

Three optimizations for Assume–Guarantee reasoning with L^*

Sagar Chaki · Ofer Strichman

Published online: 5 December 2007
© Springer Science+Business Media, LLC 2007

Abstract The learning-based automated Assume–Guarantee reasoning paradigm has been applied in the last few years for the compositional verification of concurrent systems. Specifically, L^* has been used for learning the assumption, based on strings derived from counterexamples, which are given to it by a model-checker that attempts to verify the Assume–Guarantee rules. We suggest three optimizations to this paradigm. First, we derive from each counterexample multiple strings to L^* , rather than a single one as in previous approaches. This small improvement saves candidate queries and hence model-checking runs. Second, we observe that in existing instances of this paradigm, the learning algorithm is coupled weakly with the teacher. Thus, the learner completely ignores the details of the internal structure of the system and specification being verified, which are available already to the teacher. We suggest an optimization that uses this information in order to avoid many unnecessary membership queries (it reduces the number of such queries by more than an order of magnitude). Finally, we develop a method for minimizing the alphabet used by the assumption, which reduces the size of the assumption and the number of queries required to construct it. We present these three optimizations in the context of verifying trace containment for concurrent systems composed of finite state machines. We have implemented our approach in the COMFORT tool, and experimented with real-life examples. Our results exhibit an average speedup of between 4 to 11 times, depending on the Assume–Guarantee rule used and the set of activated optimizations.

Keywords Software verification · Compositionality · Assume–Guarantee · Learning

This research was supported by the Predictable Assembly from Certifiable Components (PACC) initiative at the Software Engineering Institute, Pittsburgh.

S. Chaki
Software Engineering Institute, Pittsburgh, USA
e-mail: chaki@sei.cmu.edu

O. Strichman (✉)
Information Systems Engineering, IE Technion, Haifa, Israel
e-mail: ofers@ie.technion.ac.il

1 Introduction

Formal reasoning about concurrent programs is particularly hard due to the number of reachable states in the overall system. In particular, the number of such states can grow exponentially with each added component. Assume–Guarantee (AG) is a method for compositional reasoning that can be helpful in such cases. Consider a system with two components M_1 and M_2 that need to synchronize on a given set of shared actions, and a property φ that the system should be verified against. In its simplest form, AG requires checking one of the components, say M_1 , separately, while making some assumption on the behaviors permitted by M_2 . The assumption should then be discharged when checking M_2 in order to conclude the conformance of the product machine with the property. This idea is formalized with the following non-circular AG rule:

$$\frac{\begin{array}{c} A \times M_1 \preceq \varphi \\ M_2 \preceq A \end{array}}{M_1 \times M_2 \preceq \varphi} \quad (\text{AG-NC}) \quad (1)$$

where \preceq stands for some conformance relation.¹ For trace containment, simulation and some other known relations, AG-NC is a sound and complete rule. In this paper, we consider the case in which M_1 , M_2 and φ are non-deterministic finite automata, and interpret \preceq as the trace containment (i.e., language inclusion) relation.

Recently, Cobleigh et al. proposed [12] a completely automatic method for finding the assumption A , using Angluin’s L^* algorithm [4]. L^* constructs a minimal Deterministic Finite Automaton (DFA) that accepts an unknown regular language U . L^* interacts iteratively with a Minimally Adequate Teacher (MAT). In each iteration, L^* queries the MAT about *membership* of strings in U and whether the language of a specific *candidate* DFA is equal to U . The MAT is expected to supply a “Yes/No” answer to both types of questions. It is also expected to provide a counterexample along with a negative answer to a question of the latter type. L^* then uses the counterexample to refine its candidate DFA while enlarging it by at least one state. L^* is guaranteed to terminate within no more than n iterations, where n is the size of the minimal DFA accepting U .

In this paper we suggest three improvements to the automated AG procedure. The first improvement is based on the observation that counterexamples can sometimes be reused in the refinement process, which saves candidate queries.

The second improvement is based on the observation that the core L^* algorithm is completely unaware of the internal details of M_1 , M_2 and φ . With a simple analysis of these automata, most queries to the MAT can in fact be avoided. Indeed, we suggest to allow the core L^* procedure access to the internal structure of M_1 , M_2 and φ . This leads to a tighter coupling between the L^* procedure and the MAT, and enables L^* to make membership queries to the MAT in a more intelligent manner. Specifically, it reduces the number of such queries by more than an order of magnitude. Answering a membership query involves a simulation of a trace on a non-deterministic state machine, and hence this optimization improves the overall performance considerably.

The last improvement is based on the observation that the alphabet of the assumption A is fixed conservatively to be the entire interface alphabet between M_1 and φ on one hand, and M_2 on the other. While the full interface alphabet is always sufficient, it is often possible to complete the verification successfully with a much smaller assumption alphabet. Since the

¹Clearly, for this rule to be effective, $A \times M_1$ must be easier to compute than $M_1 \times M_2$.

overall complexity of the procedure depends on the alphabet size, a smaller alphabet can improve the overall performance. In other words, while L^* guarantees the minimality of the learned assumption DFA with respect to a given alphabet, our improvement reduces the size of the alphabet itself, and hence is expected to also reduce the size of the learned DFA. The technique we present is based on an automated abstraction-refinement procedure: we start with the empty alphabet and keep refining it based on an analysis of the counterexamples, using a pseudo-Boolean solver. The procedure is guaranteed to terminate with a minimal assumption alphabet that suffices to complete the overall verification.

