Reducing the Size of Resolution Proofs in Linear
Time *

Omer Bar-Ilan' Oded Fuhrmann? Shlomo Hoory? Ohad Shacham®
Ofer Strichman®

! Rafael, Israel omerb@rafael.co.il
2 Google, California, USA frmoded@gmail.com
3 Syntact Design, Isracl hoorys@gmail.com
4 IBM Haifa Research Laboratory, Israel ohads@il.ibm.com
5 Information Systems Engineering, IE, Technion, Haifa, Israel.
ofers@ie.technion.ac.il

Abstract. DPLL-based SAT solvers progress by implicitly applying bi-
nary resolution. The resolution proofs that they generate are used, after
the SAT solver’s run has terminated, for various purposes. Most notable
uses in formal verification are: extracting an unsatisfiable core, extracting
an interpolant, and detecting clauses that can be reused in an incremen-
tal satisfiability setting (the latter uses the proof only implicitly, during
the run of the SAT solver). Making the resolution proof smaller can ben-
efit all of these goals: it can lead to smaller cores, smaller interpolants,
and smaller clauses that are propagated to the next SAT instance in an
incremental setting. We suggest two methods that are linear in the size
of the proof for doing so. Our first technique, called RECYCLE-UNITS ,
uses each learned constant (unit clause) (z) for simplifying resolution
steps in which x was the pivot, prior to when it was learned. Our second
technique, called RECYCLE-PIvOTS, simplifies proofs in which there are
several nodes in the resolution graph, one of which dominates the others,
that correspond to the same pivot. Our experiments with industrial in-
stances show that these simplifications reduce the core by ~ 5% and the
proof by ~ 13%. It reduces the core less than competing methods such
as RUN-TILL-FIX, but whereas our algorithms are linear in the size of the
proof, the latter and other competing techniques are all exponential as
they are based on SAT runs. If we consider the size of the proof (the
resolution graph) as being polynomial in the number of variables (it is
not necessarily the case in general), this gives our method an exponen-
tial time reduction comparing to existing tools for small core extraction.
Our experiments show that this result is evident in practice more so for
the second method: rarely it takes more than a few seconds, even when
competing tools time out, and hence it can be used as a cheap proof
post-processing procedure.

* This article extends [3] with proofs and a more elaborated discussion of related work.
The first three authors were in IBM when this research was conducted.

1 Introduction

DPLL-based SAT solving is the most used back-end engine for model checking
and satisfiability modulo theories (SMT). While SAT solvers exist from at least
the 1960’s, and learning through derivation of conflict clauses exists from at least
the 1980’s (while recognized as implicitly derived by resolution), only in 2003
the question of how to produce a resolution proof from a run of a DPLL solver
was addressed in practice [26] and implemented. Most modern solvers nowadays
are capable of producing such proofs. Further, there are now decision heuristics
that are based on an understanding of the DPLL process as a resolution-based
proof engine rather than as a search engine. Examples are Ryan’s thesis [20]
and his SAT solver SIEGE, which bias conflict-clause generation towards those
that will more likely lead to other resolutions, and the work by Gershman et
al. [9] on a model for explaining and designing decision heuristics based on an
understanding of the SAT solving process as a resolution engine.

The resolution proofs that modern SAT solvers generate are used in a broad
range of applications in formal verification and elsewhere. Prominent examples
are:

— The resolution proof can be used for extracting an unsatisfiable core, which
can then be used, e.g., in a proof-based abstraction-refinement procedure, as
shown by Amla and McMillan [1,2]. The unsatisfiable core was also used in
the past for detecting the reasons for unsatisfiability in an underapproxima-
tion/refinement process for model-checking [11]. In the context of satisfiabil-
ity modulo theories (SMT): the core is used for finding small ezplanations
(see, for example, the recent work by Cimatti et al. [5], who suggest to in-
voke a tool for minimizing resolution proofs for this purpose) and in theory-
specific decision procedures, such as the abstraction-based procedures for
Presburger and bitvector formulas proposed by Kroening et al. and Bryant
et al., respectively [13,4].

— The resolution proof can be used for extracting an interpolant as part of a
complete model-checking technique, as suggested by McMillan in [16].

— The proof can be used for detecting clauses that can be reused in an in-
cremental satisfiability setting [21,24], such as the one used in Bounded
Model-Checking. The analysis of the proof is done implicitly, during the run
of the SAT solver (in contrast to the first two uses), and is required in order
to check whether all the clauses that were used for resolving a particular
conflict clause are still expected to be present in the new SAT instance. If
yes, this conflict clause can be reused.

Making the proof smaller by removing some of the nodes and removing lit-
erals from other nodes can benefit all of these goals. In all of these applications,
however, reducing the size of the core/interpolant/reused-clauses has an influ-
ence on the overall run time which is somewhat unpredictable and only vaguely
known. Further, the proof reduction component is called many times during the
overall solving process. As a result, best overall results are most likely to be
achieved with a limited investment in such reductions.

The script RUN-TILL-FIX by Zhang and Malik [26] extracts a core and at-
tempts to minimize it by simply running the SAT solver on it repeatedly until a
fix-point is reached. Achieving fast reductions with this tool is not always pos-
sible, as it requires a normal SAT run. The goal of achieving fast reductions
was first addressed in the work by Gershman et al. [8], based on analyzing the
resolution graph and trying to restructure it with the aid of a SAT solver. The
tasks the SAT solver is asked to solve by their script TRIM-TILL-FIX are closely
related, and hence incremental satisfiability makes this process relatively fast.
There are also many published techniques for finding minimal cores, i.e., an un-
satisfiable subset of clauses from which no clause can be removed without making
it satisfiable (this is also known in the literature by the name MUS, for Minimal
Unsatisfiable Subformula). Some works in this direction from the last four years
are [15,18,12,17,6,10], all of which are worst-case exponential. The complexity
of the decision problem corresponding to finding the minimal unsatisfiable core
is DP-complete! [19]. A minimal core (in contrast to the minimum core) is not
unique and depends on the starting point, like all the methods we are aware of
(including the current one). Therefore whether the core found is minimal or just
‘small’; as indicated in [8], has little significance in practice.

