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Abstract The learning-based automated Assume–Guarantee reasoning paradigm has been
applied in the last few years for the compositional verification of concurrent systems. Specif-
ically, L∗ has been used for learning the assumption, based on strings derived from coun-
terexamples, which are given to it by a model-checker that attempts to verify the Assume–
Guarantee rules. We suggest three optimizations to this paradigm. First, we derive from each
counterexample multiple strings to L∗, rather than a single one as in previous approaches.
This small improvement saves candidate queries and hence model-checking runs. Second,
we observe that in existing instances of this paradigm, the learning algorithm is coupled
weakly with the teacher. Thus, the learner completely ignores the details of the internal
structure of the system and specification being verified, which are available already to the
teacher. We suggest an optimization that uses this information in order to avoid many un-
necessary membership queries (it reduces the number of such queries by more than an order
of magnitude). Finally, we develop a method for minimizing the alphabet used by the as-
sumption, which reduces the size of the assumption and the number of queries required to
construct it. We present these three optimizations in the context of verifying trace contain-
ment for concurrent systems composed of finite state machines. We have implemented our
approach in the COMFORT tool, and experimented with real-life examples. Our results ex-
hibit an average speedup of between 4 to 11 times, depending on the Assume–Guarantee
rule used and the set of activated optimizations.
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1 Introduction

Formal reasoning about concurrent programs is particularly hard due to the number of reach-
able states in the overall system. In particular, the number of such states can grow exponen-
tially with each added component. Assume–Guarantee (AG) is a method for compositional
reasoning that can be helpful in such cases. Consider a system with two components M1

and M2 that need to synchronize on a given set of shared actions, and a property ϕ that the
system should be verified against. In its simplest form, AG requires checking one of the
components, say M1, separately, while making some assumption on the behaviors permitted
by M2. The assumption should then be discharged when checking M2 in order to conclude
the conformance of the product machine with the property. This idea is formalized with the
following non-circular AG rule:

A × M1 � ϕ

M2 � A

M1 × M2 � ϕ
(AG-NC) (1)

where � stands for some conformance relation.1 For trace containment, simulation and some
other known relations, AG-NC is a sound and complete rule. In this paper, we consider the
case in which M1,M2 and ϕ are non-deterministic finite automata, and interpret � as the
trace containment (i.e., language inclusion) relation.

Recently, Cobleigh et al. proposed [12] a completely automatic method for finding the
assumption A, using Angluin’s L∗ algorithm [4]. L∗ constructs a minimal Deterministic Fi-
nite Automaton (DFA) that accepts an unknown regular language U . L∗ interacts iteratively
with a Minimally Adequate Teacher (MAT). In each iteration, L∗ queries the MAT about
membership of strings in U and whether the language of a specific candidate DFA is equal
to U . The MAT is expected to supply a “Yes/No” answer to both types of questions. It is
also expected to provide a counterexample along with a negative answer to a question of the
latter type. L∗ then uses the counterexample to refine its candidate DFA while enlarging it
by at least one state. L∗ is guaranteed to terminate within no more than n iterations, where
n is the size of the minimal DFA accepting U .

In this paper we suggest three improvements to the automated AG procedure. The first
improvement is based on the observation that counterexamples can sometimes be reused in
the refinement process, which saves candidate queries.

The second improvement is based on the observation that the core L∗ algorithm is com-
pletely unaware of the internal details of M1,M2 and ϕ. With a simple analysis of these
automata, most queries to the MAT can in fact be avoided. Indeed, we suggest to allow
the core L∗ procedure access to the internal structure of M1,M2 and ϕ. This leads to a
tighter coupling between the L∗ procedure and the MAT, and enables L∗ to make member-
ship queries to the MAT in a more intelligent manner. Specifically, it reduces the number of
such queries by more than an order of magnitude. Answering a membership query involves
a simulation of a trace on a non-deterministic state machine, and hence this optimization
improves the overall performance considerably.

The last improvement is based on the observation that the alphabet of the assumption A is
fixed conservatively to be the entire interface alphabet between M1 and ϕ on one hand, and
M2 on the other. While the full interface alphabet is always sufficient, it is often possible to
complete the verification successfully with a much smaller assumption alphabet. Since the

1Clearly, for this rule to be effective, A × M1 must be easier to compute than M1 × M2.
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overall complexity of the procedure depends on the alphabet size, a smaller alphabet can
improve the overall performance. In other words, while L∗ guarantees the minimality of the
learned assumption DFA with respect to a given alphabet, our improvement reduces the size
of the alphabet itself, and hence is expected to also reduce the size of the learned DFA. The
technique we present is based on an automated abstraction-refinement procedure: we start
with the empty alphabet and keep refining it based on an analysis of the counterexamples,
using a pseudo-Boolean solver. The procedure is guaranteed to terminate with a minimal
assumption alphabet that suffices to complete the overall verification.

Although our optimizations are presented in the context of AG-NC, a non-circular AG
rule, they are applicable for circular AG rules as well. Specifically, our tool supports the
AG-C rule [6], which appears in (2). The experimental results that we present in Sect. 6
include experiments with this rule as well.

M1 × A1 � ϕ

M2 × A2 � ϕ

A1 × A2 � ϕ

M1 × M2 � ϕ
(AG-C) (2)

We implemented our approach in the COMFORT [8] reasoning framework and exper-
imented with a set of benchmarks derived from real-life source code. The improvements
reduce the overall number of queries to the MAT and the size of the learned automaton.
While individual speedup factors exceeded 21, an average speedup of a factor of over 11
was observed (for the circular rule). The speedup achieved for the non-circular rule are
more moderate and average about 4. Somewhat surprisingly, the relative effect of each of
the optimizations change when switching from circular to non-circular rules. The detailed
results and a discussion of this point appear in Sect. 6.

