Proving Mutual Termination of Programs*

Dima Elenbogen® Shmuel Katz! Ofer Strichman?

! €S, Technion, Haifa, Israel. {katz,edima}@cs.technion.ac.il
2 Information Systems Engineering, IE, Technion, Haifa, Israel
ofers@ie.technion.ac.il

Abstract. Two programs are said to be mutually terminating if they
terminate on exactly the same inputs. We suggest a proof rule that uses
a mapping between the functions of the two programs for proving mu-
tual termination of functions f, f’. The rule’s premise requires proving
that given the same arbitrary input in, f(in) and f’(in) call mapped
functions with the same arguments. A variant of this rule with a weaker
premise allows to prove termination of one of the programs if the other
is known to terminate for all inputs. We present an algorithm for de-
composing the verification problem of whole programs to that of proving
mutual termination of individual functions, based on our suggested rules.

1 Introduction

Whereas termination of a single program has been widely studied (e.g., [9, 6,4, 7])
for several decades by now, with the focus being, especially in the last few years,
on automating such proofs, little attention has been paid to the related problem
of proving that two similar programs (e.g., two consecutive versions of the same
program) terminate on exactly the same inputs. Ideally one should focus on the
former problem, but this is not always possible either because the automatic
techniques are inherently incomplete, or because by design the program does
not terminate on all inputs. In such cases there is value in solving the latter
problem, because developers may wish to know that none of their changes affect
the termination behavior of their program. Moreover, the problem and solution
thereof can be defined in the granularity of functions rather than whole programs;
in this case the developer may benefit even more from a detailed list of pairs of
functions that terminate on exactly the same set of inputs. Those pairs that are
not on the list can help detecting termination errors.

Our focus is on successive, closely related versions of a program because it
both reflects a realistic problem of developers, and offers opportunities for de-
composition and abstraction that are not possible with the single-program ter-
mination problem. This problem, which was initially proposed in [12] and coined
mutual termination, can easily be proven undecidable as can be seen via a simple

* This material is based on research sponsored by the Air Force Research Laboratory,
under agreement number FA8655-11-1-3006. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon.

reduction from the halting problem. We argue, however, that in many cases it
is easier to solve automatically, because unlike termination proofs for a single
program, it does not rely on proving that the sequence of states in the programs’
computations can be mapped into a well-founded set. Rather it can be proven
by showing that the loops and recursive functions have the same set of function
calls given the same inputs, which is relatively easier to prove automatically. In
Sec. 3, for example, we show how to prove mutual termination of two versions
of the famous Collatz’s 3z + 1 problem [10]; whereas proving termination of this
program is open for many decades, proving mutual termination with respect to
another version is simple.

Our suggested method for decomposing the proof is most valuable when the
two input programs P and P’ are relatively similar in structure. In fact, its com-
plexity is dominated by the difference between the programs, rather than by
their absolute size. It begins by heuristically building a (possibly partial) map
between the functions of P and P’. It then progresses bottom-up on the two call
graphs, and each time proves the mutual termination of a pair of functions in the
map, while abstracting their callees. The generated verification conditions are
in the form of assertions about ‘flat’ programs (i.e., without loops and recursive
calls), which are proportional in size to the two compared functions. It then dis-
charges these verification conditions with a bounded model-checker (CBMC [5]
in our case). Each such program has the same structure: it calls the two com-
pared functions sequentially with the same nondeterministic input, records all
subsequent function calls and their arguments, and asserts in the end that they
have an equivalent set of function calls. According to our proof rule, the validity
of this assertion is sufficient for establishing their mutual termination.

The algorithm is rather involved because it has to deal with cases in which the
call graphs of P and P’ are not isomorphic (this leads to unmapped functions),
with mutually recursive functions, and with cases in which the proof of mutual
termination for the callees has failed. It also improves completeness by utilizing
extra knowledge that we may give to it on the partial equivalence of the callees,
where two functions are said to be partially equivalent if given the same inputs
they terminate with the same outputs, or at least one of them does not terminate.
Partial equivalence was studied in [12,14] and is implemented in RvT [14] and
Microsoft’s SYMDIFF [15]. We also implemented our algorithm in RvT, which
enables us to gain this information in a preprocessing step.

To summarize our contributions in this paper, we present a) a proof rule for
inferring mutual termination of recursive (and mutually-recursive) functions at
the leaves of their respective call graphs, b) an extension of the first rule that
applies also to internal nodes in the call graphs, and c) a proof rule for inferring
termination (not mutual termination) in case the other function is known to be
terminating. More importantly, we show how these rules can be applied to whole
programs via a bottom-up decomposition algorithm, and report on a prototype
implementation of this algorithm — the first to deal with the mutual termination
problem.

2 Preliminaries

Our goal is to prove mutual termination of pairs of functions in programs that
are assumed to be deterministic (i.e., single threaded and no internal nondeter-
minism). Formally:

Definition 1 (Mutual termination of functions). Two functions f and f’
are mutually terminating if and only if they terminate upon exactly the same
mputs.

By input we mean both the function parameters and the global data it accesses,
including the heap. Denote by m-term(f, f’) the fact that f and f’ mutually
terminate.