RUN-TILL-FIX is linear in the size of the proof (extracting the core) and ex-
ponential in the number of variables (rerunning the SAT solver). Our method is
only linear (or quadratic, depending on which of the two suggested methods is
used) in the size of the proof. The proof itself can be exponential in the number
of variables, and hence in the worst case our procedure is still exponential in the
number of variables, like RUN-TILL-FIX. But the latter still has the SAT phase
which our method doesn’t. The significance of the exponential gap is that our
techniques typically reduce the core significantly less than the exponential meth-
ods, but do so much faster. They also reduce the size of the proof itself whereas
a procedure like RUN-TILL-FIX, as our experiments show, typically increases it.
We therefore consider them as useful tools in the context of short time-outs and
where the size of the proof matters.

The first method we suggest is called RECYCLE-UNITS. The idea is to remove
edges from the resolution graph by using information that is inferred by the SAT
solver only after the resolutions at the nodes adjacent to these branches were
made originally. For example, if (z) is a unit clause that was learned by the SAT
solver, it can be used for simplifying resolution inferences that used z as the
pivot prior to learning this clause. If not carefully applied, however, this may
lead to circular reasoning.

The second method is called RECYCLE-P1vOTS. It is based on the following
observation. For simplicity assume that the resolution graph is a tree. Let ny and
ng be two nodes on the same path in the proof tree such that ny is closer to the
sink node. Further, assume that the pivot variable associated with both nodes is
the same. Our convention is that proofs progress from top to bottom, from the

1 DT is the class containing all languages that can be considered as the difference
between two languages in NP, or equivalently, the intersection of a language in NP
with a language in co-NP.

premises (also called the azioms) of the proof to its consequent. We also follow
the convention by which the right parent of each node contains the negative
phase of the pivot variable, and the left parent contains the positive phase of
this variable. Assume that ns is on the right branch of n;. In this case, we will
show, the left incoming branch of ns can be pruned, and the proof rewritten
without it, in a way that the resulting proof is a legal resolution proof with a
smaller core. Since in practice resolution graphs are DAGs and not just trees,
the procedure is somewhat more complicated as we later describe.

The two techniques tighten the proof, which means that the resulting proof
uses a subset of the core used by the original proof, and there is an injective
mapping from the target to the source nodes, such that each target node is either
equal to or subsumes the source node to which it is mapped. As a theoretical
curiosity, we note that the resolution proofs generated by our techniques cannot
necessarily be generated by any modern SAT solver and hence by any core
reduction technique that is based on rerunning such a solver. More details about
this issue can be found in the appendix.

The rest of the paper is structured as follows: Section 2 summarizes some
preliminaries necessary for the description of the technique (we assume, however,
that the reader is familiar with SAT basics). Section 3 and 4 describe the two
techniques by giving pseudo code and intuitive explanation of their correctness.
Section 5 is dedicated to a formal proof of their correctness. We conclude in
Sect. 6 with a description of the experiments we conducted and their results.

2 Preliminaries

A literal is a Boolean variable or its negation. A pair of literals corresponding
to a variable and its negation are called complementary. A clause is a (possibly
empty) disjunction of literals, and a CNF formula is a conjunction of clauses.
For convenience we occasionally refer to a clause as a set of literals.

2.1 Inference by Resolution

The process in which DPLL SAT solvers infer new conflict clauses can be inter-
preted as applying the binary resolution inference rule:

AV V.Vl (mIviv.vi)
(Liv.Vvi,viiv.vl)

(RESOLUTION). (1)

The variable [is called the pivot variable (also called ‘resolution variable’ in the
literature). The resulting clause may contain multiple occurrences of the same
literal, so we assume that such redundancy is removed.

Let Res be a function that receives two clauses with complementary literals
as input, and returns the consequent of the resolution rule applied to these two
clauses, as output. More formally:

Given clauses C1 = (VI V .. ViI,)and Co = (RIVIEVILYV .o VD),

Res(C,Co) = (4 V .. VI, VIV .. VI,).

Resolution is known to be a sound and complete proof system for CNF for-
mulas. Specifically, a CNF formula ¢ is unsatisfiable if and only if there exists
a resolution proof of the empty clause using ¢’s clauses as premises. We use the
formulation of [1] for resolution proofs:

Definition 1 (Resolution proof of unsatisfiability). A resolution proof of
unsatisfiability of a set of clauses C is a directed acyclic graph (DAG) (V,E),
where the nodes represent clauses, and each node ¢ € V is either a root and
c € C, or has exactly two parents c1,co such that c is their resolvent. The graph
has a single sink, which represents the empty clause.”

Since resolution proofs are graphs, we use the terms proof and resolution
graph interchangeably.

Example of a resolution graph can be seen in Fig. 1[a]. Every resolution proof
can be represented by a resolution graph. If a resolution graph has a single sink,
it is called the consequent of the proof. The root nodes are the premises of the
proof. For a given node, the root nodes that can reach it on the resolution graph
are called its core. Specifically, if the consequent is an empty clause then its core
is called the unsatisfiable core.

The resolution described so far is known by the name general resolution.
Two well-known restrictions of general resolutions that we will mention later
on are tree resolution, which means that the resolution graph is a tree rather
than a DAG, and Tseitin’s regular resolution [22], which means that along each
path no variable is used twice as a pivot. Both of these restrictions may entail a
penalty of an exponent in the size of the proof. In other words, there are classes
of formulas that can be proven with general resolution in a polynomial number
of steps, but only with an exponential number of steps in a tree resolution proof
or regular resolution proof.