Related work The L∗ algorithm was developed originally by Angluin [4]. Most learning-
based AG implementations, including ours, use a more sophisticated version of L∗ proposed
by Rivest and Schapire [24]. Machine learning techniques have been used in several contexts
related to verification [2, 13, 16, 17, 22]. The use of L∗ for AG reasoning was first proposed
by Cobleigh et al. [12]. A symbolic version of this framework has also been developed by
Alur et al. [3]. The use of learning for automated AG reasoning has also been investigated in
the context of simulation checking [7] and deadlock detection [9]. The circular rule AG-C
described in Sect. 1 was proposed by Barringer et al. [6]. The basic idea behind the auto-
mated AG reasoning paradigm is to learn an assumption [15], using L∗, that satisfies the
two premises of AG-NC. The AG paradigm was proposed in various contexts in the early
eighties by Misra and Chandy [21], Jones [19] and Pnueli [23] and has since been explored
(in manual/semi-automated forms) widely. The third optimization we propose amounts to
a form of counterexample-guided abstraction refinement (CEGAR). The core ideas behind
CEGAR were proposed originally by Kurshan [20], and CEGAR has since been used suc-
cessfully for automated hardware [11] and software [5] verification. An approach similar to
our third optimization was proposed independently by Gheorghiu et al. [14]. However, they
use polynomial (greedy) heuristics aimed at minimizing the alphabet size, whereas we find
the optimal value, and hence we solve an NP-hard problem.

The main difference of this article from its earlier proceedings version [10] is the inclu-
sion of the circular rule AG-C (2) and the experiments with it, as well as a slower intro-
duction to L* and the prior work by Cobleigh et al. Due to some changes in the code, the
experimental results are also somewhat different, as will be described in Sect. 6.
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2 Preliminaries

Let λ and · denote the empty string and the concatenation operator respectively. We use
lower letters (α,β , etc.) to denote actions, and higher letters (σ,π , etc.) to denote strings.

Definition 1 (Finite Automaton) A finite automaton (FA) is a 5-tuple (S, Init,Σ,T ,F )

where (i) S is a finite set of states, (ii) Init ⊆ S is the set of initial states, (iii) Σ is a fi-
nite alphabet of actions, (iv) T ⊆ S × Σ × S is the transition relation, and (v) F ⊆ S is a set
of accepting states.

For any FA M = (S, Init,Σ,T ,F ), we write s
α→ s ′ to mean (s,α, s ′) ∈ T . Then the

function δ is defined as follows: ∀α ∈ Σ � ∀s ∈ S� δ(α, s) = {s ′ | s
α→ s ′}. We extend δ to

operate on strings and sets of states in the natural manner. Thus, for any σ ∈ Σ∗ and S ′ ⊆ S,
δ(σ,S ′) denotes the set of states of M reached by simulating σ on M starting from any
s ∈ S ′. The language accepted by M , denoted L(M), is defined as follows: L(M) = {σ ∈
Σ∗ | δ(σ, Init) ∩ F 
= ∅}.

Determinism An FA M = (S, Init,Σ,T ,F ) is said to be a deterministic FA, or DFA,
if |Init| = 1 and ∀α ∈ Σ � ∀s ∈ S� |δ(α, s)| ≤ 1. Also, M is said to be complete if ∀α ∈
Σ � ∀s ∈ S� |δ(α, s)| ≥ 1. Thus, for a complete DFA, we have the following: ∀α ∈ Σ � ∀s ∈
S� |δ(α, s)| = 1. Unless otherwise mentioned, all DFA we consider in the rest of this paper
are also complete. It is well-known that a language is regular if and only if it is accepted by
some FA (or DFA, since FA and DFA have the same accepting power). Also, every regular
language is accepted by a unique (up to isomorphism) minimal DFA.

Complementation For any regular language L, over the alphabet Σ , we write L to mean
the language Σ∗ − L. If L is regular, then so is L. For any FA M we write M to mean the
(unique) minimal DFA accepting L(M).

Projection The projection of any string σ over an alphabet Σ is denoted by σ�Σ and de-
fined inductively on the structure of σ as follows: (i) λ�Σ= λ, and (ii) (α · σ ′)�Σ= α · (σ ′�Σ)

if α ∈ Σ and σ ′�Σ otherwise. The projection of any regular language L on an alphabet Σ is
defined as: L�Σ= {σ�Σ | σ ∈ L}. If L is regular, so is L�Σ . Finally, the projection M�Σ of
any FA M on an alphabet Σ is the (unique) minimal DFA accepting the language L(M)�Σ .

For the purpose of modeling systems with components that need to synchronize, it is
convenient to distinguish between local and global actions. Specifically, local actions belong
to the alphabet of a single component, while global actions are shared between multiple
components. As defined formally below, components synchronize on global actions, and
execute asynchronously on local actions.

Definition 2 (Parallel Composition) Given two finite automata M1 = (S1, Init1,Σ1, T1,F1)

and M2 = (S2, Init2,Σ2, T2,F2), their parallel composition M1 × M2 is the FA (S1 ×
S2, Init1 × Init2,Σ1 ∪ Σ2, T ,F1 × F2) such that ∀s1, s

′
1 ∈ S1� ∀s2, s

′
2 ∈ S2, (s1, s2)

α→ (s ′
1, s

′
2)

if and only if for i ∈ {1,2} either α 
∈ Σi ∧ si = s ′
i or si

α→ s ′
i .

Trace containment For any FA M1 and M2, we write M1 � M2 to mean L(M1 ×M2) = ∅.
A counterexample to M1 � M2 is a string σ ∈ L(M1 × M2).
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3 The L∗ algorithm

The L∗ algorithm for learning DFAs was developed by Angluin [4] and later improved by
Rivest and Schapire [24]. In essence, L∗ learns an unknown regular language U , over an
alphabet Σ , by generating the minimal DFA that accepts U . In order to learn U , L∗ requires
“Yes/No” answers to two types of queries:

1. Membership query: for a string σ ∈ Σ∗, ‘is σ ∈ U?’
2. Candidate query: for a DFA C, ‘is L(C) = U?’

If the answer to a candidate query is “No”, L∗ expects a counterexample string σ such
that σ ∈ U −L(C) or σ ∈ L(C) − U . In the first case, we call σ a positive counterexample,
because it should be added to L(C). In the second case, we call σ a negative counterexample
since it should be removed from L(C). As mentioned before, L∗ uses the MAT to obtain
answers to these queries.

