostly concerned with program
equivalence as a case study for using proof techniques that are generic (i.e., not specific for proving
equivalence). It seems that no one has targeted programs with similar call graphs and large parts
that are syntactically equivalent, which is the target of regression verification. Another related line
of work is that of relational verification [14, 15], which suggests a logical framework for expressing
relations between programs and corresponding deductive rules for proving them, which are targeted
at popular types of transformations, e.g., loop unrolling.

Attempts to build fully automatic proof engines for equivalence of industrial programs
concentrated so far on very restricted cases. Specifically, they all focused on programs without
dynamic memory allocation and with bounded loops (or loop-free). Feng and Hu, for example,
considered the problem of proving equivalence of embedded code [16]. The main technique used in
this line of work is to prove the equivalence of small segments of the code after unrolling loops some
predefined number of times. Arons et al. [17] developed a tool at Intel for proving the equivalence
of two versions of microcode, with the goal of proving backwards compatibility, but the programs
were assumed to be loop-free.

Another relevant line of research is concerned with translation validation [18, 19], the process
of proving equivalence between a source and a target of a compiler or a code generator. The
fact that the translation is mechanical allows the verification methodology to rely on various
patterns and restrictions on the generated code. For example, translation validation for synchronous
languages [19, 20] relies on the fact that the target C code has exactly one loop (corresponding
to a step in the synchronous program) and hence the proof is conducted by induction over an
expression which is derived from loop-free code. A recent example of translation validation, from
the synchronous language SDL to C, is by Haroud and Biere [21]. It is based on a variation of
Floyd’s method [22] for proving equivalence: it declares cutpoints in both programs (as in the
original Floyd’s method, there should be at least one cutpoint in each loop), maps them between the
two programs, and proves that two related cutpoints are equivalent with respect to the ‘observable’
variables if they are equivalent in the preceding pair of cutpoints. This method works in the boundary
of a single function on each side and does not support general programs (e.g., recursive programs).

§Based on an early version of this article, the algorithm suggested here has recently been implemented in SymDiff.
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4 GODLIN AND STRICHMAN

2. PROVING PARTIAL EQUIVALENCE

We begin by recalling Hoare’s rule for recursive invocation. Let {p} call f {¢} be a Hoare triple
where f is a recursive function. The inference rule suggested by Hoare [23] for proving this triple
is:
{p} call f {¢} Fu {p} f body {q}
{p} call f{q}

where “f body” is the body of f. In words, the only effect of the recursive call on the proof is that
it is assumed that it maintains the (p, ¢) relation. This unintuitive rule was described by Hoare [23]
as follows: The solution... is simple and dramatic: to permit the use of the desired conclusion as
a hypothesis in the proof of the body itself. The correctness of rule (REC) is proved by induction,
where the base case corresponds to the base(s) of the recursion, namely the nonrecursive run(s)
through the procedure.

(REC) , (1)

2.1. Rule (PROC-P-EQ;)

The rule for partial equivalence between functions f and f’ has the same flavor as (REC). It applies
to the special case of f, f’ being recursive functions without calls to other functions. It is called
(PROC-P-EQy), for ‘Procedures Partial Equivalence’, where the subscript s indicates that it applies
only to the special case.

p-equiv(call fcall ') F p-equiv(f body, f’ body)
p-equiv(call f,call f')

(PROC-P-EQy) . 2)

Informally, this means that if assuming that the recursive calls are partially equivalent enables us
to prove this condition over the bodies of f and f’, then f and f’ are partially equivalent. It was
shown in a previous publication [7] that this rule is sound. Although the soundness proof refers to
an artificial abstract language, it has most of the features of an imperative language such as C. In
Sect. 3.7 this point will be elaborated further.

A convenient method for checking the premise of rule (PROC-P-EQ;) is to replace the recursive
call with an uninterpreted function because by definition instances of the same uninterpreted
function are partially equivalent (this is guaranteed by the congruence axiom that defines such
functions [24]). After performing this replacement the calling function is said to be isolated. Denote
by fUF the isolated version of a function f. Rule (PROC-P-EQ,) can be reformulated accordingly:

p-equiv(call fUF call f'UF)
p-equiv(call f,call f')

3)

Since every loop can be extracted to a recursive function, and the recursive functions are replaced
with uninterpreted functions, the premise of this rule is decidable for a language with finite domains
such as C. The following example demonstrates the use of this rule.

Example 1
Consider the two functions in Fig. 1. Let U be the uninterpreted function such that calls to U replace
the recursive calls to gcd1 and gcd2. Figure 2 presents the isolated functions.

To prove the partial equivalence of the two functions, it is necessary to first translate them to
formulas expressing their respective transition relations. A convenient way to do so is to use Static
Single Assignment (SSA) [24]. Briefly, this means that in each assignment of the form x = exp;
the left-hand side variable x is replaced with a new variable, say x;. Any reference to x after this
line and before x is assigned again is replaced with the new variable x; (this is done in a context of
a program without unbounded loops). In addition, assignments are guarded according to the control
flow. After this transformation, the statements are conjoined: the resulting equation represents the
computations of the original program.