How do resolution proofs relate to proofs of SAT solvers? Modern DPLL
SAT solvers generate conflict clauses [25] during their run, which are implicitly
inferred from other clauses by a chain of (general) resolutions. Hence, the roots
of the resolution proof that is given by solvers are labeled with original clauses,
and the internal nodes are labeled with conflict clauses. We refer the reader to [1,
26] for more details.

We are going to use a variant of the resolution graph in which a single parent
is allowed, if this parent is associated with the same clause as the child. The
resolution proof corresponding to this graph is derived by first eliminating all
nodes with a single parent (removing such a node n and connecting n’s single
parent to n’s children), and continuing as before. This extension is convenient
for simplifying the algorithm and later on the proofs, but is not essential.

2 Note that we use the convention by which the edges are in the direction of the proof,
i.e., from premises to consequents. For practical purposes it is common to build this
graph with edges (pointers) pointing in the other direction, because this facilitates
a search for the core.

3 Recycling Learned Unit Clauses

Some of the conflict clauses learned during the run of a SAT solver are unit
clauses, e.g., (x). In such a case we say that the SAT solver inferred the constant
value of the variable constrained by this clause (x = true in this case). These
constants can be used to rewrite those parts of the proof that were inferred prior
to learning these constants, an action that reduces the overall size of the proof
and its core. Recall that the SAT solver can only apply resolution to clauses
in its clause database, and that this database is continuously updated with new
conflict clauses. Further, observe that the solver can only use resolution variables
which at that point in time are unassigned. If at a later stage of the computation
the same resolution variable is proved to have a constant value then the proof
can be regenerated taking this information into account.

Algorithm 1 presents RECYCLE-UNITS, which is the first of a two-step al-
gorithm for recycling unit clauses. The second step is RECONSTRUCT-PROOF,
which is presented in Algorithm 2. The two algorithms use the following nota-
tion. P is a resolution proof of the empty clause. For a given node n in P, n.C
is the clause represented by n, n.L and n.R are the left and right parents of n
respectively, and n.piv is the pivot variable used to resolve n.C' from n.L.C and
n.R.C. Recall that we use the convention by which the left parent includes the
positive phase of the pivot, and the right parent includes its negative phase. If [
is a literal, we denote by var(l) its corresponding variable. When n.C' is a unit
clause, we sometimes refer to it as a literal rather than a clause, when the mean-
ing is clear from the context. For example var(n.C) is the variable corresponding
to the literal in the unit clause n.C.

Algorithm 1: RECYCLE-UNITS (PROOF P)

1: Let U be the set of nodes representing constants proved in P;
2: for each u € U do

3: Mark the ancestors of u;

4 for each unmarked n € P do
5: if n.piv = u.C' then

6: n.L = u;

7 else if n.piv = —u.C then
8 n.R = u;

RECYCLE-UNITS iterates over all constants that were proved in P. Let u be
a node representing such a constant, and assume for now that this constant is a
positive literal (i.e., u.C is a positive literal). First, in line 3, RECYCLE-UNITS
marks the ancestors of u, i.e., the nodes that can reach U in P. Then, it searches
unmarked nodes for those that represent a resolution step using var(u.C) as
pivot. Let n be such a node. According to our convention u.C' € n.L.C' and
—u.C € n.R.C. In line 6 RECYCLE-UNITS changes the left parent of n from n.L

to u, i.e., it disconnects the edge (n.L,n) and connects instead (u,n). If u.C' is
a negative literal, then the edge is shifted from (n.R,n) to (u,n) in line 8.

At this stage the proof is no longer a legal resolution proof, and hence a
reconstruction phase begins by calling RECONSTRUCT-PROOF, which appears in
Alg. 2.

Ezample 1. Consider the partial resolution graph that is depicted in Fig. 1la.
The unit clause C8 is proven only after the resolution of C3, which uses the
variable ‘1’ (the unit of C8) as its pivot. RECYCLE-UNITS begins by marking
clauses that were used for proving C8 — clauses C5 and C6 in this case. It then
identifies C3 as an unmarked node that uses ‘1’ as pivot and rewires the proof
— in this case disconnects (C2,C3) and adds instead the edge (C8,C3), as can
be seen in Fig. 1b. It is left to reconstruct the proof so it becomes a legitimate
resolution proof once again.

C1(13) C2(-125) C1(13) C2(-125)

C3(235) CA(l -2) C5(-14) C6(-1 -4) C3(2 35 C4(1 -2) \C5(-1 4) CB(-1 -4)
C7(1 3 5) c8(-1) C7(1 3 5) c8(-1)
co@3 5) C9(3 5)
[a] [b]

Fig.1. [a] Part of a resolution proof [b] After RECYCLE-UNITS and before
RECONSTRUCT-PROOF.

a

Implementation of RECYCLE-UNITS The most time-consuming component of
Algorithm 1 is Step 3. Recall that the purpose of this step is to prevent cycles
after we connect a unit clause to another node. Rather than traversing the graph
backwards each time (which would make this method quadratic in the size of
the graph), our implementation maintains at each unit node u pointers to every
descendant unit «’ such that there is no other unit between them. Denote by
Gy the resulting graph of units, i.e., the nodes of G are the units in the resolve
graph and the edges are defined by the list of pointers that we maintain with each
such node. In Step 3, when considering connecting a unit clause u to another
node ¢, our tool temporarily makes this connection and checks if it can reach itself
on Gy. If the answer is yes, we undo this temporary connection and continue.
Otherwise we keep the connection and update the list of pointers in the units
that are parents of u so they now also point to u. This method makes the solution
quadratic in the number of units. Note that we can always bound the number

of units that we consider if it becomes not cost-effective and that in practice the
number of units is small comparing to the size of the proof.