Observation table L∗ builds an observation table (S,E,T ) where: (i) S ⊆ Σ∗ is the set of
rows, (ii) E ⊆ Σ∗ is the set of columns (or experiments), and (iii) T : (S ∪ S · Σ) × E →
{0,1} is a function defined as follows:

∀s ∈ (S ∪ S · Σ)� ∀e ∈ E� T (s, e) =
{

1, s · e ∈ U,

0, otherwise.
(3)

Consistency and closure For any s1, s2 ∈ (S ∪ S · Σ), s1 and s2 are equivalent (denoted as
s1 ≡ s2) if ∀e ∈ E� T (s1, e) = T (s2, e). A table is consistent if ∀s1, s2 ∈ S� s1 
= s2 ⇒ s1 
≡ s2.
L∗ always maintains a consistent table. In addition, a table is closed if ∀s ∈ S� ∀α ∈ Σ � ∃s ′ ∈
S� s ′ ≡ s · α.

Candidate construction Given a closed and consistent table (S,E,T ), L∗ constructs a
candidate DFA C = (S, {λ},Σ,
,F) such that: (i) F = {s ∈ S | T (s, λ) = 1}, and (ii) 
 =
{(s,α, s ′) | s ′ ≡ s ·α}. Note that C is deterministic and complete since (S,E,T ) is consistent
and closed. Since a row corresponds to a state of C, we use the terms “row” and “candidate
state” synonymously.

Example 1 Consider Fig. 1. On the left is an observation table with the entries being the
T values. In other words, the entry in the table corresponding to any row s and any exper-
iment e denotes T (s, e). Let Σ = {α,β}. From this table we see that {e2, α,α · e2, β · e2,

αα, . . .} ∈ U . On the right is the corresponding candidate DFA.

Fig. 1 An observation table and the corresponding candidate DFA
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(1) let S = E = {λ}
loop {

(2) Update T using queries
while (S,E,T ) is not closed {

(3) Find (s,α) ∈ S × Σ such that ∀s′ ∈ S� s′ 
≡ s · α
(4) Add s · α to S

}
(5) Construct candidate DFA C from (S,E,T )

(6) Make the conjecture C

(7) if C is correct return C

(8) else Add e ∈ Σ∗ that witnesses the counterexample to E

}

Fig. 2 The L∗ algorithm for learning an unknown regular language

L∗ step-by-step We now describe L∗ in more detail, using line numbers from its algorith-
mic description in Fig. 2. This conventional version of L∗ is used currently in the context
of automated AG reasoning. We also point out the specific issues that are addressed by the
improvements we propose later on in this paper. Recall that λ denotes the empty string. Af-
ter the initialization at Line 1, the table has one cell corresponding to (λ,λ). In the top-level
loop, the table entries are first computed (at Line 2) using membership queries.

Next, L∗ closes the table by trying to find (at Line 3) for each s ∈ S, some uncovered
action α ∈ Σ such that ∀s ′ ∈ S� s ′ 
≡ s · α. If such an uncovered action α is found for some
s ∈ S, L∗ adds s · α to S at Line 4 and continues with the closure process. Otherwise, it
proceeds to the next step. Note that each α ∈ Σ is considered when attempting to find an
uncovered action.

Once the table is closed, L∗ constructs (at Line 5) a candidate DFA C using the procedure
described previously. Next, at Line 6, L∗ conjectures that L(C) = U via a candidate query.
If the conjecture is wrong L∗ extracts from the counterexample CE (returned by the MAT)
a suffix e that, when added to E, causes the table to cease being closed. The process of
extracting the feedback e has been presented elsewhere [24] and we do not describe it here.
Once e has been obtained, L∗ adds e to E and iterates the top-level loop by returning to
Line 2. Note that since the table is no longer closed, the subsequent process of closing it
strictly increases the size of S. It can also be shown that the size of S cannot exceed n,
where n is number of states of the minimal DFA accepting U . Therefore, the top-level loop
of L∗ executes no more than n times.

Non-uniform refinement It is interesting to note that the feedback from CE does not re-
fine the candidate in the abstraction-refinement sense: refinement here does not necessarily
add/eliminate a positive/negative CE; this occurs eventually, but not necessarily in one step.
Indeed, the first improvement we propose leverages this observation to reduce the number
of candidate queries. It is also interesting to note that the refinement does not work in one
direction: it may remove strings that are in U or add strings that are not in U . The only
guarantee that we have is that in each step at least one state is added to the candidate and
that eventually L∗ learns U itself.

L∗ is based on the observation that in a DFA, two reachable states s, s ′ are distinct (and
hence cannot be combined) if and only if there exists a distinguishing sequence σ ∈ Σ∗
such that δ(σ, s) ∈ F ⇔ δ(σ, s ′) 
∈ F . Indeed, from the counterexample that it receives from
a candidate query, L∗ extracts a string σ that demonstrates that there exists two rows p1,p2
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such that δ(p1, q0) = δ(p2, q0) = s (s being a state of the current candidate automaton C),
and p1 · σ ∈ U whereas p2 · σ 
∈ U ; hence, s must be split into two states. This means
that at each iteration the number of states must increase by at least one, and a state once
added is never removed. This property guarantees that L∗ makes no more than n − 1 wrong
conjectures, and terminates with the minimal DFA M(U).

Complexity Overall, the number of membership queries made by L∗ is O(kn2 + n logm),
where k = |Σ | is the size of the alphabet of U , and m is the length of the longest coun-
terexample to a candidate query returned by the MAT [24]. The dominating fragment of this
complexity is kn2 which varies directly with the size of Σ . As noted before, the Σ used in
the literature is sufficient, but often unnecessarily large. The third improvement we propose
is aimed at reducing the number of membership queries by minimizing the size of Σ .

4 AG reasoning with L∗

In this section, we describe the key ideas behind the automated AG procedure proposed by
Cobleigh et al. [12]. We begin with a fact that we use later on.