The SSA form of isolated gcd1, denoted T4, , is
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REGRESSION VERIFICATION 5

gcdl (int a, int b) gcd2(int x, int y)
{ int g; { int z;
if (!b) g = a; Z = X;
else {
a = a%b; if (y > 0)
g = gedl(b, a); } z = ged2(y, z%y):
return g; return z;

} }

Figure 1. Two functions to calculate the GCD of two nonnegative integers.

gcdl (int a, int b) gcd2(int x, int y)
{ int g; { int z;
if (!b) g = a; Z = X;
else {
a = a%b; if (y > 0)
g = U(b, a); } z = U(y, z%y);
return g; return z;
¥ }

Figure 2. After isolation of the functions, i.e., replacing their function calls with calls to the uninterpreted
function U.

ag = a AN
bo=0b AN
bo=0— go = agp N @)
(bo #0—)0,1 = (ao%bo))A(bo =0—a :ao) A\
(bo %O—)gl :U(bo,al))/\(bo =0—0q :go) AN
g9=9
The SSA form of isolated gcd2, denoted T4, , is
To = A\
Yo=Yy A
20 = Zg A\ 5)
yo >0 — 21 = U(yo, (20%y0)) A
Yo <0 —= 21 =2 A

z =2z

The premise of rule (PROC-P-EQ,) requires proving the validity of the following formula over
nonnegative integers:

(a=2ANb=yANTgeq, NTyed,) — g=2. (6)

Many theorem provers can prove such formulas fully automatically, and hence establish the partial
equivalence of gcdl and gcd2. Note that a real implementation of the GCD function should
include a check that the two input numbers are non-negative, and return some error code otherwise.
Under this modification, the two functions can be proved to be partially equivalent without the
necessity to assume that the input is non-negative. O

2.2. Extensions to (PROC-P-EQy)
Now suppose that the two compared functions f, f’ call other functions f,, f., respectively. Rule
(PROC-P-EQy) can still be used if one of the following holds:
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6 GODLIN AND STRICHMAN

1. If f., f. were already proven to be equivalent then they can be replaced with uninterpreted
functions. Such a replacement imposes an overapproximating abstraction. The soundness of
the rule is maintained.

2. Otherwise, if f., f. and their descendants are not recursive then they can be inlined in their
callers. The premise of rule (PROC-P-EQy) is then checked as before.

3. Otherwise, if some of the descendants of f., f. are recursive but were proven partially
equivalent then these descendants can be abstracted with uninterpreted functions. As in the
previous case f, f. can then be inlined into their callers.

2.3. A generalization: rule (PROC-P-EQ)

(PROC-P-EQ,) can be generalized to mutually recursive functions. In the call graphs these appear
as strongly connected components (SCCs) of size larger than one. The focus here is on Maximal
SCCs, or MSCCs. Nodes that are not part of any cycle in the call graph correspond to nonrecursive
functions, and are called trivial MSCCs. Consider two nontrivial MSCCs m, m’ in the two programs.
Assume that the functions in m, m’ do not have loops nor do they call functions outside of m and
m’. Further assume that there is a bijective mapping map between the functions in m and m/'. The
generalization of (PROC-P-EQ;) to mutually recursive functions is:

Y(f, ") € mapy.
((Y(g,9') € mapy. p-equiv(call g, call g')) = p-equiv(f body, f' body))
Y(f, f") € mapy¢. p-equiv(call f,call f)
The version of this rule with uninterpreted functions is defined next. For a function g, let U F'(g)

be an uninterpreted function such that g and U F'(g) have the same prototype. The following relation
is enforced: (g,¢') € mapy < UF(g) = UF(¢'). Let

(PROC-P-EQ) . (7)

fUF = flg < UF(g) | giscalled inf] .

The generalization of (3) is:

Y(f, ') € mapy. p-equiv(fUF, f'UF)
V(f, f') € mapy. p-equiv(call f,call /)

The reader may observe the resemblance of this rule to that of Hoare’s rule for mutual recursion [25].

®)

Example 2
Consider the two small MSCCs in the top part of Fig. 3, where mapy = {(f1, f1), (f2, f3) }-
According to (8) the partial equivalence of (f1, f7) has to be proven while replacing the calls to
f2, f4 with the same uninterpreted function (U = UF(f2) = UF(f}), see middle drawing), and
the partial equivalence of ( f2, f}) has to be proven separately while replacing the calls to fi, f] with
the same uninterpreted function (Uy = UF'(f1) = UF(f}), see bottom drawing).