Let us now shift the focus to RECONSTRUCT-PROOF. The resolution graph
given to RECONSTRUCT-PROOF as input has a subset of the nodes of the original
resolution graph. This is because only edges are shifted up to this point, and
these shifts may disconnect parts of the graph (e.g., in Example 1, node C2 has
been disconnected). Note that only the graph connected to the sink node is sent
to RECONSTRUCT-PROOF.

RECONSTRUCT-PROOF, appearing in Alg. 2, is a recursive procedure that,
given a proof node n — initially the sink node of the “broken” proof — reconstructs
a legal resolution proof of n (we will define formally the nature of this broken
proof in Sect. 5). We can think of n as a pointer (in the algorithm below it
appears as sent by reference, C++ style), which in the end of the procedure
will point to the sink of a legal resolution proof of that node. The base of the
recursion are the root nodes. When n is not a root, there are several cases. If the
pivot n.piv is still present in its parents then n.C' is a resolution between them
(see lines 9 and 10). If it is only present in one of them, say the positive phase
is present in n.L.C, then the other node (n.R) replaces n. This is because we
know that n.R.C' subsumes n.C. If it is contained in neither of its parents, then
both n.L.C and n.R.C subsume n.C' and hence either one of them can replace
n.C.

Ezxample 2. The graphs in Fig. 2 show the steps of reconstruction for the reso-
lution graph in Fig. 1b.
O

4 Recycling Pivots

The second technique we present is linear in the size of the proof and is also
based on two steps, as in the previous case: in the first step we remove edges
from the proof, and in the second step we reconstruct the proof using the same
algorithm RECONSTRUCT-PROOF. The algorithm is based on an observation
of Urquhart [23] that along each path from root to sink, there is no need for
resolving on the same variable more than once. If there is such a situation, then
the redundant resolution steps can be avoided and consequently some of the
branches of the proof can be pruned away. The correctness of this algorithm will
be proven in Sect. 5. We note that this does not result in a regular resolution
proof as defined in Sect. 2, because we apply it only to some parts of the graph
as described below. If the resolution graph we start with happens to be a tree,
then the result of applying this step is indeed a regular resolution proof. Our
algorithm can be seen as a realization of an idea that was originally described
in the proof of Lemma 5.1 in [23], stating that “a tree resolution refutation of
minimal size is regular”.

For simplicity of the presentation, assume for now that the proof is a tree
rather than a DAG. Consider a node n with a pivot n.piv. We propagate —n.piv

Algorithm 2: RECONSTRUCT-PROOF (NODE n)

1: if n visited then return
2: mark n as visited;
3: if n is a root then return
4: if n has a single parent s € {L, R} then
5: RECONSTRUCT-PROOF (n.s);
6: n = n.s;
return ;

7: RECONSTRUCT-PROOF (n.L);

8: RECONSTRUCT-PROOF (n.R);

9: if n.piv € n.L.C and —n.piv € n.R.C then

10: n.C := Res(n.L.C,n.R.C);

11: else if n.piv € n.L.C and —n.piv € n.R.C then
12: n.C :=n.R.C;

13: n.L := nil

14: else if n.piv € n.L.C' and —n.piv € n.R.C' then
15: n.C :=n.L.C,

16: n.R := nil;

17: else

19: n.C := n.side.C;

18: side := one of {L, R}; otherside := other side; > Choose heuristically

20: n.otherside := nil;
c1(1 3) ci1(3) ci@ 3)
c3(3) Ca(1 -2) \ C5(-1 4) C6(-1 -4) C3(3) C5(-1 4) C6(-1 -4) c3(3) C5(-1 4) CB(-1 -4)
N\ N\
c7(1 35) c8(-1) c7(3) c8(-1) c7(3) c8(-1)
c9@3 5) Cco@3 5) co3)
[a] [b] [c]

Fig. 2. The recursive steps, from left to right, of reconstructing the resolution graph in
Fig. 1b. Recall that single parent nodes are consistent with our definition of resolution

graphs.

up the right branch (recall that according to our convention n.R.C' contains
—n.piv) in a set called Remowvable-Literals, or RL for short. Similarly, we prop-
agate n.piv up the left branch. Consider the right branch: if along this branch
there is another node n/ such that n’.piv = n.piv then we can replace n’ with
n/.R. This means that the branch starting at n’.L is pruned. The correctness
of this operation is tied to the second step, which is the proof reconstruction in
RECONSTRUCT-PROOF. Note that n’.R.C'is contained in n’.C other than —n.piv.
RECONSTRUCT-PROOF will effectively propagate —n.piv down the branch until
inevitably reaching n (a result of our assumption that this is a tree). At node n,
—m.piv will disappear again due to the resolution on n.piv at n. As a result n.C
will subsume its original version.

In practice the input proof can be a DAG. This may cause a situation in
which our node n’ has paths to the sink not through n. This, in turn, may cause
a situation that RECONSTRUCT-PROOF propagates —m.piv all the way down
to the sink, which contradicts our goal of producing a proof with an equal or
stronger consequent. Another possible problem is that n’ has paths to the sink
node through both incoming edges of n, which nullifies our suggested technique.
There are two possible solutions to this problem. One, which is the solution
taken in Alg. 3 (see line 4) and also in our implementation, is to propagate
RL up (towards the roots) only as long as it is a tree, i.e., we stop at a node
that has multiple children. A more complicated solution is to check whether all
paths from n’ to the sink go through the edge (n.R, n). This can be done by
computing dominance relation in the graph, for example with the Lengauer-
Tarjan algorithm[14] (which runs in O(|E|log|V]) time). In order to achieve
the maximum reduction of the proof size one must recalculate the dominance
relation after each edge removal. This might be computationally expensive, so
recomputing this relation only a bounded number of times may be a better
choice. We leave this investigation for future work.