Although our optimizations are presented in the context of AG-NC, a non-circular AG rule, they are applicable for circular AG rules as well. Specifically, our tool supports the AG-C rule [6], which appears in (2). The experimental results that we present in Sect. 6 include experiments with this rule as well.

$$\frac{\begin{array}{c} M_1 \times A_1 \preceq \varphi \\ M_2 \times A_2 \preceq \varphi \\ \hline A_1 \times A_2 \preceq \varphi \end{array}}{M_1 \times M_2 \preceq \varphi} \quad (\text{AG-C}) \quad (2)$$

We implemented our approach in the COMFORT [8] reasoning framework and experimented with a set of benchmarks derived from real-life source code. The improvements reduce the overall number of queries to the MAT and the size of the learned automaton. While individual speedup factors exceeded 21, an average speedup of a factor of over 11 was observed (for the circular rule). The speedup achieved for the non-circular rule are more moderate and average about 4. Somewhat surprisingly, the relative effect of each of the optimizations change when switching from circular to non-circular rules. The detailed results and a discussion of this point appear in Sect. 6.

Related work The L^* algorithm was developed originally by Angluin [4]. Most learning-based AG implementations, including ours, use a more sophisticated version of L^* proposed by Rivest and Schapire [24]. Machine learning techniques have been used in several contexts related to verification [2, 13, 16, 17, 22]. The use of L^* for AG reasoning was first proposed by Cobleigh et al. [12]. A symbolic version of this framework has also been developed by Alur et al. [3]. The use of learning for automated AG reasoning has also been investigated in the context of simulation checking [7] and deadlock detection [9]. The circular rule AG-C described in Sect. 1 was proposed by Barringer et al. [6]. The basic idea behind the automated AG reasoning paradigm is to learn an assumption [15], using L^* , that satisfies the two premises of AG-NC. The AG paradigm was proposed in various contexts in the early eighties by Misra and Chandy [21], Jones [19] and Pnueli [23] and has since been explored (in manual/semi-automated forms) widely. The third optimization we propose amounts to a form of counterexample-guided abstraction refinement (CEGAR). The core ideas behind CEGAR were proposed originally by Kurshan [20], and CEGAR has since been used successfully for automated hardware [11] and software [5] verification. An approach similar to our third optimization was proposed independently by Gheorghiu et al. [14]. However, they use polynomial (greedy) heuristics aimed at minimizing the alphabet size, whereas we find the optimal value, and hence we solve an NP-hard problem.

The main difference of this article from its earlier proceedings version [10] is the inclusion of the circular rule AG-C (2) and the experiments with it, as well as a slower introduction to L^* and the prior work by Cobleigh et al. Due to some changes in the code, the experimental results are also somewhat different, as will be described in Sect. 6.

2 Preliminaries

Let λ and \cdot denote the empty string and the concatenation operator respectively. We use lower letters (α, β , etc.) to denote actions, and higher letters (σ, π , etc.) to denote strings.

Definition 1 (Finite Automaton) A finite automaton (FA) is a 5-tuple $(S, Init, \Sigma, T, F)$ where (i) S is a finite set of states, (ii) $Init \subseteq S$ is the set of initial states, (iii) Σ is a finite alphabet of actions, (iv) $T \subseteq S \times \Sigma \times S$ is the transition relation, and (v) $F \subseteq S$ is a set of accepting states.

For any FA $M = (S, Init, \Sigma, T, F)$, we write $s \xrightarrow{\alpha} s'$ to mean $(s, \alpha, s') \in T$. Then the function δ is defined as follows: $\forall \alpha \in \Sigma. \forall s \in S. \delta(\alpha, s) = \{s' \mid s \xrightarrow{\alpha} s'\}$. We extend δ to operate on strings and sets of states in the natural manner. Thus, for any $\sigma \in \Sigma^*$ and $S' \subseteq S$, $\delta(\sigma, S')$ denotes the set of states of M reached by simulating σ on M starting from any $s \in S'$. The language accepted by M , denoted $\mathcal{L}(M)$, is defined as follows: $\mathcal{L}(M) = \{\sigma \in \Sigma^* \mid \delta(\sigma, Init) \cap F \neq \emptyset\}$.

Determinism An FA $M = (S, Init, \Sigma, T, F)$ is said to be a deterministic FA, or DFA, if $|Init| = 1$ and $\forall \alpha \in \Sigma. \forall s \in S. |\delta(\alpha, s)| \leq 1$. Also, M is said to be complete if $\forall \alpha \in \Sigma. \forall s \in S. |\delta(\alpha, s)| \geq 1$. Thus, for a complete DFA, we have the following: $\forall \alpha \in \Sigma. \forall s \in S. |\delta(\alpha, s)| = 1$. Unless otherwise mentioned, all DFA we consider in the rest of this paper are also complete. It is well-known that a language is regular if and only if it is accepted by some FA (or DFA, since FA and DFA have the same accepting power). Also, every regular language is accepted by a unique (up to isomorphism) minimal DFA.

Complementation For any regular language L , over the alphabet Σ , we write \overline{L} to mean the language $\Sigma^* - L$. If L is regular, then so is \overline{L} . For any FA M we write \overline{M} to mean the (unique) minimal DFA accepting $\overline{\mathcal{L}(M)}$.