O

2.4. Extensions and relaxations of (PROC-P-EQ)

Now suppose that functions in m and m’ do call functions outside of m and m/, respectively. All the
extensions listed in Sect. 2.2 for the case of simple recursive functions apply here (e.g., nonrecursive
functions can be inlined). Further, suppose that there is no bijective mapping between the functions
in m and m/, or that not all pairs in map; are partially equivalent (or can be proven to be so). It is
now shown that it still may be possible to prove the partial equivalence of some of the functions.
The idea is to inline some of the functions in m and m/’, as long as cycles are not created. Formally,
let S C{(f, f") | {f, [') € mapy, f € m, f' € m’} be a set of function pairs that satisfies:

e Every cycle in m contains a node f such that 3f.(f, f') € S, and
e Every cycle in m’ contains a node f’ such that 3f.(f, f') € S.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
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REGRESSION VERIFICATION 7

Side 0 Side 1

Figure 3. Proving partial equivalence of mutual recursive functions.

The rule for proving the partial equivalence of the pairs in S is then:

V(f, ') € S. p-equiv(fUF, f'VT)
V(f, f) € S. p-equiv(call f,call f)’

but here the definition of fU% and f'UF is slightly different than the definition in Sect. 2.1. Let mg
denote all the functions in m that participate in S, i.e., mg = {g | g € m A 3¢’ .(g,¢') € S}. mf is
defined similarly with respect to m/. fU%" is now created by replacing each call to a function h € mg
by a call to UF(h), and inlining the rest. f’V is created similarly. Hence, the difference from the
original definition of fU#" and f’UF is that now the functions outside of {mg U m/s} are inlined.

The rule indicates that the requirement of bijectiveness of map; can be relaxed: it can be any
1-1 partial mapping that contains a set S as defined above. Note that S replaces map¢ in both the
premise and the consequent of (PROC-P-EQ). Hence the weaker premise has a weaker consequent.
Ideally S should be as close as possible to the original definition, namely bijective, because then
more pairs of functions are proven to be partially equivalent.

In the next section an algorithm is described, which attempts to prove partial equivalence
of general programs by traversing the call graphs bottom-up and replacing functions with their
uninterpreted versions when possible, based on these generalizations.

9

3. A DECOMPOSITION ALGORITHM

3.1. Preliminaries: CBMC

RVT is geared towards C programs, and uses CBMC [26] as the underlying decision procedure for
checking the premise of rule (PROC-P-EQ) and its extensions as described in the previous section.
CBMC, developed by D. Kroening, is a bounded model checker for C programs that supports almost
all of the features of ANSI-C. It requires from the user to define a bound & on the number of
iterations that each loop in a given ANSI-C program is taken, and a similar bound on the depth of
each recursion. It also provides functions that return nondeterministic values (e.g., nondet_int ()
and nondet _float () ), which are used for modeling the possible inputs. This enables CBMC to
symbolically characterize the full set of possible executions restricted by the user-defined bounds,
by a decidable formula f (by default f is propositional, but CBMC can generate the verification
condition in other decidable theories). The existence of a solution to f A —a, where a is a user
defined assertion, implies the existence of a path in the program that violates a. Otherwise, CBMC
is said to have established the k-correctness of the checked assertions. CBMC is used here in a very
restricted way, however: recall that the premise of rule (PROC-P-EQ) is over nonrecursive functions
without loops, hence in this case k = 1.

RVT generates small loop-free and recursion-free C programs — each corresponds to a pair of
functions that it attempts to prove equal — which it sends to CBMC for decision.
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8 GODLIN AND STRICHMAN

3.2. Preprocessing and mapping

Before this iterative process begins, RVT makes two preliminary steps.

Loops All loops in f and f” are replaced with recursive functions. This process is described in the
first author’s thesis [9].

Mapping A (possibly partial) mapping map is built by pairing functions and global variables
between the two compared programs. Mapping is done recursively, in a manner reminiscent
of computing congruence closure. The algorithm works on the parse trees of both programs
and pairs nodes, where a node can be either a variable, a function, or a type. Initially it maps
global variables with the same name and type. It then maps functions with the same name,
return type, prototype, and such that their lists of global variables that they read and write
to are mapped pairwise. Then, within mapped functions that are also syntactically equivalent
up to variable names, it attempts to map elements that appear in isomorphic locations. If
these elements were already mapped it just checks that the mapping according to this function
agrees with the previous one, and otherwise it issues a warning. This process is repeated until
no new mapping is discovered.

Note that wrong mapping does not affect soundness: it is used for generating the verification
conditions, and hence wrong mapping can only fail a proof.

Denote by map;y the partial mapping of functions resulting from this process. For simplicity
of the presentation assume from hereon that the global variables accessed by a function are
added at the end of its list of parameters, in a consistent order. This assumption simplifies the
description of the algorithm later on.

The input for the main algorithm is thus two recursive programs without loops, and a mapping
between the functions mapy.

3.3. A bottom-up decomposition algorithm

The equivalence check in RVT is presented in Algorithm 1. It is based on traversing bottom-up the
call graphs of the two programs to be compared. In line 2 all nonrecursive functions that are not
mapped are inlined. In the next line the MSCC DAGs M D, and M D, are built from the call graphs
of the input programs. An MSCC DAG corresponding to a program is simply the call graph of the
program after collapsing its MSCCs into single nodes. In line 4 the algorithm attempts to build a
bijective mapping map,, between the nodes of M D; and M Dy, which is consistent with map¢. In
other words, if (m1, m2) € mapy,, f is a function in m4 and (f, f') € mapy, then f’ is a function
in mo (and vice-versa). If such a mapping is impossible, the algorithm aborts. In practice one may
run the algorithm bottom-up until reaching nonmapped MSCCs, but this option is omitted here in
order to keep the description simple.