Given a resolution proof P, Alg. 3 is called with its sink node n and RL = 0),
and modifies P.

Ezample 3. Assume Fig. 3a represents the proof pointed to by n, the input
for RECYCLE-P1voTs. RECYCLE-P1vOTS propagates up the removable literals
(denoted by RL in the drawing) and, owing to the fact that ‘2’ is the pivot of
C3 and that ‘2’ is in RL, removes the edge (C1,C3). The proof after calling
RECONSTRUCT-PROOF is depicted in Fig. 3b.

O

Let us conclude this section by mentioning that this technique was used re-
cently by some of the authors in [7] in a different context: extending a resolution
proof of correctness over bounded paths (e.g., Bounded Model Checking for-
mulas) into an inductive proof over unbounded paths. Specifically, it reorders
segments of resolution trees that have a “comb”-like topology, i.e., fully ordered
sequences of resolution. This technique only works if the input “comb” is regular,
thus the first step is applying the algorithm described in this section.

(Algorithm 3: RECYCLE-P1VOTS (n, RL)

: if n visited then return

: Mark n as visited

. if root then return

: if n has more than one child then RL := {}
: if n.piv € RL and —n.piv ¢ RL then
RECYCLE-P1vOTS(n.L, RL U {n.piv})
REcycLE-P1voTs(n.R, RL U {-n.piv})
: else if —n.piv € RL then

n.L = nil,

REcYCLE-PIvoTs(n.R, RL);

. else

n.R := nil;

13: RECYCLE-P1voTs(n.L, RL);

—= e

[e)
N
T
N
IN

C1(123) C2(-24)

N/

C3(134) C4(-1-25 C3(-24)
RL = {-2 1}\ / \
C6(26) C5(-2 3 4 5) C6(2 6) C5(-24)
N / re=t \ /
C7 (345 6) c7 (4 6)
[a] b]

Fig. 3. For the input proof presented in drawing [a], RECYCLE-PIVOTS erases the edge
(C1,C3) and then calls RECONSTRUCT-PROOF, which results in the graph in draw-
ing [b]. RL denotes the Removable-Literals sets.

5 Proofs

Our goal is to prove the following two theorems.

Theorem 1. Let P be a resolution unsatisfiability proof on the premises A. Let
P’ be the result obtained by running RECYCLE-UNITS and then RECONSTRUCT-
PROOF on P. Then P’ is a valid resolution unsatisfiability proof on the premises
A’, where A’ C A.

Theorem 2. Let P be a resolution unsatisfiability proof on the premises A. Let
P’ be the result obtained by running RECYCLE-PIVOTS and then RECONSTRUCT -
PROOF on P. Then, P’ is a valid resolution unsatisfiability proof on the premises
A’ where A’ C A.

The proof of correctness relies on a notion of e-resolution, which we will
soon define. As we will prove, the graphs produced by RECYCLE-UNITS and
RECYCLE-P1vOTs are e-resolution graphs, and RECONSTRUCT-PROOF trans-
forms them back to resolution graphs.

It is convenient to represent resolution proofs as DAGs in which only the
roots are labeled with clauses. The clauses labeling the other nodes, including the
consequents, can be inferred from the topology of the graph and the roots, and
hence are not considered as part of the representation. It is important, in order
to understand the proofs that follow, to understand that the consequence of this
convention is that changing the topology of a proof (as done by Alg.1 and Alg.3)
implicitly changes its internal labels. We do not recalculate the labels explicitly
after Alg.1 and 3 because this will be done anyway by RECONSTRUCT-PROOF.

As an example, the right drawing of Fig. 4 represents the resolution graph
corresponding to the graph on its left, which is based on our convention. Recall
that single parents are allowed. The convention in that case is that the child
inherits the label from the parent.

[i\ (-125) (1 i\ (-125)
l (235) 1 -2)
@ -2 \ /

N/

Fig. 4. The two graphs represent equivalent resolution proofs. The convention we use
in this section corresponds to the left figure.

The notion of e-resolution is defined based on this convention, with the dif-
ference that each internal node n with two parents is labeled with a variable

n.piv,> which in our case is the pivot used to infer n.C' at that node in the orig-
inal proof. For nodes with two parents, instead of Eq. (1), e-resolution uses a
more relaxed inference rule, of which (1) is a special case. Using the convention
that n.piv may occur only in n.L.C', and —n.piv may occur only in n.R.C, the
e-resolution inference rule is:

n.C = e-resolution,, ,;,(n.L.C, n.R.C)
= (n.L.C'\ {n.piv}) U (n.R.C'\ {—n.piv}) . (2)

For example, for a node n labeled with a pivot z, and parents n.L.C' =
(y1 Vyz) and n.R.C' = (—z V y3) we have n.C' = (y1 V y2 V y3).

Every connected DAG with not more than two parents per node that its
roots are labeled with clauses and its internal nodes are labeled with a literal,
is an e-resolution graph. Hence clearly Alg. 1 and 3 implicitly generate such
graphs, because, starting from a resolution graph, they only replace a parent
(Alg. 1) or remove edges (Alg. 3). The pivot variables in the original resolution
graph label the remaining internal nodes. It is left to prove that the consequent
of these graphs is the empty clause, and that RECONSTRUCT-PROOF generates
a resolution proof of the empty clause from them.

5.1 The RECONSTRUCT-PROOF Algorithm

In the following we denote by < the subsumption relation, e.g., C7; < C means
that C; has a subset of the literals of Cy. By A(P) we denote the set of premises
(roots) of a proof P.

Lemma 1. Let P be the e-resolution proof pointed to by the node n, and let P’ be
the proof pointed to by the same node after applying RECONSTRUCT-PROOF(n).
Let C and C' denote the clause n.C' in P and P’, respectively. Then P’ is a
resolution proof of C’, where C' < C and A(P’) C A(P).