Projection The projection of any string σ over an alphabet Σ is denoted by $\sigma|_{\Sigma}$ and defined inductively on the structure of σ as follows: (i) $\lambda|_{\Sigma} = \lambda$, and (ii) $(\alpha \cdot \sigma')|_{\Sigma} = \alpha \cdot (\sigma'|_{\Sigma})$ if $\alpha \in \Sigma$ and $\sigma'|_{\Sigma}$ otherwise. The projection of any regular language L on an alphabet Σ is defined as: $L|_{\Sigma} = \{\sigma|_{\Sigma} \mid \sigma \in L\}$. If L is regular, so is $L|_{\Sigma}$. Finally, the projection $M|_{\Sigma}$ of any FA M on an alphabet Σ is the (unique) minimal DFA accepting the language $\mathcal{L}(M)|_{\Sigma}$.

For the purpose of modeling systems with components that need to synchronize, it is convenient to distinguish between *local* and *global* actions. Specifically, local actions belong to the alphabet of a single component, while global actions are shared between multiple components. As defined formally below, components synchronize on global actions, and execute asynchronously on local actions.

Definition 2 (Parallel Composition) Given two finite automata $M_1 = (S_1, Init_1, \Sigma_1, T_1, F_1)$ and $M_2 = (S_2, Init_2, \Sigma_2, T_2, F_2)$, their parallel composition $M_1 \times M_2$ is the FA $(S_1 \times S_2, Init_1 \times Init_2, \Sigma_1 \cup \Sigma_2, T, F_1 \times F_2)$ such that $\forall s_1, s'_1 \in S_1. \forall s_2, s'_2 \in S_2. (s_1, s_2) \xrightarrow{\alpha} (s'_1, s'_2)$ if and only if for $i \in \{1, 2\}$ either $\alpha \notin \Sigma_i \wedge s_i = s'_i$ or $s_i \xrightarrow{\alpha} s'_i$.

Trace containment For any FA M_1 and M_2 , we write $M_1 \preceq M_2$ to mean $\mathcal{L}(M_1 \times \overline{M_2}) = \emptyset$. A counterexample to $M_1 \preceq M_2$ is a string $\sigma \in \mathcal{L}(M_1 \times \overline{M_2})$.

3 The L* algorithm

The L* algorithm for learning DFAs was developed by Angluin [4] and later improved by Rivest and Schapire [24]. In essence, L* learns an unknown regular language U , over an alphabet Σ , by generating the minimal DFA that accepts U . In order to learn U , L* requires “Yes/No” answers to two types of queries:

1. *Membership query*: for a string $\sigma \in \Sigma^*$, ‘is $\sigma \in U$?’
2. *Candidate query*: for a DFA C , ‘is $\mathcal{L}(C) = U$?’

If the answer to a candidate query is “No”, L* expects a counterexample string σ such that $\sigma \in U - \mathcal{L}(C)$ or $\sigma \in \mathcal{L}(C) - U$. In the first case, we call σ a *positive counterexample*, because it should be added to $\mathcal{L}(C)$. In the second case, we call σ a *negative counterexample* since it should be removed from $\mathcal{L}(C)$. As mentioned before, L* uses the MAT to obtain answers to these queries.

Observation table L* builds an observation table (S, E, T) where: (i) $S \subseteq \Sigma^*$ is the set of rows, (ii) $E \subseteq \Sigma^*$ is the set of columns (or experiments), and (iii) $T : (S \cup S \cdot \Sigma) \times E \rightarrow \{0, 1\}$ is a function defined as follows:

$$\forall s \in (S \cup S \cdot \Sigma). \forall e \in E. T(s, e) = \begin{cases} 1, & s \cdot e \in U, \\ 0, & \text{otherwise.} \end{cases} \quad (3)$$

Consistency and closure For any $s_1, s_2 \in (S \cup S \cdot \Sigma)$, s_1 and s_2 are equivalent (denoted as $s_1 \equiv s_2$) if $\forall e \in E. T(s_1, e) = T(s_2, e)$. A table is *consistent* if $\forall s_1, s_2 \in S. s_1 \neq s_2 \Rightarrow s_1 \not\equiv s_2$. L* always maintains a consistent table. In addition, a table is *closed* if $\forall s \in S. \forall \alpha \in \Sigma. \exists s' \in S. s' \equiv s \cdot \alpha$.

Candidate construction Given a closed and consistent table (S, E, T) , L* constructs a candidate DFA $C = (S, \{\lambda\}, \Sigma, \Delta, F)$ such that: (i) $F = \{s \in S \mid T(s, \lambda) = 1\}$, and (ii) $\Delta = \{(s, \alpha, s') \mid s' \equiv s \cdot \alpha\}$. Note that C is deterministic and complete since (S, E, T) is consistent and closed. Since a row corresponds to a state of C , we use the terms “row” and “candidate state” synonymously.

Example 1 Consider Fig. 1. On the left is an observation table with the entries being the T values. In other words, the entry in the table corresponding to any row s and any experiment e denotes $T(s, e)$. Let $\Sigma = \{\alpha, \beta\}$. From this table we see that $\{e_2, \alpha, \alpha \cdot e_2, \beta \cdot e_2, \alpha\alpha, \dots\} \in U$. On the right is the corresponding candidate DFA.