In line 5 the bottom-up traversal begins. The algorithm searches for the next unmarked pair of
MSCCs such that its children pairs are already marked. If the selected pair (mq,ms) is trivial,
then in line 9 the equivalence of the two functions in m;,ms is checked. The function CHECK is
described in Alg. 2. Otherwise, namely (m;, mo) is not trivial, the algorithm proceeds in line 11 by
choosing nondeterministically a subset S of paired functions from m;, ms that intersect all cycles
in m; and mg (in graph-theoretic terms, the functions in S constitute a feedback vertex set of both
my and my). The algorithm can be determinized by, e.g., attempting all such sets.Y A good strategy,
as implied by the discussion in the end of Sect. 2, is to give priority to larger sets, since the larger
the set is, the more functions are proven to be partially equivalent. Further, larger sets imply less
functions to inline, and hence the burden on the decision procedure is expected to be smaller. RVT
solves this optimization problem by reducing it to a Pseudo-Boolean formula and invoking an off-
the-shelf PBS solver. If one of the pairs in S cannot be proven to be equivalent, the algorithm must

9 Although there can be an exponential number of them in the size of the MSCC, observe that large MSCCs in real
programs are rare.
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REGRESSION VERIFICATION 9

abort: neither (m;y, ms) nor the SCCs above it can be proven equivalent by the algorithm. Otherwise
in line 14 all the functions that are paired in S are marked as “Equivalent”. Finally, (my, ms) is
marked as “Covered”, and the algorithm continues to the next pair.

Algorithm 1 A bottom-up decomposition algorithm for proving the partial equivalence of pairs of
functions.

1: function PROVE(Programs P, P’, map between functions mapy)

2 Inline nonrecursive nonmapped functions;

3: Generate MSCC DAGs M Dy, M D5 from the call graphs of P, P’;

4 If possible, generate a bijective map map,, between nontrivial nodes in M D; and M Do
that is consistent with mapy (it is desirable but not necessary to add pairs of trivial nodes
to map,, ). Otherwise abort.

5 while 3(mq,m2) € map,, that is uncovered and its children are “Covered” do

6 Choose such a pair (mq,ms);

7: if m1, ms are trivial then
8
9

Let f1, fo be the functions in m1, ms, respectively;
if CHECK(f1, f2) then mark f;, fo as “Equivalent”;

10: else

11: Select nondeterministically a set of function pairs S C {(f, f') | (f, f') € mapy,
f €ma, f/ € my} that intersect all cycles in m; and mo;

12: for all (f, f') € S do

13: if “CHECK"(f, f', S) then abort;

14: for all (f, f’) € S do mark f, f" as “Equivalent”;

15: Mark (my,mso) as “Covered”.

Now consider CHECK, which appears in Alg. 2. This function begins by checking whether the
input functions happen to be syntactically equivalent and their children are also marked equivalent.
If yes, it returns true. Otherwise it sends CBMC a nonrecursive, loop-free C program, which is
called here a check-block. Following is a description of this program.

Let Dy denote the maximal connected subDAG rooted at f that contains only functions that are
unpaired or not marked “Equivalent”, but excluding f itself. Dy is defined similarly with respect to
f'. The program check-block (f, f’) consists of the following elements:

1. The functions f,f and all functions in D¢, D, such that

e Name collisions in global identifiers of the two programs are solved by renaming;

e All calls to f, f’ are replaced with calls to UF(f) (=UF(f")), respectively;

e For all (hy,hs) € mapy such that hy,he ¢ Dy U Dy, calls to hy, hy are replaced
with calls to UF(h;) (=UF(hs3)). (Observe that the pair (hq, ho) must be marked
“Equivalent”).

2. The main () function, which consists of:

e Assignment of nondeterministic but equal values to inputs of f and f’;
e Callsto f, f'; and
e Assertion that the outputs of f and f’ are equal.

Following are several notes on the definition of check-block (f, f’):

e check-block is guaranteed to be nonrecursive. This is because when PROVE fails to prove the
equivalence of MSCCs it aborts in line 13, and hence recursive functions that are not proven
equivalent will never be part of future check-blocks.

e The code of each nonrecursive pair (f, f’) € mapy that could not be proven equivalent
is included when checking the equivalence of their parents, and possibly more ancestors,
until reaching a provably equivalent pair or reaching the roots. This process is called here
logical inlining, since it is equivalent to inlining but is more faithful to the program’s original
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10 GODLIN AND STRICHMAN

structure. This enables RVT to prove equivalence in case, for example, that some code was
moved from the parent to the child, but together they still perform the original computation.

o The code of a pair (f, f’) € map; that is proven to be equivalent does not participate in any
subsequent check-block. It is replaced with uninterpreted functions in all subsequent checks,
or disappears altogether if some ancestor pair is also marked “Equivalent” in each of its paths
to the roots of the related subprograms.

e The replacement of recursive calls of paired functions with uninterpreted functions
corresponds to isolation (see Sect. 2). Recall that proving equivalence of mapped isolated
functions also proves their partial equivalence by rule (PROC-P-EQ).