Preprocessing and mapping As a preprocessing step, all loops are extracted
to external recursive functions, as shown in [11]. After this step nontermination
can only arise from recursion. In addition, all global variables that are read by a
function are added to the end of its formal parameter list, and the calling sites
are changed accordingly. This is not essential for the proof, but simplifies the
presentation. It should be noted that this step in itself is impossible in general
programs that access the heap, because it is undecidable whether there exists an
input to a function that causes the function to read a particular variable. Our
only way out of this problem is to point out that it is easy to overapproximate
this information (in the worst case just take the whole list of global variables)
and to state that, based on our experience with a multitude of real programs, it
is rather easy to compute this information precisely or slightly overapproximate
it with static analysis techniques such as alias analysis. Indeed, the same exact
problem exists in RVT and SYMDIFF for the case of partial equivalence, and there,
as in our case, overapproximation can only hinder completeness, not soundness.
In general we will not elaborate on issues arising from aliasing because these are
not unique to mutual termination, and are dealt with in [14,15].

As a second step, a bijective map mapy between the functions of P and P’ is
derived. For functions f € P and f’ € P’ it is possible that (f, ') € mapr only
if f and f’ have the same prototype, i.e., the same list of formal input parameter
types. We emphasize that the output of the two functions need not be compatible
(e.g., f can update more global variables than f’). The restriction to bijective
maps seems detrimental for completeness, because the two compared programs
are not likely to have such a map. In practice with inlining such a mapping is
usually possible, as we describe later in Sect. 3.

Definitions and notations

— Function isolation. With each function g, we associate an uninterpreted func-
tion UF, such that g and UF, have the same prototype and return type'.

! This definition generalized naturally to cases in which ¢ has multiple outputs owing
to global data and arguments passed by reference.

The following definition will be used for specifying which functions are as-
sociated with the same uninterpreted function:

Definition 2 (Partial equivalence of functions). Two functions f and
f' are partially equivalent if any two terminating executions of f and f'
starting from the same inputs, return the same value.

Denote by p-equiv(f, f') the fact that f and f’ are partially equivalent. We
enforce that

UF,=UFy = ({9,9') € mapr A p-equiv(g, g')) (enforce) (1)

i.e., we associate ¢ and ¢’ with the same uninterpreted function only if
(9,9"Y € mapr, and g,g" were proven to be partially equivalent. The list
of pairs of functions that are proven to be partially equivalent is assumed to
be an input to the mutual termination algorithm. We now define:

fUE = flglexprin) « UF,(expriy) | g is called in f] , (2)
where expr;, is the expression(s) denoting actual parameter(s) with which
g is called. fUF is called the isolated version of f. By construction it has no
loops or function calls, except for calls to uninterpreted functions.
The definition of fUF requires all function calls to be replaced with unin-
terpreted functions. A useful relaxation of this requirement, which we will
later use, is that it can inline non-recursive functions. Clearly the result is
still nonrecursive. Therefore, we still refer to this as an isolated version of f.
— Call equivalence.
Let calls(f(in)), where én is a vector of actual values, denote the set of
function call instructions (i.e., a function name and the actual parameter
values) invoked in the body of f() during the execution of f(in). Note that
calls(f(in)) does not include calls from descendant functions and hence also
not from recursive calls.
We can now define:

Definition 3 (Call-equivalence of functions). f and f’ are call-equivalent
if and only if
(g, ¢') € mapr,ing,ing. g'(ing) € calls(f'(ing)) < g(ing) € calls(f(ing)) .

Denote by call-equiv(f, f') the fact that f and f’ are call-equivalent. Note
that it is decidable whether fUF and f'UF are call-equivalent, because these
are functions without loops and function calls, as explained above.

3 A proof rule

In an earlier publication by the 3rd author [12], there appears a rule for proving
mutual termination of individual ‘leaf’ functions (i.e., that do not call functions
other than themselves). Here we strengthen that rule by making its premise

weaker, and consider the more general problem of proving mutual termination
of any pair of functions, which enable us to consider whole programs.

Given a call graph of a general program, a corresponding DAG may be built
by collapsing each maximal strongly connected component (MSCC) into a single
node. Nodes that are not part of any cycle in the call graph (corresponding to
non-recursive functions) are called trivial MSCCs in the DAG. Other MSCCs
correspond to either simple or mutually recursive function(s).

Given the two compared programs P, P’, let map,, be a map between the
nodes of their respective MSCC DAGs, which is consistent with maps. Namely, if
(m,m') € mapy,, [is a function in m, and (f, f') € mapr, then f’ is a function
in m’ (and vice-versa).

Consider, then, two nontrivial MSCCs m, m’€ map,,, respectively, that are
leaves in the MSCC DAGs. Denote by

mapr(m) = {(f, f') | {f, f") € mapzr, f€m, f em'}.

Our goal is to prove mutual termination of each of the pairs in mapr(m). The
following proof rule gives us a way to do it by proving call-equivalence of each
of these pairs:

V(f, f') € mapr(m). call-equiv(fUF, f/VF)
Y(f, ') € mapr(m). m-term(f,)

(M-TERM) (3)

The premise of (3) is weaker than (hence the rule itself is stronger than) the
one suggested in [12], because the latter required the compared functions to be
partially equivalent. Furthermore, whereas [12] refers to leaf MSCCs only, later
on in this section we generalize (3) so it also applies to non-leaf MSCCs, and
hence tackles the general case.

Note that the abstraction of calls with uninterpreted functions is the source
of incompleteness. call-equiv(fY%, f! UF) may fail, but the counterexample may
rely on values returned by an uninterpreted function that are different than
what the corresponding concrete function would have returned if called with the
same parameters. Furthermore, it is possible that the concrete function and its
counterpart on the other side do not terminate, but their abstractions terminate
and are followed by different function calls on the two sides, which leads to call
equivalence not being true.