Proof. The claim follows by induction on the height of the proof (the length
of the longest path from a root to the sink). The base case is when n points
to a root, a case in which the algorithm does not change anything because of
line 3, which implies that the lemma holds trivially. For the step, we consider
several cases. If n has a single parent, the algorithm is applied recursively to
this parent, which means that it returns a proof that satisfies the lemma by the
induction hypothesis. Otherwise, n has two parents. The proof continues by a
straight-forward analysis of the four possible cases for a node n as described
by the table in Fig. 5. In the first case RECONSTRUCT-PROOF applies simple
resolution to clauses that satisfy the lemma by the induction hypothesis, and
hence clearly satisfies the lemma. The other three cases simply copy either n.L.C
or n.R.C, which, by the induction hypothesis, point to a legitimate resolution

3 This is in contrast to a standard resolution graph, in which the pivots can be inferred
from the topology and premise.

proof. It is left to show that C’ < C. Consider the second case, for example.
Let C = e-resolutiony;, (Ci, Cy) = (C; \ {piv}) U (C, \ {—piv}) for some clauses
Ci, Cr. In that case C' = (], where C] < C; by the induction hypothesis and
furthermore piv ¢ C] by the definition of case 2. Hence C' = C] < C)\{piv} < C.
The other two cases are proven in a similar way. Finally, A(P’) C A(P) is implied
by the fact that RECONSTRUCT-PROOF only removes nodes.

n.C n.piv € n.L.C|—n.piv € n.R.C
Res(n.L.Cyn.R.C)|yes yes
n.L.C no yes
n.R.C yes no
n.R.C or n.L.C" |no no

Fig. 5. The four cases discussed in the proof of Lemma 1.

5.2 The RECYCLE-UNITS Algorithm

RECYCLE-UNITS is a special case of a more general procedure, which we call sub-
sumption. It generalizes RECYCLE-UNITS in the sense that it does not only recy-
cle unit clauses, rather any learnt clause that subsumes other clauses in the proof.
Our proof will refer to subsumption, and the correctness of RECYCLE-UNITS is
then implied.

Consider two nodes p, m in the proof P such that p.C' < m.s.C for some side
s € {L, R}. Then, as long as no cycle is produced, we can set m.s = p so that m
uses the stronger p instead of its original parent m.s. In fact, the next definition
and lemma show that one can perform more than one such subsumption opera-
tion in parallel, and the definition of subsumption can be slightly strengthened by
considering the pivot variable. Indeed, RECYCLE-UNITS as listed in Algorithm 1
performs such substitutions with an arbitrary order.

Definition 2 (e-subsumption). Let P be an e-resolution proof. We say that
the node p e-subsumes the k nodes mq,...,my with sides s1,...,s (i.e., s; €
{L, R}), if the following conditions hold for everyi: The node m; has two parents;
m; s not an ancestor of p; and
0.C < m;.L.C'U {mi.piv} zf s; =1L
m;.R.CU{—-m;.piv} ifs;=R.

Lemma 2 (Parallel e-subsumption). Let P be an e-resolution unsatisfiabil-
ity proof, and let p,mq,...,mk, S1,...,5, be as above. Then the proof P’ ob-

tained by setting m;.s; = p for all i is an e-resolution unsatisfiability proof with
A(P") C A(P).

Proof. Let P, P’ be as above. We first argue that P’ contains no cycles. Indeed,
assume such a cycle exists. Obviously the cycle must contain some new edge.
However, since all the new edges emanate from p, we can assume that the cycle
contains exactly one new edge, say the edge from p to m;. However, the rest of
the cycle is a path from m; to p, which is a contradiction to the assumption that
my is not an ancestor of p.

Second, we argue that P’ is an e-resolution unsatisfiability proof. The proof
is by induction on the height of n with the induction claim: n.C’ < n.C. Here
we let n.C,n.C" denote the consequent clauses at the node n when applying
the e-resolution inference rule for the proof P, P’ respectively. As the claim
trivially holds for root nodes and for nodes with in-degree one, we can restrict
our attention to some node n with two parents. By induction n.L.C" < n.L.C' U
{n.piv} and n.R.C’ < n.R.C' U {-n.piv}.* Therefore, by (2) we conclude that
n.C' < n.C as claimed.

(Proof of Theorem 1)

Proof. The claim follows by applying Lemma 2 once for every iteration starting
in line 2 of the RECYCLE-UNITS algorithm, and subsequently applying Lemma 1
once.

The only point that needs some extra elaboration is that the assumptions of
Lemma 2 hold each time it is applied. Indeed, the algorithm RECYCLE-UNITS
only considers the case of subsumption by a unit clause uw. Furthermore, the
algorithm checks for the condition u = n.piv if s; = L and u = —-n.piv if s; = R,
which is strictly stronger than required by the Lemma.

5.3 The RECYCLE-P1voTs Algorithm
The main component we need for proving Theorem 2 is the following Lemma.

Lemma 3. Given a set of literals RL and a node n in a resolution proof P, let
n.C andn.C’ be the clause atn before and after applying RECYCLE-P1vOTS(n, RL).
Then n.C' <n.C URL.

Note that specifically when n.C is the empty clause and RL is the empty set
— the parameters with which we call RECYCLE-PIVOTS — it is implied that n.C’
is the empty clause.

Proof. The proof is by induction on the height of P, i.e., length of a longest path
from root to sink. For the base case, n is a root, and n.C’ = n.C so the lemma
holds trivially. Given some non-root node n we consider three cases:

1. lines 6-7, when (n.piv ¢ RL and —n.piv € RL) or n has more than one child,
2. lines 9-10, when —n.piv € RL and n has one child, and

4 Note that the stronger claim n.L.C’ < n.L.C' may not be correct since n.piv may
have been added to n.L.C' if n.L is one of the k nodes modified in the transition
from P to P’.