Fact 1 For any FA M1 and M2 with alphabets Σ1 and Σ2, L(M1 × M2) 
= ∅ if and only
if ∃σ ∈ L(M1)� σ�(Σ1∩Σ2)∈ L(M2)�(Σ1∩Σ2). Equivalently, L(M1 × M2) 
= ∅ if and only if
L(M1)�(Σ1∩Σ2) ∩L(M2)�(Σ1∩Σ2) 
= ∅.

Let us now restate AG-NC by transforming the first premise and the conclusion into
checks for emptiness of certain languages. This not only reflects our implementation more
accurately, but is also more helpful for understanding our choice of the unknown language
U and its alphabet. Specifically, we restate AG-NC as follows:

A × (M1 × ϕ̄) � ⊥
M2 � A

(M1 × ϕ̄) × M2 � ⊥ (4)

where ⊥ denotes a DFA accepting the empty language. Then, the unknown language to be
learned is:

U = L((M1 × ϕ̄)�Σ) (5)

over the alphabet Σ = (Σ1 ∪ Σϕ) ∩ Σ2 where Σ1,Σ2 and Σϕ are the alphabets of M1,M2

and ϕ respectively.2 Note that U is the largest language over Σ that satisfies the first premise
of AG-NC. This choice of U and Σ is significant because, by Fact 1, the consequence of (4)
does not hold if and only if the intersection between U = L((M1 × ϕ̄)�Σ) and L(M2�Σ) is
non-empty. This situation is depicted in Fig. 3(a). Hence, the selected U and Σ are crucial
to argue about the completeness of AG-NC. Moreover, if A is the DFA computed by L∗
such that L(A) = U , any counterexample to the second premise M2 � A is guaranteed to
be a real one. However, in practice, the process terminates after learning U itself only in the
worst case. As we shall see, it usually terminates earlier by finding either a counterexample
to M1 × M2 � ϕ, or an assumption A that satisfies the two premises of (4). This latter case
is depicted in Fig. 3(b).

2We do not compute U directly because complementing M1, a non-deterministic automaton, is typically
intractable.
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Fig. 3 Different L∗ scenarios. The gray area represents the candidate assumption A

MAT implementation The answer to a membership query with a string σ is “Yes” if and
only if σ cannot be simulated on M1 × ϕ̄ (see (5)). This is decided via explicit-state breadth-
first-search for σ in M1 × ϕ̄. In fact, all simulation checks and model checking operations
in our implementation are carried out using explicit-state breadth-first-search. A candidate
query with some candidate A, on the other hand, is more complicated, and is now described
step-wise (see also Fig. 4). From hereon we denote π�Σ by π

Σ
.

Step 1. Use model checking to verify that A satisfies the first premise of (4). If the veri-
fication of the first premise fails, obtain a counterexample trace π ∈ L(A × M1 × ϕ̄) and
proceed to Step 2. Otherwise, go to Step 3.

Step 2. Check via simulation if π
Σ

∈ L(M2�Σ). If so, then by Fact 1, L(M1 × ϕ̄ × M2) 
= ∅
(i.e., M1 × M2 
� ϕ) and the algorithm terminates. This situation is depicted in Fig. 3(c).
Otherwise π

Σ
∈ L(A) − U is a negative counterexample, as depicted in Fig. 3(d). Control

is returned to L∗ with π
Σ

.
Step 3. At this point A is known to satisfy the first premise. Proceed to model check the

second premise. If M2 � A holds as well, then by (4) conclude that M1 × M2 � ϕ and
terminate. This possibility was already shown in Fig. 3(b). Otherwise obtain a counterex-
ample π ∈ L(M2 × A) and proceed to Step 4.

Step 4. Check if π
Σ

∈ L((M1 × ϕ̄)�Σ). If so, then by Fact 1, L(M1 × ϕ̄ × M2) 
= ∅ (i.e.,
M1 × M2 
� ϕ) and the algorithm terminates. This scenario is depicted in Fig. 3(e). Other-
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Fig. 4 AG reasoning with L∗

wise π
Σ

∈ U − L(A) is a positive counterexample, as depicted in Fig. 3(f)—return to L∗
with π

Σ
.

Note that Steps 2 and 4 above are duals obtained by interchanging M1 × ϕ̄ with M2 and
U with L(A). Also, note that Fact 1 could be applied in Steps 2 and 4 above only because
Σ = (Σ1 ∪ Σϕ) ∩ Σ2. In the next section, we propose an improvement that allows Σ to be
varied. Consequently, we also modify the procedure for answering candidate queries so that
Fact 1 is used only in a valid manner.

5 Optimized L∗-based AG reasoning

In this section we list three improvements to the algorithm described in Sect. 4. The first
two improvements reduce the number of candidate and membership queries respectively.
The third improvement is aimed at completing the verification process using an assumption
alphabet that is smaller than (Σ1 ∪ Σϕ) ∩ Σ2.

5.1 Reusing counterexamples

Recall from Sect. 3 that every candidate query counterexample π returned to L∗ is used
to find a suffix that makes the table not closed, and hence adds at least one state (row) to
the current candidate C (observation table). Let C ′ denote the new candidate constructed in
the next iteration of the top-level loop (see Fig. 2). We say that C ′ is obtained by refining
C on π . However, the refinement process does not guarantee the addition/elimination of a
positive/negative counterexample from C ′. Thus, a negative counterexample π ∈ L(C) − U

may still be accepted by C ′, and a positive counterexample π ∈ U − L(C) may still be
rejected by C ′. This leads naturally to the idea of reusing counterexamples. Specifically,
for every candidate C ′ obtained by refining on a negative counterexample π , we check, via
simulation, whether π ∈ L(C ′). If this is the case, we repeat the refinement process on C ′
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using π instead of performing a candidate query with C ′. The same idea is applied to positive
counterexamples as well. Thus, if we find that π 
∈ L(C ′) for a positive counterexample
π , then π is used to further refine C ′. This optimization reduces the number of candidate
queries.