Checking the premise We check the premise of (3) by building a loop- and
recursion-free program for each pair of functions that we want to prove call
equivalent. Here we describe the construction informally, and only for the case
of simple recursion at the leaf functions. We will consider the general case in a
more formal way in Sec. 4.

Let f, f’ be simple recursive functions that only call themselves. We asso-
ciate a set of call instructions with each called function (this set represents
calls(f(in)). For example, in f only f itself is called, and hence we maintain a

set of call instructions to f. We then build a program with the following struc-
ture: main assigns equal nondeterministic values to the inputs of f and f’. It then
calls an implementation of fUf and f’ UF, and finally asserts that the sets of call
instructions are equal. The example below (hopefully) clarifies this construction.

function f(int a) function f'(int &)
int even := 0, ret := 0; int t',0odd’ := 0, ret’ :=0;
if a > 1 then if ' <1 then return ret’;
if =(a % 2) then > even t=a/2;
a:=a/2; if a/%2 then > odd
even = 1; a = 6t + 4;
else a := 3a + 1; odd :=1;
ret := even + f(a); else a’ :=1t';

return ret; ret’ = odd' + f’(a');

return ret’;

Fig. 1. Two variations on the Collatz (“3z+1") function that are mutually terminating.
f (f") returns the total number of times the function was called with an even (odd)
number. Note than when o’ is odd, a’/2 = (a’ —1)/2, and hence 6(a’/2) +4 = 3a’ + 1.

Ezample 1. Consider the two variants of the Collatz (“3x + 1”) program [10]
in Fig. 12, which return different values (see explanation in the caption of the
figure). The Collatz program is a famous open problem in termination: no one
knows whether it terminates for all (unbounded) integers. On the other hand
proving mutual termination of the two variants given here is easy. The compar-
ison is not fair, however, because our decision procedure assumes finite types:
we target C programs. But as we show in the full version of this article [1],
it is solvable even when the input parameter is an unbounded integer, using a
decision procedure for linear arithmetic.

The definitions of fUF, f'UF appear at the top part of Fig. 2. The middle part
of the same figure shows an implementation UF of the uninterpreted functions. It
receives a function index (abusing notation for simplicity, we assume here that a
function name represents also a unique index) and the actual parameters. Note
that it records the set of call instructions in the array params.

Note that in this case f, f’ are not partially equivalent, and therefore accord-
ing to (1) we replace the recursive calls with different uninterpreted functions.
Indeed, we call UF above with two different function indices (f and f’), which
means that on equal inputs they do not necessarily return the same nondeter-
ministic value. We defer the presentation of the case in which the functions are
known to be partially equivalent to Sec. 4.]

What if the mapping is not bijective, or if some of the pairs cannot be proven
to be mutually terminating? It is not hard to see that it is sufficient to prove
mutual termination of pairs of functions that together intersect all cycles in m,
m/, whereas the other functions are inlined. The same observation was made with

2 In the pseudocode we use the convention by which % is the modulo operator.

function fU% (int a) function f'V (int o)
int even := 0, ret := 0; int t’,0odd’ := 0,ret’ := 0;
if a > 1 then if o’ <1 then return ret’;
if =(a % 2) then > even t' = a/2;
a=a/2; if a’%2 then > odd
even = 1; a =6t +4;
else a :=3a + 1; odd :=1;
ret := even + UF(f,a); else a’ :=1';
return ret; ret’ := odd + UF(f',d’);

return ret’;

function UF(function index g, input parameters in)
if in € params[g] then return the output of the earlier call UF(g, in);
params|g] := params[g] U in;
return a nondeterministic value;

function MAIN
in = nondet(); fUF (in); /U7 (in);
assert(params[f] = params|f’]); > checks call equivalence

Fig. 2. The flat program that we generate and then verify its assertion, given the two
functions of Fig. 1 .

regard to proving partial equivalence in a technical report [13]. This observation
can be used to improve completeness: even when there is no bijective mapping
or when it is impossible to prove mutual termination for all pairs in m, m/, it is
still sometimes possible to prove it for some of the pairs. The algorithm that we
describe in Sec. 4 uses this observation.

Generalization We now generalize (M-TERM) to the case that m, m' are not
leaf MSCCs. This means that there is a set of functions C'(m) outside of m that
are called by functions in m. C(m’) is defined similarly with respect to m’. The
premise now requires that these functions are mutually-terminating:

(M{g,q') € mapr. (g € C(m)Ag' € C(m')) = m-term(g, g'))A
(V{f, [') € mapr(m). call-equiv(fV7, f'"7))

; +
Y(f, f') € mapr(m). m-term(f,) (M-TERMT) .

(4)

Recall that (2) prescribes that calls to functions in C(m) and C(m’) are replaced
with uninterpreted functions in fUF, V%
A full soundness proof of the generalized rule appears in Appendix A, whereas

here we only sketch its steps. The proof begins by showing that the premise

implies V(f, f') € mapxr(m). call-equiv(f, f’). Now, falsely assume that there is
a pair (f, f')€ mapr(m) that is not mutually terminating whereas the premise
holds. For some value in, suppose that it is f(in) that terminates, while f’(in)
does not. The infinite call stack of f/(in) must contain a call, say from h’(in) to
g’ (ing), whereas h(iny) does not call g(ins) in the call stack of f(in) (assuming
{{g, ¢"), (h, W)} C mapr). This contradicts our premise that (h, h') are call-
equivalent. The argument is a little more involved when there are multiple calls
to the same function, and when there are calls to functions in C(m), C(m'), but
we leave such subtleties to Appendix A.