Algorithm 2 A function called by PROVE for checking the equivalence of two input nonrecursive
functions. check-block is a C program defined in the main text.
1: function CHECK(function f, function f”)
2: if f and f’ are syntactically equivalent and all their children are marked “Equivalent” then
3: return true;
4: return CBMC (check-block (f, f/));

Algorithm 3 A function called by PROVE for checking the equivalence of two input functions that
are part of MSCCs. check-block™ is a C program defined in the main text.

1: function CHECK" (function f, function f’, set of pairs .S)

2: if f and f’ are syntactically equivalent and all their children are either marked “Equivalent”
or in S then
3: return true;

4: return CBMC (check-block” (f, f/,5));

The function CHECK", described in Alg. 3, is similar to CHECK, and can be seen as its
generalization to the case that S # (). It also begins by checking for syntactical equivalence, but
permits children of the checked functions to be in S rather than being marked equivalent. If this
check fails, it calls CBMC with a program that is identical to check-block (f, /') as defined above,
except the following difference in the definition of Dy and Dj.. Recall that Dy and Dy include
all nodes in the subDAG under f and f’ respectively that are unpaired or not marked “Equivalent”.
But here, since f and f’ are recursive (they are part of MSCCs), their descendants form general
graphs rather than DAGs. Dy and Dy are now redefined so they do not include functions from .S,
which forces them to be nonrecursive. More formally, Let D} be the set of functions in the maximal
connected graph descending from f which does not include

o fitself,
e functions in S, and
e functions that are marked “Equivalent”.

D%, is defined similarly with respect to f’. Hence D’; and D', are nonrecursive. Replace Dy, D/
with D7, D7, in the definition of check-block to get check-block”.

3.4. Examples

In this section Alg. 1 is demonstrated with two examples. The first focuses on programs with simple
recursion only, and the second on the more general case.

Example 3
Consider the call graphs in Fig. 4. Assume that for i =1,...,6 (f;, f/) € mapy, and that the
functions marked by gray nodes in Fig. 4 are syntactically equivalent to their counterparts.

The execution of Algorithm 1 is described next, step by step. Initially, in line 2, f/ is inlined into
/4. The iterations that follow are listed below: O
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7

Figure 4. Two call graphs for Example 3. A node is gray if it is syntactically equivalent to its counterpart.

It. Pair Description Res.

1. (fs,f4) Since f3, f; are nonrecursive CHECK is called in line 9, which returns v
TRUE based on a syntactic check.

2. {(fa, f1) Same as with (fs, f}). v

3. {(fs,f;) Handled by CHECK, which calls CBMC. Assume that CHECK
returns FALSE.

4. (fe,f5) Handled by CHECK, which calls CBMC. check-block contains fa, f3 X
(recall that f7 is inlined into f3), and the calls to fs, f3, f4, f; are
replaced by calls to uninterpreted functions. Assume that this check
fails, and hence CHECK returns FALSE.

5. {(fs,f:) Handled by CHECK". The only choice for S is {(f5, f;)}. In this v
case D} ={f¢} and Dy, = {f¢}, hence check-block” contains
I5, I, f6, [, and the recursive calls are replaced with uninterpreted
functions. Assume that the check succeeds.

6. (f1,f;) Handled by CHECK which calls CBMC. check-block con- Vv
tains f1, f1, fo, f4 (f7 is inlined into fj), and the calls to
I3, f4, fa, f1, f5, [ are replaced by calls to uninterpreted functions.

Figure 5. Two call graphs for Example 4

X

An example of programs with mutual recursion follows.

Example 4

Consider the call graphs that are presented in Fig. 5. Assume that for i = 1,...,6 (f;, f/) € mapy.
As in the previous example syntactically equivalent functions are marked by gray nodes. The nodes
of the MSCC DAGs that are generated in line 3 are (listed bottom-up, left-to-right): M D; =
{fsh, {fad: {fs}: {fo, 5}, {1} } and MDDy = {{f3},{f1}, {fe}. {f2, f5, f2}. {f1}}. The MSCC
mapping map,, in line 4 is naturally derived from map;. The first three iterations, over (fs, f3),
(fa, f1) and (fs, f§), are the same as in the previous example. Next comes the nontrivial SCCs.
Assume that in line 11 S = {{f2, f3), (f5, f¢)} is chosen. This is more than strictly necessary for
breaking the cycles, but recall that the aim is to prove partial equivalence for as many pairs as
possible. The iterations from there on are listed below. Denote by v ¢ that the equivalence check
succeeded, but the functions are not yet marked as equivalent:
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12 GODLIN AND STRICHMAN

It. Pair Description Res.