5.2 Selective membership queries

Recall the operation of closing the table (see Lines 3 and 4 of Fig. 2) in L∗. For every row
s added to S, L∗ must compute T for every possible extension of s by a single action. Thus
L∗ must decide if s · α · e ∈ U for each α ∈ Σ and e ∈ E—a total of |Σ | · |E| membership
queries. To see how a membership query is answered, for any σ ∈ Σ∗, let Sim(σ ) be the set
of states of M1 × ϕ̄ reached by simulating σ from an initial state of M1 × ϕ̄ and by treating
actions not in Σ as ε (i.e., ε-transitions are allowed where the actions are local to M1 × ϕ̄).
Then, σ ∈ U if and only if Sim(σ ) does not contain an accepting state of M1 × ϕ̄.

Let us return to the problem of deciding if s · α · e ∈ U . Let En(s) = {α′ ∈ Σ |
δ(α′,Sim(s)) 
= ∅} be the set of enabled actions from Sim(s) in M1 × ϕ̄. Now, for any
α 
∈ En(s), Sim(s · α · e) = ∅ and hence s · α · e is guaranteed to belong to U . This ob-
servation leads to our second improvement. Specifically, for every s added to S, we first
compute En(s). Note that En(s) is computed by simulating s�Σ1 on M1 and s�Σϕ on ϕ̄ sep-
arately, without composing M1 and ϕ̄. We then make membership queries with s · α · e, but
only for α ∈ En(s). For all α 
∈ En(s) we directly set T (s · α, e) = 1 since we know that in
this case s · α · e ∈ U . The motivation behind this optimization is that En(s) is usually much
smaller that Σ for any s. The actual improvement in performance due to this tactic depends
on the relative sizes of En(s) and Σ for the different s ∈ S.

5.3 Minimizing the assumption alphabet

As mentioned before, existing automated AG procedures use a constant assumption alphabet
Σ = (Σ1 ∪ Σϕ) ∩ Σ2. There may exist, however, an assumption A over a smaller alphabet
Σc ⊂ Σ that satisfies the two premises of (4). Since (4) is sound, the existence of such an
A would still imply that M1 × M2 � ϕ. However, recall that the number of L∗ member-
ship queries varies directly with the alphabet size. Therefore, the benefit, in the context of
learning A, is that a smaller alphabet leads to fewer membership queries.3

In this section, we propose an abstraction-refinement scheme for building an assumption
over a minimal alphabet. The main problem with changing Σ is of course that AG-NC is no
longer complete. Specifically, if ΣC ⊂ Σ , then there might not exist any assumption A over
ΣC that satisfies the two premises of AG-NC even though the conclusion of AG-NC holds.
The following theorem characterizes this phenomenon precisely.

Theorem 1 (Incompleteness of AG-NC) Suppose there exists a string π and an alphabet
ΣC that maintains the following condition:

(INC ) π�ΣC
∈ L((M1 × ϕ̄)�ΣC

) ∩L(M2�ΣC
). (6)

Then no assumption A over ΣC satisfies the two premises of AG-NC.

3There is no guarantee as to the size of the learned assumption, however. A smaller alphabet can also result
in a bigger assumption.
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Fig. 5 Generalized AG with L∗, with an abstraction-refinement loop (added with dashed lines) based on the
assumption alphabet Σc ⊆ Σ . Strings πc and πΣ denote π�ΣC

and π�Σ respectively

Proof Suppose that there exists a π satisfying INC and an A over ΣC satisfying the two
premises of AG-NC. This leads to a contradiction as follows:

– Case 1: π�ΣC
∈ L(A). Since A satisfies the first premise of AG-NC, we have π�ΣC


∈
L((M1 × ϕ̄)�ΣC

), a contradiction with INC.
– Case 2: π �ΣC


∈ L(A). Hence π �ΣC
∈ L(A). Since A satisfies the second premise of

AG-NC, we have π�ΣC

∈ L(M2�ΣC

), again contradicting INC. �

We say that an alphabet ΣC is incomplete if ΣC 
= Σ and there exists a trace π satisfy-
ing condition INC above. Therefore, whenever we come across a trace π that satisfies INC,
unless ΣC = Σ , we know that the current ΣC is incomplete and must be refined. We now de-
scribe our overall procedure which incorporates testing ΣC for incompleteness and refining
an incomplete ΣC appropriately. After each update of ΣC , we restart L∗ from scratch.4

Detecting incompleteness Our optimized automated AG procedure is depicted in Fig. 5.
Initially Σc = ∅.5 Let us write πc and π

Σ
to mean π�ΣC

and π�Σ respectively. The process
continues as in Sect. 4, until one of the following two scenarios occur while answering a
candidate query:

– Scenario 1: We reach Step 2 with a trace π ∈ L(A × M1 × ϕ̄). Note that this implies
πc ∈ L((M1 × ϕ̄)�ΣC

). Now we first check if πc ∈ L(M2�ΣC
). If not, we return πc as a

negative counterexample to L∗ exactly as in Sect. 4. However, if πc ∈ L(M2�ΣC
), then

π satisfies the condition INC of Theorem 1, and hence ΣC is incomplete. Instead of
refining ΣC at this point, we first check if π

Σ
∈ L(M2�Σ). If so, then as in Sect. 4, by

4It is possible to reuse some of the previous results from the MAT, but we leave this for future work.
5We could also start with Σc = Σϕ since it is very unlikely that ϕ can be proven or disproven without
controlling the actions that define it.
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a valid application of Fact 1, M1 × M2 
� ϕ and the algorithm terminates. Otherwise, if
π

Σ

∈ L(M2�Σ), we refine ΣC .

– Scenario 2: We reach Step 4 with π ∈ L(M2 ×A). Note that this implies πc ∈ L(M2�ΣC
).

We first check if πc ∈ L((M1 × ϕ̄)�ΣC
). If not, we return πc as a positive counterexample

to L∗ exactly as in Sect. 4. However, if πc ∈ L((M1 × ϕ̄)�ΣC
), then π satisfies INC, and

hence by Theorem 1, ΣC is incomplete. Instead of refining ΣC at this point, we first
check if π

Σ
∈ L((M1 × ϕ̄)�Σ). If so, then as in Sect. 4, by a valid application of Fact 1,

M1 × M2 
� ϕ and we terminate. Otherwise, if π
Σ


∈ L((M1 × ϕ̄)�Σ), we refine ΣC .