3. line 12-13, when n.piv € RL and n has one child.

In the first case by the induction hypothesis for the call RECYCLE-P1voTs(n.L, RLU
n.piv) we have n.L.C' < n.L.C U(RLUn.piv). Similarly, for the call RECYCLE-
Pivorts (n.L, RL U —n.piv) we have n.R.C’ < n.R.C' U (RL U —n.piv).

n.C’ = e-resolutiony;, (n.L.C’,n.R.C")
< e-resolutiony;, (n.L.C U (RL U n.piv),n.R.C U (RL U —n.piv))
= ((n.L.CURL) \ n.piv) U ((n.R.C U RL) \ —n.piv) .

Since n.C' is the resolution of n.L.C with n.R.C' by n.piv, this is equal to
n.C URL .

Hence n.C’ < n.C'U RL as required.
In the second case by the induction hypothesis n.R.C’ < n.R.C U RL so:

n.C' =n.R.C' <n.R.CURL < (n.C U{-n.piv})URL =n.CURL.

The last equality is owing to the fact that in the second case —n.pib € RL.
The proof of the third case is similar. ad

(proof of Theorem 2)

Proof. Given some unsatisfiability proof P with sink n, the initial call to RECYCLE-
Pvots is n and RL =). By Lemma 3 we have n.C’ < n.C' U RL. Since both
RL and n.C are empty sets it follows that n.C” is empty, i.e. the resulting proof
P’ is an unsatisfiability e-resolution proof. The fact that A(P’') < A(P) follows
from the fact that the algorithm can only remove a single parent from any given
node, and hence no new roots are introduced. a

6 Experimental results and conclusions

We ran our reductions on the IBM benchmark suite, which comprises 63 different
designs. On each design we ran bounded model checking with a bound k initially
set to 10 and then incremented by 5, up to £k = 100 or a bug was found. This
gave us 630 unsatisfiable instances. From those we chose only the instances that
take 10 seconds or more for RUN-TILL-FIX.® This left us with 67 proofs. We set
the timeout for each run to be 1800 seconds. We used a 64-bit machine with 8
GB memory, and 2x2.4Ghz Opteron dual core.

The results appear in Fig. 6. What can be concluded from them is that the lin-
ear reductions we proposed are on one hand fast (especially RECYCLE-PIVOTS),

5 This creates a bias against run-till-fix, but recall that we are not competing against
run-till-fix — we only check whether our methods can be helpful when run-till-fix fails
with a short time-out.

Roots Nodes

Reduction Time |Before After Per sec Ratio|Before After per sec Ratio

RUN-TILL-FIX 8095 |1002924 533941 57.9 0.53 [11830898 17677419 -722.2 1.49
units 1002.5{1002924 997674 5.2 0.99 11830898 11513195 316.9 0.97
pivots 32.5 1002924 953585 1518.6 0.95 |11830898 10464394 42059.2 0.88
units + pivots 1235.8/1002924 949279 43.4 0.95 |11830898 10247401 1281.3 0.87

Fig. 6. Reduction in proof roots and nodes. Run time is cumulative for 63 unsatisfiable
runs. The ‘Per sec’ columns indicate the number of removed roots / nodes per second.
The ‘Ratio’ columns indicate the ratio between the number of roots (or nodes) before
and after the reduction.

but their effectiveness in reducing roots is small: only ~ 5% of the roots are
removed, comparing to 47% with RUN-TILL-FIX. When it comes to the size of
the proof itself, it turns out that RUN-TILL-FIX increases the number of proof
nodes substantially (by 49%) whereas our reductions decrease their size by 13%.
The size of the proof can be relevant when computing interpolants, and indeed
as future work it is left to check its effectiveness with an interpolation-based
model-checker.

To conclude, we showed two techniques for fast preprocessing (perhaps it
should be called postprocessing) of resolution proofs. They cannot replace RUN-
TILL-FIX if the main goal is the reduction in core regardless of the time it takes,
but they can complement it or even replace it in a realm of short time outs. As
indicated above, it is more valuable in scenarios in which decreasing the proof
size rather than its core is what matters.

References

1. N. Amla and K. McMillan. Automatic abstraction without counterexamples. In
H. Garavel and J. Hatcliff, editors, TACAS’03, volume 2619 of Lect. Notes in
Comp. Sci., 2003.

2. N. Amla and K. L. McMillan. A hybrid of counterexample-based and proof-based
abstraction. In Formal Methods in Computer-Aided Design, 5th International Con-
frence, FMCAD 2004, pages 260-274, 2004.

3. O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham, and O. Strichman. Linear-
time reductions of resolution proofs. In H. Chockler and A. Hu, editors, Haifa
Verification Conference (HVC’08), volume 5394 of Lect. Notes in Comp. Sci., pages
114 — 128, 2008.

4. R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and B. Brady.
Deciding bit-vector arithmetic with abstraction. In O. Grumberg and M. Huth,
editors, 13th Intl. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’07), volume 4424 of Lect. Notes in Comp. Sci., pages 358-372,
March 2007.

5. A. Cimatti, A. Griggio, and R. Sebastiani. A simple and flexible way of computing
small unsatisfiable cores in sat modulo theories. In SAT, pages 334-339, 2007.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

N. Dershowitz, Z. Hanna, and A. Nadel. A scalable algorithm for minimal unsatis-
fiable core extraction. In SAT, volume 4121 of Lecture Notes in Computer Science,
pages 36—41. Springer, 2006.

O. Fuhrman and S. Hoory. On extending bounded proofs to inductive proofs. In
Proc. 21°" Intl. Conference on Computer Aided Verification (CAV’09), 2009. (to

appear).