4. {(fa2,f4) Handled by CHECK", which calls CBMC. check-block” contains  v'°
fo, [, f3. Calls to fs, f5, fa, f4 and f5, f are replaced with calls to
uninterpreted functions. Assume that this check succeeds.

5. {fs,f:) Handled by CHECK", which calls CBMC. check-block” contains v ¢
I5. [, fe, f&, and the calls to fo, f} are replaced with calls to
uninterpreted functions. Assume that the check succeeds.

(In line 14 (f2, f4) and (f5, f) are marked “Equivalent”).

6. (f1,f]) Handled by CHECK. The syntactic check returns TRUE. v

(All MSCCs are marked “Covered” and the algorithm terminates).

What would happen had S = {(f2, f5)} was chosen in line 11? In that case check-block” would
contain fa, f5, 7, fs, ft, fe, ¢, and calls to f3, fi, fa, fi and fa, f3 would be replaced with calls to
uninterpreted functions. If this check would have succeeded, then only (fs, f5) would be marked
as equivalent. Not only that this would not prove the equivalence of (fs, fi), but it also would
complicate the next step: when checking the pair (f1, f1). f5, f%, fs, f; would have to be included,
as they were not marked equivalent. Calls to (fs, f4) would be replaced with calls to uninterpreted
functions. This example motivates the suggested determinization: try large S first. O

3.5. Controlling the abstraction level

The definition of check-block™ entails that every call to a function in S is replaced with a call
to an uninterpreted function. This is not always necessary. Replacing functions with uninterpreted
functions entail less computational effort, but also loses precision, and hence may fail proofs. Some
control over the abstraction level is possible even for a given set .S, because the only thing that
needs to be guaranteed is that check-block” is nonrecursive, and that every pair of functions that are
assumed to be partially equivalent is eventually proven to be so. Consider once again Example 4,
where the set S = {(fa, f3), {f5, f£)} was chosen. When checking (f5, f%), the calls to fo, f5 were
replaced with uninterpreted functions because (fa, f5) € S. Instead these functions and f, can be
included in check-block”, and the calls to f5, f£ can be replaced with calls to uninterpreted functions.

It is obvious that the actual functions matter for choosing the most refined abstraction. Without
this information a reasonable heuristic is to maximize the number of calls to interpreted functions,
while still breaking all cycles.

3.6. Correctness of PROVE

Theorem 1
(Correctness of PROVE) Functions that are marked “Equivalent” by Alg. 1 are partially equivalent
to their counterpart in mapy.

Proof

A proof sketch is given, based on the soundness of (PROC-P-EQ) and its generalization in Eq. (9),

and on the soundness of CBMC itself. The program sent to CBMC clearly checks for partial

equivalence; hence the correctness argument for the case CBMC is invoked must show that the

abstraction induced by replacing functions with uninterpreted functions is a conservative one.
Consider the current covering (the result of executing line 15) of M D; nodes right after line 15.

Let d denote the current covering ‘depth’, i.e., the largest distance of a covered node from any leaf

node in M D;. The proof is by induction on d.

Base: When d = 1, m; is a leaf. There are two cases to consider, corresponding to the lines in which

the marking of functions with “Equivalent” is done:

e m; and my are trivial nodes, and the single function that m; contains, denoted f, is marked
“Equivalent”. It must have been marked by CHECK in line 9. CHECK returns TRUE if f and
its counterpart are either syntactically equivalent or proven to be equivalent by CBMC. In the
latter, check-block does not include calls to uninterpreted functions.
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e my (or me) is not trivial, and a subset of functions corresponding to .S of line 11 is marked
“Equivalent”. The condition for the marking in line 14 corresponds exactly to the premise of

9).

Step: Now assume that the theorem is correct for d, and consider d 4+ 1. For a function f
marked “Equivalent” in level d + 1, such that (f, f’) € mapy, it will be proven that f and f
are indeed partially equivalent. The proof relies on the induction hypothesis, which implies that
descendant functions of f and f’ that are marked “Equivalent” are indeed partially equivalent to
their counterparts in mapy. As in the base case, the two lines in which the marking of functions
with “Equivalent” is done, are considered separately:

e f and f’ constitute trivial MSCC nodes m; and meo, respectively. f must have been marked
by CHECK in line 9. CHECK returns TRUE in two cases:

— f and f’ are syntactically equivalent and their children are marked “Equivalent”. Hence
f is indeed partially equivalent to f’.

— Otherwise, CBMC must have returned TRUE. check-block contains, in addition to f
and f’, either inlining of nonrecursive functions or calls to uninterpreted functions.
The former clearly preserves correctness. The latter is a conservative abstraction of the
original functions, which, recall, are partially equivalent by the induction hypothesis.
Hence f and f’ are partially equivalent.

e my (or my) is not trivial, and a subset of functions corresponding to .S is marked “Equivalent”
in line 14. Let (f, f') € mapy be any of the pairs in S. CHECK" (on line 3) returns TRUE in
two cases:

— fand f’ are syntactically equivalent and their children are either marked “Equivalent” or
in S. The former children are partially equivalent by the induction hypothesis. As for the
latter children, f can only be marked “Equivalent” if all the pairs in S passed CHECK",
which by (9) means that they are indeed partially equivalent. Hence in both cases, the
fact that f and f’ are marked “Equivalent” implies that they indeed are.