Note that the checks involving π
Σ

in the two scenarios above correspond to the con-
cretization attempts in a standard CEGAR loop. Also, Scenarios 1 and 2 are duals (as in
the case of Steps 2 and 4 in Sect. 4) obtained by interchanging M1 × ϕ̄ with M2 and U

with L(A). In essence, while solving a candidate query, an incomplete ΣC results in a trace
(specifically, π above) that satisfies INC and leads neither to an actual counterexample of
M1 × M2 � ϕ, nor to a counterexample to the candidate query being solved. In accordance
with the CEGAR terminology, we refer to such traces as spurious counterexamples and use
them collectively to refine ΣC as described next. In the rest of this section, all counterexam-
ples we mention are spurious unless otherwise specified.

Refining the assumption alphabet A counterexample arising from Scenario 1 above is said
to be negative. Otherwise, it arises from Scenario 2 and is said to be positive. Our description
that follows unifies the treatment of these two types of counterexamples, with the help of a
common notation for M1 × ϕ̄ and M2. Specifically, let

M(π) =
{

M1 × ϕ̄, π is positive,

M2, π is negative.
(7)

We say that an alphabet Σ ′ eliminates a counterexample π , and denote this with
Elim(π,Σ ′), if π�Σ ′ 
∈ L(M(π)�Σ ′). Therefore, any counterexample π is eliminated if we
choose ΣC such that Elim(π,ΣC) holds since π no longer satisfies the condition INC. Our
goal, however, is to find a minimal alphabet ΣC with this property. It turns out that finding
such an alphabet is computationally hard.

Theorem 2 Finding a minimal eliminating alphabet is NP-hard in |Σ |.

Proof The proof relies on a reduction from the minimal hitting set problem.

Minimal hitting set A Minimal Hitting Set (MHS) problem is a pair (U,T ) where U is a
finite set and T ⊆ 2U is a finite set of subsets of U . A solution to (U,T ) is a minimal X ⊆ U

such that ∀T ′ ∈ T � X ∩ T ′ 
= ∅. It is well-known that MHS is NP-complete in |U | (see [18]
for a discussion on complexity and approximations to this problem).

Now we reduce MHS to finding a minimal eliminating alphabet. Let (U,T ) be any MHS
problem and let < be a strict order imposed on the elements of U . Consider the following
problem P of finding a minimal eliminating alphabet. First, let Σ = U . Next, for each T ′ ∈
T we introduce a counterexample π(T ′) obtained by arranging the elements of U according
to <, repeating each element of T ′ twice and the remaining elements of U just once. For
example suppose U = {a, b, c, d, e} such that a < b < c < d < e. Then for T ′ = {b, d, e} we
introduce the counterexample π(T ′) = a · b · b · c · d · d · e · e. Also, for each counterexample
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π(T ′) introduced, let M(π(T ′)) accept a single string obtained by arranging the elements of
U according to <, repeating each element of U just once. Thus, for the example U above,
M(π(T ′)) accepts the single string a · b · c · d · e.

Let us first show the following result: for any T ′ ∈ T and any X ⊆ U , X ∩ T ′ 
= ∅ if and
only if Elim(π(T ′),X). In other words, X∩T ′ 
= ∅ if and only if π(T ′)�X 
∈ L(M(π(T ′))�X).
Indeed suppose that some α ∈ X ∩ T ′. Then π(T ′)�X contains two consecutive occur-
rences of α and hence cannot be accepted by M(π(T ′))�X . By the converse implication,
if M(π(T ′))�X does not accept π(T ′)�X , then π(T ′)�X must contain two consecutive occur-
rences of some action α. But then α ∈ X∩T ′ and hence X∩T ′ 
= ∅. The above result implies
immediately that any solution to the MHS problem (U,T ) is also a minimal eliminating al-
phabet for P . Also, the reduction from (U,T ) to P described above can be performed using
logarithmic space in |U | + |T |. Finally, |Σ | = |U |, which completes our proof. �

As we just proved, finding the minimal eliminating alphabet is NP-hard in |Σ |. Yet, since
|Σ | is relatively small, this problem can still be feasible in practice (as our experiments have
shown: see Sect. 6). We propose a solution based on a reduction to Pseudo-Boolean con-
straints. Pseudo-Boolean constraints have the same modeling power as 0–1 ILP, but solvers
for this logic are typically based on adapting SAT engines for linear constraints over Boolean
variables, and geared towards problems with relatively few linear constraints (and a linear
objective function) and constraints in CNF.

Optimal refinement Let Π be the set of all (positive and negative) counterexamples seen
so far. We wish to find a minimal ΣC such that: ∀π ∈ Π � Elim(π,ΣC). To this end, we
formulate and solve a Pseudo-Boolean constraint problem with an objective function stating
that we seek a solution which minimizes the chosen set of actions. The set of constraints
of the problem is Φ = ⋃

π∈Π Φ(π). In essence, if M [π ] is the minimal DFA accepting {π},
then Φ(π) represents symbolically the states reachable in M [π ] × M(π), taking into account
all possible values of ΣC . Henceforth, we continue to use square brackets when referring to
elements of M [π ], and regular parenthesis when referring to elements of M(π).