. R. Gershman, M. Koifman, and O. Strichman. Deriving small unsatisfiable cores

with dominators. In Proc. 18" Intl. Conference on Computer Aided Verification
(CAV’06), number 4144 in Lect. Notes in Comp. Sci., pages 109-122, 2006.

R. Gershman and O. Strichman. Haifasat: A new robust SAT solver. In S. Ur,
E. Bin, and Y. Wolfsthal, editors, First International Haifa Verification Confer-
ence, volume 3875 of Lect. Notes in Comp. Sci., pages 76 — 89. Springer-Verlag,
2005.

E. Grégoire, B. Mazure, and C. Piette. Local-search extraction of muses. Con-
straints, 12(3):325-344, 2007.

O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided
underapproximation-widening for multi-process systems. In POPL ’05: Proceedings
of the 32nd ACM SIGPLAN-SIGACT sysposium on Principles of programming
languages, pages 122-131. ACM Press, 2005.

J. Huang. Mup: A minimal unsatisfiability prover. In Proc. of the 10t" Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 432-437, 2005.
D. Kroening, J. Ouaknine, S. Seshia, and O. Strichman. Abstraction-based satis-
fiability solving of Presburger arithmetic. In R. Alur and D. Peled, editors, Proc.
16" Intl. Conference on Computer Aided Verification (CAV’04), number 3114 in
LNCS, pages 308-320, Boston, MA, July 2004. Springer-Verlag.

T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flow-
graph. ACM Trans. Program. Lang. Syst., 1(1):121-141, 1979.

I. Lynce and J. Marques-Silva. On computing minimum unsatisfiable cores. In
Proceedings of the International Symposium on Theory and Applications of Satis-
fiability Testing, pages 305-310, 2004.

K. McMillan. Interpolation and sat-based model checking. In J. Warren A. Hunt
and F. Somenzi, editors, cav03, Lect. Notes in Comp. Sci., Jul 2003.

M. N. Mneimneh, I. Lynce, Z. S. Andraus, J. P. M. Silva, and K. A. Sakallah. A
branch-and-bound algorithm for extracting smallest minimal unsatisfiable formu-
las. In SAT, volume 3569 of Lecture Notes in Computer Science, pages 467—-474.
Springer, 2005.

Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov. Amuse:
a minimally-unsatisfiable subformula extractor. In DAC ’04, pages 518-523, 2004.
C. H. Papadimitriou and D. Wolfe. The complexity of facets resolved. J. Comput.
Syst. Sci., 37(1):2-13, 1988.

L. Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis,
Simon Fraser University, 2004.

O. Shtrichman. Prunning techniques for the SAT-based bounded model check-
ing problem. In proc. of the 11th Conference on Correct Hardware Design and
Verification Methods (CHARME’01), Edinburgh, Sept. 2001.

G. Tseitin. On the complexity of proofs in poropositional logics. In J. Siekmann
and G. Wrightson, editors, Automation of Reasoning: Classical Papers in Compu-
tational Logic 1967-1970, volume 2. Springer-Verlag, 1983. Originally published
1970.

A. Urquhart. The complexity of propositional proofs. Bulletin of Symbolic Logic,
1(4):425-467, 1995.

24. J. Whittemore, J. Kim, , and K. Sakallah. Satire: a new incremental satisfiability
engine. In In IEEE/ACM Design Automation Conference (DAC), 2001.

25. L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven
learning in a Boolean satisfiability solver. In ICCAD, 2001.

26. L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfiable
boolean formulas. In In Sizth International Conference on Theory and Applications
of Satisfiability Testing (SAT2003), S. Margherita Ligure, 2003.

A SAT solvers cannot produce all resolution proofs

Modern DPLL solvers that restrict learning to asserting clauses (virtually all
competitive solvers that we are aware of) are restricted in the resolution proofs
that they can generate. In asserting clauses there is exactly one literal from the
decision level in which the conflict occurred. Recall that learned clauses are the
internal nodes in the resolution.

On the other hand, some pairs of literals can be forced by the constraints to
be assigned in the same level. Consider, for example, the clause set

(-12)(1 —2)(-23) (2 =3)

forcing 1,2 and 3 to be equal. Resolving the first and third clauses yields C' =
(—1 3). But since these variables imply each other, they must have the same
decision level, which means that a clause such as C' above cannot be an asserting
clause.

The proof reconstruction can result in a proof of a clause such as C, however.
Assume we also have the clauses (—1 4), (-4 6),(4 5) and (3 —4 —6), and that
the resolution graph includes the subgraph depicted in Fig. 7a. The other two
graphs show the process of applying RECYCLEPIVOTS, ending with a proof of
C. RECYCLEPIVOTS detects that the pivot variable 4 is used in both C7 and C4,
removes the edge (C1,C4), copies C2 to C4, and continues from there as shown
in drawings b and c in the same figure.

Cl(45 C2(3-4-€

NS

C3 (-4 6) C4(35 -6) C3 (-4 6) C4B-4-6 C3 (-4 6) C4B-4-6
C5 (-1 4) C6(3 -4 5) C5 (-1 4) C6(3 -4 5) C5 (-1 4) C6(3 -4)
C7(-13 5) C7(-13 5) C7(-1 3)
[a] [b] [c]

Fig. 7. Recycling pivots can generate proofs that cannot be generated by a SAT solver.

The restriction to asserting clauses does not change the worst-case complexity
of the resulting resolution proofs, however, at least not owing to a scenario as
demonstrated above. The reason is that for each clause that cannot be asserting
according to the pattern above, there is an asserting clause that subsumes it
that is still implied by the formula. In the example above rather than learning
C, an asserting clause can be a unit (—1) or (3). If C' is implied, then so is each
of these two clauses.