4 A decomposition algorithm

In this section we present an algorithm for proving mutual termination of full
programs. As mentioned in Sec. 3, the call graph of a program can be viewed
as a DAG where the nodes correspond to MSCCs. After building a mapping
between the MSCCs of the two call graphs, the algorithm traverses the DAG
bottom-up. For each mapped pair of MSCCs m,m’, it attempts to prove the
mutual termination of their mapped functions, based on (M-TERM™T).

The algorithm is inspired by a similar algorithm for verification of partial
equivalence, which is described in a technical report [13] . The algorithm here is
more involved, however, because it handles differently cases in which the checked
functions are also partially equivalent (recall that this information, i.e., which
functions are known to be partially equivalent, is part of the input to the algo-
rithm). Furthermore, the algorithm in [13] is described with a non-deterministic
step, and here we suggest a method for determinizing it.

The preprocessing and mapping is as in Sec. 2. Hence the program is loop-
free, globals accessed by a function are sent instead as additional inputs, and
there is a (possibly partial) mapping mapz between the functions of P and P’.

4.1 The algorithm

The input to Alg. 1 is P, P’, a (possibly partial) mapping mapz between their
functions, and (implicitly) those paired functions that are known to be partially
equivalent. Its output is a set of function pairs that are marked as m_term,
indicating it succeeded to prove their mutual termination based on (M-TERM™).
We now describe the three functions used by this algorithm.

PROVEMT. This entry function traverses the call graphs of P, P’ bottom-up,
each time focusing on a pair of MSCCs. In line 2 it inlines all nonrecursive
functions that are not mapped. In line 3 it uses renaming to resolve possible
name collisions between the globals of the two input programs. The next line
builds the MSCC DAGs MD and M D' from the call graphs, as explained in
Sec.3. Line 5 attempts to build map,, (as defined at the top of Sect. 3), only that
it must be bijective. If such a bijective map does not exist, the algorithm aborts.

In practice one may run the algorithm bottom-up until reaching nonmapped
MSCCs, but we omit this option here for brevity.

The bottom-up traversal starts in line 6. Initially all MSCCs are unmarked.
The algorithm searches for a next unmarked pair (m, m’) of MSCCs such that
all its children pairs are marked. If m, m/ are trivial (see Sec. 3 for a definition),
then line 10 simply checks the call-equivalence of the function pair (f, f’) that
constitutes (m, m'), and marks them accordingly in line 10. Note that even if
the descendants of m, m’ are mutually-terminating, m, m’ are not necessarily
s0, because they may call their descendants with different parameters. Also note
that if this check fails, we continue to check their ancestors, (in contrast to the
case of non-trivial MSCCs listed next), because even if (f, f') are not mutually
terminating for every input, their callers may still be (they can be mutually
terminating in the context of their callers). We can check this by inlining them,
which is only possible because they are not recursive.

Next, consider the case that the selected m, m’ in line 7 are not trivial.
In line 11 the algorithm chooses non-deterministically a subset S of pairs from
mapy(m) that intersects all the cycles in m and m/. This guarantees that we
can always inline the functions in m, m’ that are not in S. Determinization of
this step will be considered in subsection 4.3. If CALLEQUIV returns TRUE for
all the function pairs in S, then all those pairs are labeled as m_term in line 14.
Otherwise it abandons the attempt to prove their ancestors in line 13: it cannot
prove that mapped functions in (m,m’) are mutually terminating, nor can it
inline these functions in their callers, so we cannot check all its ancestors.

Regardless of whether (m, m') are trivial, they get marked as mscc_covered
in line 7, and the loop in PROVEMT continues to another pair.

ISOLATE. The function ISOLATE receives as input a pair (f, f’) € mapr and a
set S of paired functions which, by construction (see line 11) contains only pairs
from the same MSCCs as f, f’, ie., if f € m and f' € m/, then (g,9') € S
implies that g € m and ¢’ € m/. As output, it generates fUF and f'“F, or
rather a relaxation thereof as explained after Eq. (2). We will occasionally refer
to them as side 0 and side 1. These functions do not have function calls (other
than to uninterpreted functions), but may include inlined (nonrecursive) callees
that were not proven to be mutually terminating.

The implementations of UF and UF’ appear in Fig. 3, and are rather self-
explanatory. Their main role is to check call-equivalence. This is done by check-
ing that they are called with the same set of inputs. When (g, ¢’) is marked
partially_equiv, UF and UF’ emulate the same uninterpreted function, i.e.,

Vin. UF(g,in) = UF'(¢',in) .

When (g, ¢’) is not marked partially_equiv, UF and UF’ emulate two different
uninterpreted functions.

Algorithm 1 Pseudo-code for a bottom-up decomposition algorithm for proving
that pairs of functions mutually terminate.