We now define Φ(π) formally. Let

M [π ] = (S[π ], Init[π ],Σ [π ], T [π ],F [π ]) (8)

and

M(π) = (S(π), Init(π),Σ(π), T (π),F (π)). (9)

Let δ[π ] and δ(π) be the δ functions of M [π ] and M(π) respectively. We define a state variable
of the form (s, t) for each s ∈ S[π ] and t ∈ S(π). Intuitively, the variable (s, t) indicates
whether the product state (s, t) is reachable in M [π ] ×M(π). We also define a choice variable
s(α) for each action α ∈ Σ , indicating whether α is selected to be included in ΣC . Now,
Φ(π) consists of the following clauses:

Initialization and acceptance: Every initial and no accepting state is reachable:

∀s ∈ Init[π ]� ∀t ∈ Init(π)� (s, t), ∀s ∈ F [π ]� ∀t ∈ F (π)� ¬(s, t). (10)

Shared actions: Successors depend on whether an action is selected or not:

∀α ∈ Σ � ∀s ∈ S[π ]� ∀s ′ ∈ δ[π ](α, s)� ∀t ∈ S(π)� ∀t ′ ∈ δ(π)(α, t)� (s, t) ⇒ (s ′, t ′)
∀α ∈ Σ � ∀s ∈ S[π ]� ∀s ′ ∈ δ[π ](α, s)� ∀t ∈ S(π)� ¬s(α) ∧ (s, t) ⇒ (s ′, t)
∀α ∈ Σ � ∀s ∈ S[π ]� ∀t ∈ S(π)� ∀t ′ ∈ δ(π)(α, t)� ¬s(α) ∧ (s, t) ⇒ (s, t ′)

(11)
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Fig. 6 A positive
counterexample π and
M(π) = M1 × ϕ̄

Local actions: Asynchronous interleaving:

∀α ∈ Σ [π ] − Σ � ∀s ∈ S[π ]� ∀s ′ ∈ δ[π ](α, s)� ∀t ∈ S(π)� (s, t) ⇒ (s ′, t)
∀α ∈ Σ(π) − Σ � ∀s ∈ S[π ]� ∀t ∈ S(π)� ∀t ′ ∈ δ(π)(α, t)� (s, t) ⇒ (s, t ′)

(12)

As mentioned before, the global set of constraints Φ is obtained by collecting together the
constraints in each Φ(π). Observe that any solution ν to Φ has the following property. Let
ΣC = {α | ν(s(α)) = 1}. Then we have ∀π ∈ Π � L((M [π ]�ΣC

) × (M(π)�ΣC
)) = ∅. But since

L(M [π ]) = {π}, the above statement is equivalent to ∀π ∈ Π � (π�ΣC
) 
∈ L(M(π)�ΣC

), which
is further equivalent to ∀π ∈ Π � Elim(π,ΣC). Thus, ΣC eliminates all counterexamples.
Finally, since we want the minimal such ΣC , we minimize the number of chosen actions via
the following objective function:

min
∑
α∈Σ

s(α). (13)

Example 2 Consider Fig. 6, in which there is one counterexample π , and an FA M(π) =
M1 × ϕ̄ on which π can be simulated if Σc = ∅. The state variables are (si, tj ) for i, j ∈ [0..2]
and the choice variables are s(α), s(β). The constraints are:

Initialization: (s0, t0)

Acceptance: ¬(s2, t2)

Shared Actions: (s0, t1) → (s1, t2) (s1, t0) → (s2, t1)

(s0, t0) ∧ ¬s(α) → (s1, t0) (s1, t0) ∧ ¬s(β) → (s2, t0)

(s0, t1) ∧ ¬s(α) → (s1, t1) (s1, t1) ∧ ¬s(β) → (s2, t1)

(s0, t2) ∧ ¬s(α) → (s1, t2) (s1, t2) ∧ ¬s(β) → (s2, t2)

(s0, t0) ∧ ¬s(β) → (s0, t1) (s0, t1) ∧ ¬s(α) → (s0, t2)

(s1, t0) ∧ ¬s(β) → (s1, t1) (s1, t1) ∧ ¬s(α) → (s1, t2)

(s2, t0) ∧ ¬s(β) → (s2, t1) (s2, t1) ∧ ¬s(α) → (s2, t2)

Since there are no local actions, these are all the constraints. The objective is to minimize
s(α) + s(β). The optimal solution is s(α) = s(β) = 1, corresponding to the fact that both
actions need to be in ΣC in order to eliminate π .

6 Experiments

We implemented our technique in COMFORT [8] and experimented with a set of bench-
marks derived from real-life source code. All our experiments were carried out on quad
2.4 GHz machine with 4 GB RAM running RedHat Linux 9. We used PBS version 2.1 [1]
to solve the Pseudo-Boolean constraints. The benchmarks were derived from the source code
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of OpenSSL version 0.9.6c. Specifically, we used the code that implements the handshake
between a client and a server at the beginning of an SSL session. The client and server each
consists of about 2500 lines of C code. We designed a suite of 10 examples, each focus-
ing on a different property (involving a sequence of message-passing events) that a correct
handshake should exhibit. For instance, the first example (SSL-1) was aimed at verifying
that a handshake is always initiated by a client and never by a server. Thus, the model is the
same for each example, but the property is different.

The first set of experiments were aimed at evaluating our proposed improvements sep-
arately, and in conjunction with each other in the context of AG-NC. We also performed
a second set of experiments using the same improvements and benchmarks set, but in the
context of the circular AG rule AG-C (equation (2)). The results for the two rules are de-
scribed in Tables 1 and 2 respectively.6 The columns labeled with Ti and ¬Ti contain results
with/without the ith improvement for i ∈ {1,2,3}. The row labeled “Avg.” contains the arith-
metic mean for the rest of the column. Best figures are boldfaced. Note that entries under
the Membership queries and Candidate queries are fractional since they represent the aver-
age over the four possible values of the remaining two improvements. Specifically, these are
improvements 2 and 3 for Candidate queries, and improvements 1 and 3 for Membership
queries. Similarly, the entries under “CE Reuse” denote the average for the four possible
values of improvements 2 and 3 for the number of times a counterexample is reused via the
application of the first improvement.7

We observe that the improvements lead to the expected results in terms of reducing the
number of queries and the size of assumption alphabets. It turns out that with these bench-
marks the time of each candidate query is a fraction of a second, and hence reducing the

Table 1 Experimental results for the non-circular rule AG-NC (see (1))