		E		
		λ	e_2	e_3
S	λ	0	1	0
	α	1	1	0
$S \cdot \Sigma$	β	0	1	0
	$\alpha\alpha$	1	1	0
	$\alpha\beta$	0	1	0

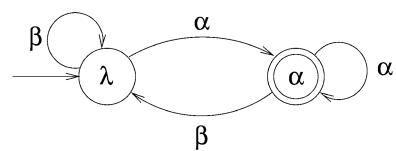


Fig. 1 An observation table and the corresponding candidate DFA

```

(1) let  $S = E = \{\lambda\}$ 
    loop {
(2)    Update  $T$  using queries
        while  $(S, E, T)$  is not closed {
(3)       Find  $(s, \alpha) \in S \times \Sigma$  such that  $\forall s' \in S. s' \not\equiv s \cdot \alpha$ 
(4)       Add  $s \cdot \alpha$  to  $S$ 
    }
(5)    Construct candidate DFA  $C$  from  $(S, E, T)$ 
(6)    Make the conjecture  $C$ 
(7)    if  $C$  is correct return  $C$ 
(8)    else Add  $e \in \Sigma^*$  that witnesses the counterexample to  $E$ 
    }

```

Fig. 2 The L^* algorithm for learning an unknown regular language

L^* step-by-step We now describe L^* in more detail, using line numbers from its algorithmic description in Fig. 2. This conventional version of L^* is used currently in the context of automated AG reasoning. We also point out the specific issues that are addressed by the improvements we propose later on in this paper. Recall that λ denotes the empty string. After the initialization at Line 1, the table has one cell corresponding to (λ, λ) . In the top-level loop, the table entries are first computed (at Line 2) using membership queries.

Next, L^* closes the table by trying to find (at Line 3) for each $s \in S$, some *uncovered* action $\alpha \in \Sigma$ such that $\forall s' \in S. s' \not\equiv s \cdot \alpha$. If such an uncovered action α is found for some $s \in S$, L^* adds $s \cdot \alpha$ to S at Line 4 and continues with the closure process. Otherwise, it proceeds to the next step. Note that each $\alpha \in \Sigma$ is considered when attempting to find an uncovered action.

Once the table is closed, L^* constructs (at Line 5) a candidate DFA C using the procedure described previously. Next, at Line 6, L^* conjectures that $\mathcal{L}(C) = U$ via a candidate query. If the conjecture is wrong L^* extracts from the counterexample CE (returned by the MAT) a suffix e that, when added to E , causes the table to cease being closed. The process of extracting the feedback e has been presented elsewhere [24] and we do not describe it here. Once e has been obtained, L^* adds e to E and iterates the top-level loop by returning to Line 2. Note that since the table is no longer closed, the subsequent process of closing it strictly increases the size of S . It can also be shown that the size of S cannot exceed n , where n is number of states of the minimal DFA accepting U . Therefore, the top-level loop of L^* executes no more than n times.

Non-uniform refinement It is interesting to note that the feedback from CE does not refine the candidate in the abstraction-refinement sense: refinement here does not necessarily add/eliminate a positive/negative CE ; this occurs eventually, but not necessarily in one step. Indeed, the first improvement we propose leverages this observation to reduce the number of candidate queries. It is also interesting to note that the refinement does not work in one direction: it may remove strings that are in U or add strings that are not in U . The only guarantee that we have is that in each step at least one state is added to the candidate and that eventually L^* learns U itself.

L^* is based on the observation that in a DFA, two reachable states s, s' are distinct (and hence cannot be combined) if and only if there exists a *distinguishing sequence* $\sigma \in \Sigma^*$ such that $\delta(\sigma, s) \in F \Leftrightarrow \delta(\sigma, s') \notin F$. Indeed, from the counterexample that it receives from a candidate query, L^* extracts a string σ that demonstrates that there exists two rows p_1, p_2

such that $\delta(p_1, q_0) = \delta(p_2, q_0) = s$ (s being a state of the current candidate automaton C), and $p_1 \cdot \sigma \in U$ whereas $p_2 \cdot \sigma \notin U$; hence, s must be split into two states. This means that at each iteration the number of states must increase by at least one, and a state once added is never removed. This property guarantees that L^* makes no more than $n - 1$ wrong conjectures, and terminates with the minimal DFA $M(U)$.

Complexity Overall, the number of membership queries made by L^* is $\mathcal{O}(kn^2 + n \log m)$, where $k = |\Sigma|$ is the size of the alphabet of U , and m is the length of the longest counterexample to a candidate query returned by the MAT [24]. The dominating fragment of this complexity is kn^2 which varies directly with the size of Σ . As noted before, the Σ used in the literature is sufficient, but often unnecessarily large. The third improvement we propose is aimed at reducing the number of membership queries by minimizing the size of Σ .

4 AG reasoning with L^*

In this section, we describe the key ideas behind the automated AG procedure proposed by Cobleigh et al. [12]. We begin with a fact that we use later on.