1: function PROVEMT(Programs P, P’, map between functions mapr)

2:

—_

12:
13:

14:

15:
16:
17:
18:
19:

20:

21:
22:

23:

Inline non-recursive non-mapped functions;
Solve name collisions in global identifiers of P, P’ by renaming.
Generate MSCC DAGs M D, M D' from the call graphs of P, P’;
If possible, generate a bijective map map., between the nodes of M D
and M D’ that is consistent with mapz; Otherwise abort.
while 3(m, m') € mapm not marked covered but its children are, do
Choose such a pair (m, m’) € map., and mark it covered
if m,m’ are trivial then
Let f, f' be the functions in m, m’, respectively;
if CALLEQUIV (ISOLATE(f, f',0)) then mark f, f' as m_term;
else Select non-deterministically S C {({f, f') | (f, f') € mapr(m)}
that intersect every cycle in m and m’;
for each (f, f') € S do
if ~CALLEQUIV (1ISOLATE(f, f', S)) then abort;

for each (f, f') € S do mark f, f' as m_term;

function 1SOLATE(functions f, f’, function pairs S) > Builds fUF, f/VF
for each {(g,g') € mapr | g,g" are reachable from f, f'} do
if (g,g') € S or (g,9’) is marked m_term then
Replace calls to g(in), ¢’(¢n’) with calls to UF(g, in), UF'(g’, in’), resp.;
else inline g, ¢’ in their callers;

return (f, f');

function CALLEQUIV(A pair of isolated functions (fUF, V%))
Let 0 denote the program:

> here add the definitions of UF() and UF’() (see Fig. 3).
in := nondet(); fUF (in); /'Y (in);
V{(g,q'y € mapr. if g (or g') is called® in f (orf’) assert(params|g] C params[g’]);

return CBMC(6);

% By ‘called’ we mean that a call appears in the function. It does not mean that there
is necessarily an input that invokes this call.

1: function UF(function index g, input parameters in) > Called in side 0
2: if é4n € params[g] then return the output of the earlier call UF(g, in);

3: params|g] := params[g] |J in;

4: return a non-deterministic output;

5: function UF’(function index ¢’, input parameters in’) > Called in side 1
6: if in’ € params[g’] then return the output of the earlier call UF’(g’, in’);

T params|g'] := paramslg’] U in’;

8: if ¢n’ € paramslg] then > {g,9') € mapr
9: if (g, g’) is marked partially_equiv then

10: return the output of the earlier call UF(g, in’);

11: return a non-deterministic output;

12: assert(0); > Not call-equivalent: params|g’] € params[g]

Fig. 3. Functions UF and UF’ emulate uninterpreted functions if instantiated with func-
tions that are mapped to one another. They are part of the generated program ¢, as
shown in CALLEQuUIV of Alg. 1. These functions also contain code for recording the
parameters with which they are called.

CALLEQuUIV. Our implementation is based on the C model checker CBMC [5],
which enables us to fully automate the check for call-equivalence. CBMC is
complete for bounded programs (i.e., loops and recursions are bounded), and,
indeed, the program § we build in CALLEQUIV is of that nature. It simply calls
FUE # vE (which, recall, have no loops or function calls by construction), with
the same nondeterministic value, and asserts in the end that the set of calls in
f is included in the set of calls in f’ (the other direction is checked in lines 8, 12
of UF’). Examples of such generated programs that we checked with CBMC are
available online in [2].

4.2 An example
The following example demonstrates Alg. 1. Consider the call graphs in Fig. 4.

8o B T, W

Fig. 4. Call graphs of the input programs P, P’. Partially equivalent functions are gray.

Assume that (f;, f/) € mapr for i = 1,...,5, and that the functions rep-
resented by gray nodes are known to be partially equivalent to their counter-
parts. Line 4 generates the following nodes of the MSCC DAGs: M D = {{f5},
{fabAf2 fab {1}y MDD = {5}, {f3}.{f2, f4, f6}.{f1}}. The MSCC mapping

mapy, in line 5 is naturally derived from mapr.

MSCCs |Pair |Description Res.
{fs}, {f5}|{f5, f5)|In line 11 the only possible S is (fs, f5). ISOLATE replaces| v’
the recursive call to fs, f5 with UF, UF’, respectively (7). As-
sume CALLEQUIV returns TRUE. (fs, f5) is marked m_term
in line 14.

{f3}, {f3}|{f3, f3)|This is a case of trivial MSCCs, which is handled in lines 8-10.| O
ISOLATE replaces the calls to fs, f¢ with UF, UF’, respectively
(7). Assume CALLEQUIV returns FALSE.

{f2, fa}, In line 11 let S = {{fs, f2), (fs, f1)}.

{15, 4, f6 H{f2, f2)|In f2 calls to f3 are inlined, and calls to fi, f5 are replaced| v'°
with calls to UF. In f3 calls to f5, fé are inlined, and calls to
f4, f5 are replaced with calls to UF’ (7). Assume CALLEQUIV
returns TRUE.

(f1, f)|In fa, fi calls to fa, f3 are respectively replaced with calls to| v’
UF, UF’ (7). Assume CALLEQUIV returns TRUE. Now (f2, f3)
and (fs, f1) are marked m_term in line 14.

{fi}, {f1}H{f1, fi)|Again, a case of a trivial MSCC. Calls to f», f3 are respec-| v/
tively replaced with UF, UF’ (¥), while calls to fi, fi are
replaced with UF, UF’, respectively (7). Assume CALLEQUIV
returns TRUE. ({f1}, {f1}) is marked m_term.

Table 1. Applying Alg. 1 to the call graphs in Fig. 4. ‘v’ means that the pair is marked
m_term, ‘v'"’ that it is marked conditionally (it becomes unconditional once all other
pairs in S are marked as well), and ‘[7 that it is not marked. (<) and (*) denote that
UF, UF’ emulate the same, or, respectively, different, uninterpreted functions.