— Otherwise, CBMC must have returned TRUE. check-block™ possibly contains, in
addition to f and f:

x Inlining of nonrecursive functions (outside of m; and ms).

* Inlining of functions in m1, my that are not part of S, where calls to .S functions
are replaced with uninterpreted functions. The argument made above for syntactic
checks in which S functions are replaced with uninterpreted functions apply here as
well: f can only be marked “Equivalent” if all the pairs in .S passed CHECK", which
by (9) means that they are indeed partially equivalent. Hence the fact that f and f’
are marked as partially equivalent implies that they indeed are.

* Calls to uninterpreted functions that abstract functions outside of m; and msy. By
the induction hypothesis, these are indeed partially equivalent, and hence the calls
to uninterpreted functions is a conservative abstraction.

O

3.7. Dynamic data structures

RVT works on C (reference ANSI C99) programs, although not all features are supported. A major
issue in applying rule (PROC-P-EQ) to C programs is that of dynamic data structures. Recall that
deciding formulas with uninterpreted functions requires the comparison pair-wise of the arguments
with which such functions are called, and a similar comparison of their outputs. If some of these
arguments are pointers, such a comparison is meaningless. In this section RVT’s method of treating
pointer arguments of functions and dynamic data structures is briefly described.

Whereas in nonpointer variables the comparison is between values, in the case of pointer variables
the comparison should be between the data structures that they point to. A dynamic data structure
can be represented as a graph — called here a pointer-element graph — that its vertices are fields and
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14 GODLIN AND STRICHMAN

its edges connect pointer fields to their objects. A simplifying assumption is made that all dynamic
structures that are passed to a function through pointer arguments or globals are in the form of trees,
i.e., aliasing within dynamic structures and between function arguments is not allowed. Equality of
structures is defined as follows:

Definition 3
(Iso-equal structures) Two structures are iso-equal if their pointer-element graphs are isomorphic
and the values at structs related by the isomorphism are equal.

Let p1,p2 be paired pointer variables that are arguments to the functions that are compared.
RVT generates two iso-equal tree-like data structures with a bounded depth (see below) and with
nondeterministic values (including possible null values for pointers). It then makes p; and p, point
to these trees. This guarantees that the input structure is arbitrary but equivalent up to a bound, and
under the assumption that on both sides it is a tree. A similar strategy is activated when comparing
p1 and po that point to an output of the compared functions — the output structures are compared up
to the same bound assuming they are trees.

What should be the bound on this tree? Recall that the code of the related subprograms that are
checked (the check-block) does not contain loops or recursion, and hence there is a bound on the
maximal depth of the items this code can access in any dynamic data structure that is passed to the
roots of the related subprograms. It is possible, then, to compute this bound, or at least overestimate
it, by syntactic analysis. For example, searching for code that progresses on the structure such as n
= n —> next for a pointer n. However, such a mechanism is not implemented yet in RVT and it
relies instead on a user-defined bound.

4. EXPERIENCE WITH RVT AND MS-SYMDIFF

4.1. A case study with RVT

Consider the two mutually-recursive programs in Fig. 6, and the output of RVT that appears in
Fig. 7 (the legend is explained in the caption). RVT’s output is a graphical representation of the
two call graphs, annotated with the results and additional debugging information. The two functions
Loop-main_for_1() and Loop_main_for_2() that appear in Fig. 7 correspond to the two for loops in
the main() function that were extracted by RVT to separate functions.

There are several things to note about this example. First, observe that the two SCCs ({FM},
{F.M,G}) are of different sizes and that G() has no counterpart. Nevertheless RVT is able to prove
the equivalence of F() and M(), because they break all cycles in the SCCs, as was explained in
Sec. 3.3. Second, note that the output of the first loop function (Loop_main_for_1()) is both out and
the return value imposed by the return statement. Although the latter is different in the two sides,
since the i f condition is never satisfied, this function is still equivalent on both sides. Third, observe
that RVT proved that Loop_main_for_2() is equivalent, although the descendant val() is different. It
demonstrates how inlining non-recursive descendants can facilitate the equivalence proof of their
callers. For the same reason RVT was able to prove the equivalence of M(). Finally, observe that
main() was declared equivalent by RVT without calling CBMC, because it is syntactically equivalent
and its descendants were proven equivalent. Overall RVT solves this case fully automatically in nine
seconds, which include four calls to CBMC.