Fact 1 *For any FA M_1 and M_2 with alphabets Σ_1 and Σ_2 , $\mathcal{L}(M_1 \times M_2) \neq \emptyset$ if and only if $\exists \sigma \in \mathcal{L}(M_1) \cdot \sigma|_{(\Sigma_1 \cap \Sigma_2)} \in \mathcal{L}(M_2)|_{(\Sigma_1 \cap \Sigma_2)}$. Equivalently, $\mathcal{L}(M_1 \times M_2) \neq \emptyset$ if and only if $\mathcal{L}(M_1)|_{(\Sigma_1 \cap \Sigma_2)} \cap \mathcal{L}(M_2)|_{(\Sigma_1 \cap \Sigma_2)} \neq \emptyset$.*

Let us now restate AG-NC by transforming the first premise and the conclusion into checks for emptiness of certain languages. This not only reflects our implementation more accurately, but is also more helpful for understanding our choice of the unknown language U and its alphabet. Specifically, we restate AG-NC as follows:

$$\frac{\begin{array}{c} A \times (M_1 \times \bar{\varphi}) \preceq \perp \\ M_2 \preceq A \end{array}}{(M_1 \times \bar{\varphi}) \times M_2 \preceq \perp} \quad (4)$$

where \perp denotes a DFA accepting the empty language. Then, the unknown language to be learned is:

$$U = \overline{\mathcal{L}((M_1 \times \bar{\varphi})|_{\Sigma})} \quad (5)$$

over the alphabet $\Sigma = (\Sigma_1 \cup \Sigma_{\varphi}) \cap \Sigma_2$ where Σ_1 , Σ_2 and Σ_{φ} are the alphabets of M_1 , M_2 and φ respectively.² Note that U is the largest language over Σ that satisfies the first premise of AG-NC. This choice of U and Σ is significant because, by Fact 1, the consequence of (4) does not hold if and only if the intersection between $\overline{U} = \mathcal{L}((M_1 \times \bar{\varphi})|_{\Sigma})$ and $\mathcal{L}(M_2|_{\Sigma})$ is non-empty. This situation is depicted in Fig. 3(a). Hence, the selected U and Σ are crucial to argue about the completeness of AG-NC. Moreover, if A is the DFA computed by L^* such that $\mathcal{L}(A) = U$, any counterexample to the second premise $M_2 \preceq A$ is guaranteed to be a real one. However, in practice, the process terminates after learning U itself only in the worst case. As we shall see, it usually terminates earlier by finding either a counterexample to $M_1 \times M_2 \preceq \varphi$, or an assumption A that satisfies the two premises of (4). This latter case is depicted in Fig. 3(b).

²We do not compute U directly because complementing M_1 , a non-deterministic automaton, is typically intractable.

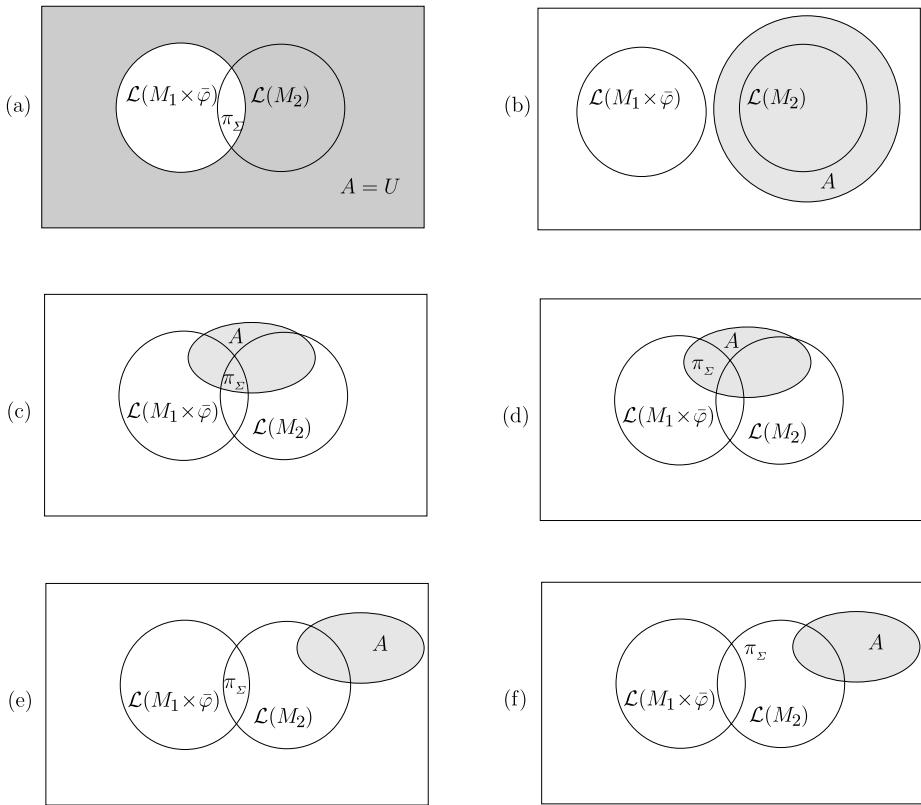


Fig. 3 Different L^* scenarios. The gray area represents the candidate assumption A

MAT implementation The answer to a membership query with a string σ is “Yes” if and only if σ cannot be simulated on $M_1 \times \bar{\varphi}$ (see (5)). This is decided via explicit-state breadth-first-search for σ in $M_1 \times \bar{\varphi}$. In fact, all simulation checks and model checking operations in our implementation are carried out using explicit-state breadth-first-search. A candidate query with some candidate A , on the other hand, is more complicated, and is now described step-wise (see also Fig. 4). From hereon we denote $\pi \downharpoonright \Sigma$ by π_Σ .