The progress of the algorithm is listed in Table 1. The output in this case,
based on assumptions about the results of the checks for call-equivalence that
are mentioned in the table, is that the following pairs of functions are marked

as m_term: <f5af5/)>7 <.f25fé>7 <.f4af41>7 and <f17f{>

4.3 Choosing a vertex feedback set deterministically

In line 7 the choice of the set .S is nondeterministic. Our implementation deter-
minizes it by solving a series of optimization problems. In the worst case this
amounts to trying all sets, which is exponential in the size of the MSCC. Ob-
serve, however, that large MSCCs are rare in real programs and, indeed, this
has never posed a computational problem in our experiments.

Our objective is to find a maximal set S of function pairs, because the larger
the set is, the more functions are declared to be mutually terminating in case
of success. Further, larger sets imply fewer functions to inline, and hence the
burden on CALLEQUIV is expected to be smaller. Our implementation solves
this optimization problem via a reduction to a pseudo-Boolean formula, which is
then solved by MINISAT+ [8]. Each function node g in m (and m') is associated
with a Boolean variable vy, indicating whether it is part of S. The objective is
thus to maximize the sum of these variables that are mapped (those that are
unmapped cannot be in S anyway). In addition, there is a variable e;; for each

edge (i, j), which is set to true iff neither ¢ nor j is in S. By enforcing a transitive
closure, we guarantee that if there is a cycle of edges set to true (i.e., a cycle in
which none of the nodes is in S), then the self edges (e.g., e;,;) are set to TRUE
as well. We then prevent such cycles by setting them to FALSE. Let mapped(m)
denote the set of functions in m that are mapped. The problem formulation
appears in Fig. 5, and is rather self-explanatory. In case the chosen set S fails
(i.e., one of the pairs in S cannot be proven to be mutually terminating), we add
its negation (see constraint #6) and repeat.

. max E v
maximize S: g

gemapped (m)

subject to the following constraints, for M € {m,m'}:

1. Unmapped nodes are not in S: Vg € (M \ mapped(M)). —vq4

2. Defining the edges: V{i,j | (¢,7) is an edge in M}. —w; A —w; — €55
3. Transitive closure: V0 < 4,5,k < |M|. eij N ejr — ek

4. Self loops are not allowed: V0 < i < |M]|. —eis

5. Enforce mapping;: V{(g,9") € mapr,g € m. vg <> vy

6. For each failed solution SI: \/<gyg,>65l g

Fig. 5. A pseudo-Boolean formulation of the optimization problem of finding the largest
set of function pairs from m, m’ that intersect all cycles in both m and m/’.

5 An inference rule for proving termination

We now consider a different variant of the mutual termination problem: Given
that a program P terminates, does P’ terminate as well? Clearly this problem
can be reduced to that of mutual termination, but in fact it can also be solved
with a weaker premise. We first define term(f) to denote that f terminates and

call-contains(f, f) =
Y{g, g') € mapr,ing,ing. ¢'(ing) € calls(f'(iny)) = g(ing) € calls(f(iny)) .

Using these predicates, we can now define the rule for leaf MSCCs m, m’:

V{f, f) € mapr(m). (term(f) A call-contains(fYUF, f’UF)
YV {f, f) € mapr(m). term(f’)

Theorem 1. (TERM) is sound.

(TERM) . (5)

Proof. The proof follows similar lines to that of (M-TERM™). We give a proof
sketch. Falsely assume that there is a function f’ in m’ that does not terminate,
whereas for all (g, ¢') € mapr(m), call-contains(g,g’). There exists a value in
such that f’(in) does not terminate. The infinite call stack of f/(in) must contain

a call, say from h/(iny) to ¢'(ing), whereas h(ini) does not call g(inz) in the call
stack of f(in) (assuming {(g, ¢'), (h, h’)} C mapr). This contradicts our premise
that call-contains(h,h’) is true. O

Note that call-equivalence (Def. 3) is simply bi-directional call-containment.
A generalization to non-leaf MSCCs can be done as in (4).

The decomposition algorithm of the previous section (Alg. 1) applies with the
following change: the last statement of line 22 (asserting params[g] C params|g’])
should be removed. The only assertion that should be verified is thus inside UF
(line 12 in Fig. 3), which checks that every call on side 0 is matched by a call on
side 1.

6 Experience and conclusions

We implemented Alg. 1 in RVT [14, 2], and tested it with many small programs
and one real software project. Here we describe the latter.

We tested our tool on the open source project BETIK [3], which is an in-
terpreter for a scripting language. The code has 2 — 2.5 KLOC (depending on
the version). It has many loops and recursive functions, including mutual recur-
sion forming an MSCC of size 14. We compared eight consecutive versions of
this program from the code repository, i.e., seven comparisons. The amount of
changes between the versions varied with an average of 3—4 (related) functions.
Somewhat to our surprise, many of the changes do not preserve termination
behavior in a free context, mostly because these functions traverse global data
structures on the heap.

In five out of the seven comparisons, RVT discovered correctly, in less than 2
minutes each, that the programs contained mapped functions that do not mutu-
ally terminate. An example is a function called INT_VALUE(), which receives a
pointer to a node in a syntax tree. The old version compared the type of the node
to several values, and if none of them matched it simply returned the input node.
In the new code, a ‘default’ branch was added, that called INT_VALUE() with the
node’s subtype. In an arbitrary context, it is possible that the syntax ‘tree’ is
not actually a tree, rather a cyclic graph, e.g., owing to data aliasing. Hence,
there is a context in which the old function terminates whereas the new one is
trapped in infinite recursion. The full version of this article [1] includes the code
of this function as well as an additional example in which mutual termination is
not preserved.