4.2. Other experiments with RVT

RVT was tested on several synthetic and limited-size industrial programs and attempted to prove
equivalent different versions of these programs:

Random programs A random program generator was used to create several dozen recursive
programs of different sizes. The user specifies the probability to generate each type of variable,
block, or operator. Variables can be global, local or formal arguments of functions. Types can be
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int M(int n); int M(int n);
int G(int n);
int val(int x) { int val (int x) {
return x; return x + 1;
} }
int F(int n) { int F(int n){
if (n == 0 ) return 1; if ( n ==0 ) return (n == 0);
return n — M(F(n—1)); return n — M(F(n—-1));
} }
int M(int n) { int M(int n) {
if ( n == 0 ) return O; if ( n == 0 ) return O;
return n — FM(n—1)); return val(n) — 1 — GM(n—1));

} }

int G(int n) { return F(n); }

int main() { int main(){

int i, out; int i, out;

for(i = 0; i < 20; i++) { for(i = 0; i < 20; i++) {
out = F(1i); out = F(i);
if (i > 20) return 3; if (i > 25) return 12;

} }

for(i = 0; i < 20; i++) { for(i = 0; i < 20; i++) {
out = valM(i)); out = valM(i)) — 1;

} }

return out; return out;

} }

Figure 6. Two versions of a mutually recursive program. Although the mapped SCCs are different, RVT is
able to prove the equivalence of some of the functions in it, as depicted in Fig. 7.

Figure 7. The output of RVT given the two programs in Fig. 6. Nodes with the same label are paired. Nodes

with dark background were proven equivalent to their counterparts. Dashed edges denote a call to a loop

that was extracted into a separate (recursive) function. Italicized function names (only main in this case)
represent functions that were proven equivalent based on syntactic equivalence.
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16 GODLIN AND STRICHMAN

basic C types, structures or pointers to such types. Small differences between the two versions of
each program are introduced in random places. This program was used to generate random yet
executable C programs with up to 20 functions and thousands of lines of code. When the random
versions are equivalent, RVT proves them to be partially-equivalent relatively fast, ranging from
few seconds to 30 minutes. On non-equivalent versions, on the other hand, attempts to prove partial
equivalence may run for many hours or run out of memory.

Industrial programs The small industrial programs that were tried are:

TCAS (Traffic Alert and Collision Avoidance System) is an aircraft conflict detection and
resolution system used by all US commercial aircraft. The same 300-line fragment of this
program that was used by Groce et al. [27] was used to test RVT.

MicroC/OS The core of MicroC/OS which is a low-cost priority-based preemptive real time
multitasking operating system kernel for microprocessors, written mainly in C. The kernel
is mainly used in embedded systems. The program is about 3000 lines long.

Matlab examples Parts of engine-fuel-injection simulation in Matlab which was generated in C
from engine controller models. The tested parts contain several hundreds lines of code and
use read-only arrays.

All these tests exhibit the same behavior as the random programs above. For equivalent programs,
semantic-checks are very fast, proving equivalence in minutes. A case in which partially equivalent
programs cannot be proven to be so due to the incompleteness of (PROC-P-EQ), were never
encountered.

Recall that in the process of semantic checks, paired functions that cannot be proven equivalent
are (logically) inlined. The authors’ experience was that in such cases the proof becomes too hard:
the decision procedure runs for hours or even fails to reach a decision at all. In some examples the
bottleneck is the use of operators that burden the SAT solver, such as multiplication (*), division
(/) and modulo (%) over integers. A simple solution in such cases is to outline these operators (i.e.,
take them out to a separate function). RVT then proves the equivalence of these separate functions
syntactically and then replaces them with uninterpreted functions, which reduces the computation
time dramatically.

4.3. Experiments with Microsoft’s SymDiff

SymDiff [8] was modeled after RVT, but works at the level of the Boogie programming
language [28], which means that it is language-agnostic and that its underlying proof engine
is Z3 [29]. Based on an early draft of this paper, Alg. 1 was implemented in SymDiff. It
replaced the original implementation that used loop and recursion unrolling, which means that it
underapproximated the computations and hence could not prove equivalence in the presence of
unbounded loops. Since the time that Alg. 1 was implemented in SymDiff, it was used to prove
the equivalence of about 10 programs of several hundreds of lines each. In each test case manual
changes were made (like deleting various lines, changing constants, outlining functions, etc), and
SymDiff marked correctly the semantically different functions, typically within less than a minute.

5. SUMMARY

The introduction started by mentioning Tony Hoare’s grand challenge, namely that of functional
verification, and by mentioning that proving equivalence is a grand challenge in its own right,
although an easier one. This work begins to explore this direction in the context of C programs, and
reports on a prototype tool RVT with which the equivalence of several small industrial programs was
proven. The suggested technique can be improved in several dimensions, such as strengthening rule
(PROC-P-EQ) with automatically generated invariants and finding more opportunities for making the
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verification conditions easier to decide. Investigating such opportunities for object-oriented code is
another big challenge.

To summarize, the main contribution of this article is a method for an automatic, incremental
proof, based on isolating functions from their callees and abstracting them with uninterpreted
functions. This method keeps the verification conditions decidable and small relative to the size
of the input programs. The initial syntactic checks and the decomposition mechanism helps meeting
the goal of keeping the complexity sensitive to the changes rather than to the original size of the
compared programs.
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