Step 1. Use model checking to verify that A satisfies the first premise of (4). If the verification of the first premise fails, obtain a counterexample trace $\pi \in \mathcal{L}(A \times M_1 \times \bar{\varphi})$ and proceed to Step 2. Otherwise, go to Step 3.

Step 2. Check via simulation if $\pi_\Sigma \in \mathcal{L}(M_2 \downharpoonright \Sigma)$. If so, then by Fact 1, $\mathcal{L}(M_1 \times \bar{\varphi} \times M_2) \neq \emptyset$ (i.e., $M_1 \times M_2 \not\preceq \varphi$) and the algorithm terminates. This situation is depicted in Fig. 3(c). Otherwise $\pi_\Sigma \in \mathcal{L}(A) - U$ is a negative counterexample, as depicted in Fig. 3(d). Control is returned to L^* with π_Σ .

Step 3. At this point A is known to satisfy the first premise. Proceed to model check the second premise. If $M_2 \preceq A$ holds as well, then by (4) conclude that $M_1 \times M_2 \preceq \varphi$ and terminate. This possibility was already shown in Fig. 3(b). Otherwise obtain a counterexample $\pi \in \mathcal{L}(M_2 \times \bar{A})$ and proceed to Step 4.

Step 4. Check if $\pi_\Sigma \in \mathcal{L}((M_1 \times \bar{\varphi}) \downharpoonright \Sigma)$. If so, then by Fact 1, $\mathcal{L}(M_1 \times \bar{\varphi} \times M_2) \neq \emptyset$ (i.e., $M_1 \times M_2 \not\preceq \varphi$) and the algorithm terminates. This scenario is depicted in Fig. 3(e). Other-

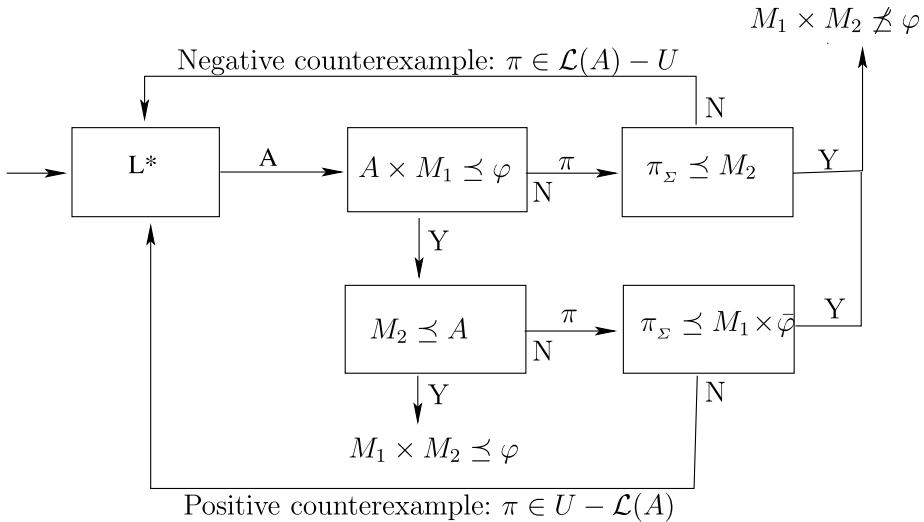


Fig. 4 AG reasoning with L^*

wise $\pi_\Sigma \in U - \mathcal{L}(A)$ is a positive counterexample, as depicted in Fig. 3(f)—return to L^* with π_Σ .

Note that Steps 2 and 4 above are duals obtained by interchanging $M_1 \times \bar{\varphi}$ with M_2 and U with $\mathcal{L}(A)$. Also, note that Fact 1 could be applied in Steps 2 and 4 above only because $\Sigma = (\Sigma_1 \cup \Sigma_\varphi) \cap \Sigma_2$. In the next section, we propose an improvement that allows Σ to be varied. Consequently, we also modify the procedure for answering candidate queries so that Fact 1 is used only in a valid manner.

5 Optimized L^* -based AG reasoning

In this section we list three improvements to the algorithm described in Sect. 4. The first two improvements reduce the number of candidate and membership queries respectively. The third improvement is aimed at completing the verification process using an assumption alphabet that is smaller than $(\Sigma_1 \cup \Sigma_\varphi) \cap \Sigma_2$.

5.1 Reusing counterexamples

Recall from Sect. 3 that every candidate query counterexample π returned to L^* is used to find a suffix that makes the table not closed, and hence adds at least one state (row) to the current candidate C (observation table). Let C' denote the new candidate constructed in the next iteration of the top-level loop (see Fig. 2). We say that C' is obtained by refining C on π . However, the refinement process does not guarantee the addition/elimination of a positive/negative counterexample from C' . Thus, a negative counterexample $\pi \in L(C) - U$ may still be accepted by C' , and a positive counterexample $\pi \in U - L(C)$ may still be rejected by C' . This leads naturally to the idea of reusing counterexamples. Specifically, for every candidate C' obtained by refining on a negative counterexample π , we check, via simulation, whether $\pi \in \mathcal{L}(C')$. If this is the case, we repeat the refinement process on C'

using π instead of performing a candidate query with C' . The same idea is applied to positive counterexamples as well. Thus, if we find that $\pi \notin \mathcal{L}(C')$ for a positive counterexample π , then π is used to further refine C' . This optimization reduces the number of candidate queries.