Name Cand. CE Memb. |Σ | (Time) ¬T1 (Time) T1

queries Reuse queries ¬T2 T2 ¬T2 T2

¬T1 T1 T1 ¬T2 T2 ¬T3 T3 ¬T3 T3 ¬T3 T3 ¬T3 T3 ¬T3 T3

SSL-1 2.0 2.0 0.0 37.5 4.0 12.0 1.0 27.2 23.7 23.2 23.4 27.8 24.0 23.4 24.6

SSL-2 5.8 5.2 0.5 99.2 13.0 12.0 4.0 38.5 45.4 25.5 35.6 37.1 43.6 25.7 38.3

SSL-3 7.5 6.5 1.0 163.0 22.0 12.0 4.0 52.3 56.2 27.3 40.8 50.2 55.6 27.4 41.8

SSL-4 12.5 8.5 3.0 265.2 44.5 12.0 4.0 71.0 96.6 30.2 63.2 69.2 77.3 29.1 66.5

SSL-5 3.0 2.5 0.5 73.0 7.5 12.0 1.0 40.0 26.8 27.1 25.9 39.5 26.6 25.3 26.6

SSL-6 6.5 4.5 2.0 252.0 26.0 12.0 2.0 113.0 49.1 33.2 34.1 110.7 35.5 31.8 44.2

SSL-7 8.0 5.0 2.5 331.5 34.8 12.0 2.0 155.3 59.1 39.2 45.7 151.4 42.2 35.8 51.5

SSL-8 12.0 8.5 3.5 448.5 52.0 12.0 3.0 202.6 102.7 44.1 70.8 197.8 83.5 41.6 87.0

SSL-9 14.2 10.2 4.2 562.5 64.8 12.0 3.0 258.3 125.6 50.7 102.4 254.4 127.0 47.0 106.0

SSL-10 16.8 13.2 4.0 676.8 77.8 12.0 3.0 325.0 182.6 58.0 155.3 319.4 189.9 51.8 161.4

Avg. 8.2 6.5 1.5 290.5 34.2 12.0 2.0 128.3 76.8 35.9 59.7 125.7 70.5 33.9 64.8

6These results are somewhat different than what we published in the early proceedings version [10], due to
various changes in the code.
7This table is not always equivalent to the difference between the second and third columns, because reusing
a counterexample possibly implies a different sequence of suffixes and consequently a different sequence of
candidates. Since the final automaton is not fixed (due to early termination), it may even lead to a different
automaton, although in our experiments it rarely happened.
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Table 2 Experimental results for the circular rule AG-C (see (2)

Name Cand. CE Memb. |Σ | (Time) ¬T1 (Time) T1

queries Reuse queries ¬T2 T2 ¬T2 T2

¬T1 T1 T1 ¬T2 T2 ¬T3 T3 ¬T3 T3 ¬T3 T3 ¬T3 T3 ¬T3 T3

SSL-1 3.0 3.0 0.0 84.0 6.0 12.0 1.0 19.5 12.0 12.9 12.1 20.0 12.2 13.9 12.4

SSL-2 3.0 2.5 0.5 90.0 7.0 12.0 4.0 29.7 14.0 14.9 13.6 29.1 13.7 14.6 14.3

SSL-3 3.5 2.5 1.0 143.0 10.5 12.0 4.0 45.9 14.2 16.6 14.3 43.8 14.6 16.4 15.1

SSL-4 4.0 2.5 1.5 209.0 15.0 12.0 4.0 67.7 16.1 20.2 14.7 66.6 15.1 19.0 15.1

SSL-5 4.0 3.0 1.0 164.0 11.0 12.0 1.0 35.6 12.6 15.2 12.9 34.9 12.2 14.3 13.1

SSL-6 7.0 3.0 4.0 560.0 38.0 12.0 2.0 141.8 15.9 26.2 16.0 138.2 15.4 24.6 16.4

SSL-7 9.0 3.0 6.0 954.0 66.0 12.0 2.0 265.5 17.6 38.9 17.0 262.0 16.9 34.1 16.9

SSL-8 10.0 3.0 7.0 1190.0 83.0 12.0 3.0 349.5 19.8 48.2 20.7 344.1 20.3 43.3 19.2

SSL-9 11.0 3.0 8.0 1452.0 102.0 12.0 3.0 445.1 21.1 58.1 21.0 439.4 21.0 51.3 21.4

SSL-10 7.0 2.5 4.5 878.0 63.0 12.0 3.0 448.6 21.3 57.8 21.9 441.9 21.5 50.7 21.0

Avg. 6.0 2.5 3.0 572.0 40.0 12.0 2.0 184.9 16.4 30.9 16.4 182.0 16.3 28.2 16.5

number of such queries has a small effect on the run-time. Not surprisingly, then, although
the first improvement entails fewer candidate queries on average, it has only a negligible ef-
fect on run-times. The second and third improvements, on the other hand, lead to significant
reductions in overall verification time, by a factor of over 4 (AG-NC) and 11 (AG-C) on
average. Interestingly, the two improvements have different degrees of effectiveness for the
two rules. While selective membership queries (the second optimization) is more beneficial
for AG-NC, it is outclassed by assumption alphabet minimization (the third optimization)
in the case of AG-C. In the case of AG-NC it is clear that both of these optimizations help
separately, but almost cancel each other out when activated jointly. In this case the second
optimization alone or with the first one is the best strategy. In the case of AG-C, on the other
hand, the third optimization is more powerful than the second one. A more comprehensive
set of experiments is required to know if this is a general phenomenon, or just a bias of our
own benchmarks.

How do these results compare with a monolithic verification? The answer is that it de-
pends on the other optimizations that are activated. Specifically, if a partial-order reduction
is activated, then the problems become easy to solve and the learning scheme suggested here
is not helpful: a monolithic verification completes successfully in less time. If it is turned
off, then it runs out of memory when using the monolithic approach, whereas it terminates
easily with decomposition and learning, as described in this article.

7 Conclusion

We presented three optimizations to the L∗-based assume-guarantee reasoning framework,
and showed their varying (positive) effect on real benchmarks, both in the context of a
circular and a non-circular assume-guarantee rule. While the lack of a publicly available
large set of benchmarks makes it hard to estimate the robustness of the results we achieved,
the results seem to indicate that these optimizations consistently shorten the overall run time.
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