In the remaining two comparisons RVT marked correctly, in less than a
minute each, that all mapped functions are mutually terminating.

Conclusion and future research. We showed a proof rule for mutual termi-
nation, and a bottom-up decomposition algorithm for handling whole programs.
This algorithm calls a model-checker for discharging the premise of the rule.
Our prototype implementation of this algorithm in RVT is the first to give an
automated (inherently incomplete) solution to the mutual termination problem.

An urgent conclusion from our experiments is that checking mutual termi-
nation under free context is possibly insufficient, especially when it comes to
programs that manipulate a global structure on the heap. Developers would also
want to know whether their programs mutually terminate under the context of
their specific program. Another direction is to interface RVT with an external
tool that checks termination: in those cases that they can prove termination of
one side but not of the other, we can use the results of Sec. 5 to prove ter-
mination in the other side®. We can also benefit from knowing that a pair of
functions terminate (not just mutually terminate) because in such a case they
should be excluded from the call-equivalence check of their callers. Finally, it
seems plausible to develop methods for proving termination by using the rule
(M-TERM™T). One needs to find a variant of the input program that on the one
hand is easier to prove terminating, and on the other hand is still call-equivalent
to the original program.

References

Full version available from http://ie.technion.ac.il/~ofers/atva-full.pdf.
http://ie.technion.ac.il/~ofers /rvt.html.

Available from http://code.google.com/p/betik.

A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking with reachability. In

CAV, pages 491-504, 2005.

5. E. Clarke and D. Kroening. Hardware verification using ANSI-C programs as
a reference. In Proceedings of ASP-DAC 2003, pages 308-311. IEEE Computer
Society Press, January 2003.

6. B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refinement for termination.
In SAS, pages 87-101, 2005.

7. B. Cook, A. Podelski, and A. Rybalchenko. Proving program termination. Com-
mun. ACM, 54(5):88-98, 2011.

8. N. Eén and N. Sorensson. Translating pseudo-boolean constraints into sat. JSAT,
2(1-4):1-26, 2006.

9. R. Floyd. Assigning meanings to programs. Proc. Symposia in Applied Mathemat-
ics, 19:19-32, 1967.

10. L. E. Garner. On the Collatz 3n + 1 algorithm. Proceedings of the American
Mathematical Society, 82(1):19-22, 1981.

11. B. Godlin. Regression verification: Theoretical and implementation aspects. Mas-
ter’s thesis, Technion, Israel Institute of Technology, 2008.

12. B. Godlin and O. Strichman. Inference rules for proving the equivalence of recursive
procedures. Acta Informatica, 45(6):403—439, 2008.

13. B. Godlin and O. Strichman. Regression verification. Technical Report IE/IS-
2011-02, Technion, 2011. http://ie.technion.ac.il/tech_reports/1306207119_j.pdf.

14. B. Godlin and O. Strichman. Regression verification. In 46" Design Automation
Conference (DAC), 2009.

15. M. Kawaguchi, S. K. Lahiri, and H. Rebelo. Conditional equivalence. Technical

Report MSR-TR-2010-119, Microsoft Research, 2010.

W

3 However, as one of our anonymous reviewers pointed out, it is unlikely that it is easy
to prove termination for one side and not the other, yet the calls of the first contain
the calls of the second.

A Soundness proof for (M-TERM™T)

For simplicity, assume that mapr provides a bijective mapping between the
functions in m, m’ (otherwise we can possibly satisfy this assumption via inlin-
ing). In the following by context of a function call f(in) we mean the execution
from the time f(in) entered the stack until it left it. We begin with two simple
observations:

O1. If thereis a call f(in) in the context of f(in), then f(in) does not terminate.
02. If f(in) terminates, then there can only be a finite number of parameter
vectors in the context of f(in) with which f is called.

Denote by PVy[g] the set (not a multiset) of parameter vectors with which
function g is directly called from function f.

Lemma 1. If call-equiv(fUF, f'VF), then call-equiv(f, f').

Proof. : We prove the contrapositive of the lemma:
—call-equiv(f, f') — ﬂcall—equiv(fUF,f/UF) .

Suppose f and f’ are called with the same value but for some (g, ¢’)€ mapr
and input in, g(in) is called from f and ¢'(in) is not called from f’. This
implies —call-equiv(f, f'). In fUF each call of g is replaced with a call of UF,
with the same parameters. If the parameters values in do not depend on the
result of any of the recursive functions, then the value of the parameters passed
into the corresponding call to UF, in fUF will not depend on the result of any
uninterpreted function and, therefore, will be equal to the value of ¢n. Otherwise,
namely, ¢n depends on the result of some (or several) recursive function(s),
then the non-deterministic values returned by the corresponding uninterpreted
function(s) will affect the parameter passed into the corresponding call to UF,
in fUF. But among all the possibilities for those non-deterministic values, there
are values that were actually returned by the recursive functions replaced by
those uninterpreted functions. Those actual values caused that in was passed
into the mentioned call of g. Those actual values (returned by the uninterpreted
functions) cause UF}, to be called with in in fUF. Hence, in € PV;[UF,].