5.2 Selective membership queries

Recall the operation of closing the table (see Lines 3 and 4 of Fig. 2) in L^* . For every row s added to S , L^* must compute T for every possible extension of s by a single action. Thus L^* must decide if $s \cdot \alpha \cdot e \in U$ for each $\alpha \in \Sigma$ and $e \in E$ —a total of $|\Sigma| \cdot |E|$ membership queries. To see how a membership query is answered, for any $\sigma \in \Sigma^*$, let $Sim(\sigma)$ be the set of states of $M_1 \times \bar{\varphi}$ reached by simulating σ from an initial state of $M_1 \times \bar{\varphi}$ and by treating actions not in Σ as ϵ (i.e., ϵ -transitions are allowed where the actions are local to $M_1 \times \bar{\varphi}$). Then, $\sigma \in U$ if and only if $Sim(\sigma)$ does not contain an accepting state of $M_1 \times \bar{\varphi}$.

Let us return to the problem of deciding if $s \cdot \alpha \cdot e \in U$. Let $En(s) = \{\alpha' \in \Sigma \mid \delta(\alpha', Sim(s)) \neq \emptyset\}$ be the set of enabled actions from $Sim(s)$ in $M_1 \times \bar{\varphi}$. Now, for any $\alpha \notin En(s)$, $Sim(s \cdot \alpha \cdot e) = \emptyset$ and hence $s \cdot \alpha \cdot e$ is guaranteed to belong to U . This observation leads to our second improvement. Specifically, for every s added to S , we first compute $En(s)$. Note that $En(s)$ is computed by simulating $s|_{\Sigma_1}$ on M_1 and $s|_{\Sigma_\varphi}$ on $\bar{\varphi}$ separately, without composing M_1 and $\bar{\varphi}$. We then make membership queries with $s \cdot \alpha \cdot e$, but only for $\alpha \in En(s)$. For all $\alpha \notin En(s)$ we directly set $T(s \cdot \alpha, e) = 1$ since we know that in this case $s \cdot \alpha \cdot e \in U$. The motivation behind this optimization is that $En(s)$ is usually much smaller than Σ for any s . The actual improvement in performance due to this tactic depends on the relative sizes of $En(s)$ and Σ for the different $s \in S$.

5.3 Minimizing the assumption alphabet

As mentioned before, existing automated AG procedures use a constant assumption alphabet $\Sigma = (\Sigma_1 \cup \Sigma_\varphi) \cap \Sigma_2$. There may exist, however, an assumption A over a smaller alphabet $\Sigma_C \subset \Sigma$ that satisfies the two premises of (4). Since (4) is sound, the existence of such an A would still imply that $M_1 \times M_2 \preceq \varphi$. However, recall that the number of L^* membership queries varies directly with the alphabet size. Therefore, the benefit, in the context of learning A , is that a smaller alphabet leads to fewer membership queries.³

In this section, we propose an abstraction-refinement scheme for building an assumption over a minimal alphabet. The main problem with changing Σ is of course that AG-NC is no longer complete. Specifically, if $\Sigma_C \subset \Sigma$, then there might not exist any assumption A over Σ_C that satisfies the two premises of AG-NC even though the conclusion of AG-NC holds. The following theorem characterizes this phenomenon precisely.

Theorem 1 (Incompleteness of AG-NC) *Suppose there exists a string π and an alphabet Σ_C that maintains the following condition:*

$$(\text{INC}) \quad \pi|_{\Sigma_C} \in \mathcal{L}((M_1 \times \bar{\varphi})|_{\Sigma_C}) \cap \mathcal{L}(M_2|_{\Sigma_C}). \quad (6)$$

Then no assumption A over Σ_C satisfies the two premises of AG-NC.

³There is no guarantee as to the size of the learned assumption, however. A smaller alphabet can also result in a bigger assumption.

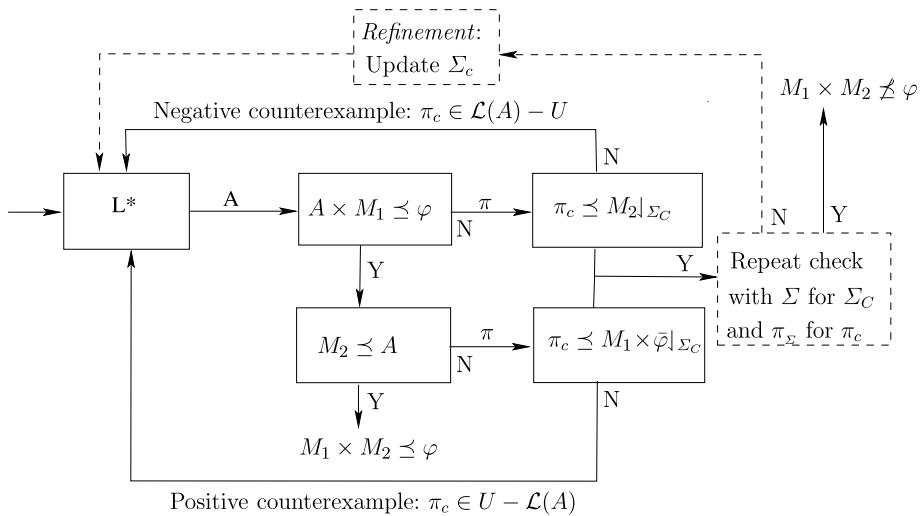


Fig. 5 Generalized AG with L^* , with an abstraction-refinement loop (added with *dashed lines*) based on the assumption alphabet $\Sigma_C \subseteq \Sigma$. Strings π_c and π_Σ denote $\pi \upharpoonright \Sigma_C$ and $\pi \upharpoonright \Sigma$ respectively