If there are no calls of ¢’ in f’ at all, then f'“* contains no calls of UFy
either. Hence, PV [UFy]| = 0, i.e., PV;[UF,] # PV [UF,]. Otherwise (there
is a call of ¢’ in f’) by our assumption in ¢ PVj[¢']. Analogously, we can
show that in this case when all uninterpreted functions return actual values that
their corresponding original functions would, some value different from n is
passed into UFy in f’UF. Hence, there exists a computation with a set of non-
deterministic values for which in ¢ PV [UF,], i.e., PV;[UF,| # PV [UFy].

So in both cases we found a computation where PV;[UFy] # PV [UF,],
which implies —call-equiv(fYF, f’UF). O

The next lemma proves the validity of the rule (M-TERM) for basic programs
consisting of a single function. The function can be either simply recursive or
not recursive at all.

Lemma 2. If all the functions called in (f, f'Y€ mapr are f and [’ themselves,
respectively, then call-equiv(f, f') — m-term(f, f').

Proof. Consider (f,)€ mapr called with the same parameter ¢n such that
each one of f and f’ can call only itself. Falsely assume —m-term(f, f'). W.lL.o.g.,
assume term(f(in)) and —term(f’(in)), where, recall, term(f(in)) denotes that
f(in) terminates.

Consider 2n1, the parameter passed into the non-returning recursive call to
1. call-equiv(f, f’) implies that f is called with iny too. iny # in because
otherwise we would get —term(f(in)) according to O1.

Now consider terminating f(in1) and non-terminating f’(4n1). The situation
is quite similar to f(in) and f’(in). Thus we conclude that f(inz) must call
terminating f(én2), while f(¢n1) must call non-terminating f’(inz), such that
ing ¢ {in,ini}. We can go on descending the call stacks discovering a new
value in, ¢ {in,inq,...,in,_1} with which both f and f’ are called. But the
number of such unique values passed into f is finite according to O2. Hence, we
must eventually reach a situation where either:

— f(iny,) calls f with some in; that is already found in the call stack, which
contradicts the assumption term(f(in)) (by O1);

— f(iny,) calls f with some value énegtra such that f/(inegptra) is never called
in f/(ing,). It contradicts call-equiv(f, f);

— f(iny,) has no more calls to f. However, f/(in,) must call f’ because of
—term(f’(iny)). Again, it contradicts call-equiv(f, f').

Consequently, the assumption —m-term(f, f’) cannot be true. a
The next lemma addresses mutual recursion with terminating outer calls.
Lemma 3. The following rule is sound:

(V{g,9") € mapr. ((g € C(m)Ag € C(m')) — (term(g) Aterm(g’))) A
(V{f, [y € mapr(m). call-equiv(f, f))
Y{f, [y € mapr(m). m-term(f, f')

Proof. (Proofsketch) Consider (f, f')€ (m, m’) that are called with the same pa-
rameter ¢n. Assume by negation ~m-term(f, f'). W.Lo.g., assume term(f(in))
and —term(f’(in)).

The premise of the lemma implies that all the outer calls (beyond m, m’)
terminate. Hence, only inner calls inside m, m’ could cause —term(f’(in)).

From now on, the proof is very similar to that of Lemma 2. We start traversing
the infinite call stack of f’(¢n). The only difference is that instead of descending
with the same function pair in every call stack level (i.e., (f, f’) in the proof of
Lemma 2), we now descend to some pair (h;, hl) € (m, m') in each level #i.
According to 02, the number of unique values for every function from m found
in the call stack of f(in) is finite because term(f(in)) is assumed. On the other
side, the number of functions in m’ is finite. Hence, the infinite call stack of
f'(in) must include calls to some function ¢’ s.t. {g, ¢’) € (m, m’) which repeats

an infinite number of times. The latter will contradict either term(f(in)) or
call-equiv(g, g') (similarly to how the infinitely called f’ led to the final contra-
diction in the proof of Lemma 2). O

Lemma 4. The following rule is sound:

(V(g,9") € mapr. ((g € C(m) Ag' € C(m')) = m-term(g,g')) N
(Y{f, [y € mapr(m). call-equiv(f, f'))
Y{f, [y € mapr(m). m-term(f, f')

Proof. Consider (f, f')€ mapzr called with the same parameter in. Assume by
negation —m-term(f, f’). W.lo.g., assume term(f(in)) and —term(f’(in)).
Consider any function call g(in1) in f(in) s.t. ¢ ¢ m A 3¢’ (g, ¢')€ mapr.
call-equiv(f, f') implies that f’(inq) also calls ¢'(in1). (g, ¢’)¢(m, m') implies
m-term(g, g’), which implies that g(énq) and ¢’ (én1) mutually terminate.Hence,
¢’ (in1) must terminate because otherwise this would contradict term(f(in)).
Hence, all the outer function calls (referring beyond m, m’) must termi-
nate. Thus all the conditions satisfy the premise of Lemma 3, which implies
m-term(f,). O

Theorem 2. The inference rule (M-TERM ™) is sound.

Proof. According to Lemma 1, V(f, f') € mapr(m). call-equiv(fYF, f’UF) im-
plies V(f, f) € mapxr(m). call-equiv(f, f’). Thus, the second line of the premise
of the rule of Lemma 4 is satisfied. The upper line of the premise in (M-TERM™)
matches the upper line of the premise of the rule of Lemma 4. Having all its
premises satisfied, Lemma 4 implies:

Y(f, [} € mapr(m). m-term(f, ') .