Proof Suppose that there exists a π satisfying INC and an A over Σ_C satisfying the two premises of AG-NC. This leads to a contradiction as follows:

- *Case 1:* $\pi \upharpoonright \Sigma_C \in \mathcal{L}(A)$. Since A satisfies the first premise of AG-NC, we have $\pi \upharpoonright \Sigma_C \notin \mathcal{L}((M_1 \times \bar{\varphi}) \upharpoonright \Sigma_C)$, a contradiction with INC.
- *Case 2:* $\pi \upharpoonright \Sigma_C \notin \mathcal{L}(A)$. Hence $\pi \upharpoonright \Sigma_C \in \mathcal{L}(\bar{A})$. Since A satisfies the second premise of AG-NC, we have $\pi \upharpoonright \Sigma_C \notin \mathcal{L}(M_2 \upharpoonright \Sigma_C)$, again contradicting INC. \square

We say that an alphabet Σ_C is incomplete if $\Sigma_C \neq \Sigma$ and there exists a trace π satisfying condition INC above. Therefore, whenever we come across a trace π that satisfies INC, unless $\Sigma_C = \Sigma$, we know that the current Σ_C is incomplete and must be refined. We now describe our overall procedure which incorporates testing Σ_C for incompleteness and refining an incomplete Σ_C appropriately. After each update of Σ_C , we restart L^* from scratch.⁴

Detecting incompleteness Our optimized automated AG procedure is depicted in Fig. 5. Initially $\Sigma_C = \emptyset$.⁵ Let us write π_c and π_Σ to mean $\pi \upharpoonright \Sigma_C$ and $\pi \upharpoonright \Sigma$ respectively. The process continues as in Sect. 4, until one of the following two scenarios occur while answering a candidate query:

- *Scenario 1:* We reach Step 2 with a trace $\pi \in \mathcal{L}(A \times M_1 \times \bar{\varphi})$. Note that this implies $\pi_c \in \mathcal{L}((M_1 \times \bar{\varphi}) \upharpoonright \Sigma_C)$. Now we first check if $\pi_c \in \mathcal{L}(M_2 \upharpoonright \Sigma_C)$. If not, we return π_c as a negative counterexample to L^* exactly as in Sect. 4. However, if $\pi_c \in \mathcal{L}(M_2 \upharpoonright \Sigma_C)$, then π satisfies the condition INC of Theorem 1, and hence Σ_C is incomplete. Instead of refining Σ_C at this point, we first check if $\pi_\Sigma \in \mathcal{L}(M_2 \upharpoonright \Sigma)$. If so, then as in Sect. 4, by

⁴It is possible to reuse some of the previous results from the MAT, but we leave this for future work.

⁵We could also start with $\Sigma_C = \Sigma_\varphi$ since it is very unlikely that φ can be proven or disproven without controlling the actions that define it.

a valid application of Fact 1, $M_1 \times M_2 \not\preceq \varphi$ and the algorithm terminates. Otherwise, if $\pi_\Sigma \notin \mathcal{L}(M_2 \upharpoonright \Sigma)$, we refine Σ_C .

- *Scenario 2:* We reach Step 4 with $\pi \in \mathcal{L}(M_2 \times \bar{A})$. Note that this implies $\pi_c \in \mathcal{L}(M_2 \upharpoonright \Sigma_C)$. We first check if $\pi_c \in \mathcal{L}((M_1 \times \bar{\varphi}) \upharpoonright \Sigma_C)$. If not, we return π_c as a positive counterexample to L^* exactly as in Sect. 4. However, if $\pi_c \in \mathcal{L}((M_1 \times \bar{\varphi}) \upharpoonright \Sigma_C)$, then π satisfies INC, and hence by Theorem 1, Σ_C is incomplete. Instead of refining Σ_C at this point, we first check if $\pi_\Sigma \in \mathcal{L}((M_1 \times \bar{\varphi}) \upharpoonright \Sigma)$. If so, then as in Sect. 4, by a valid application of Fact 1, $M_1 \times M_2 \not\preceq \varphi$ and we terminate. Otherwise, if $\pi_\Sigma \notin \mathcal{L}((M_1 \times \bar{\varphi}) \upharpoonright \Sigma)$, we refine Σ_C .

Note that the checks involving π_Σ in the two scenarios above correspond to the concretization attempts in a standard CEGAR loop. Also, Scenarios 1 and 2 are duals (as in the case of Steps 2 and 4 in Sect. 4) obtained by interchanging $M_1 \times \bar{\varphi}$ with M_2 and U with $\mathcal{L}(A)$. In essence, while solving a candidate query, an incomplete Σ_C results in a trace (specifically, π above) that satisfies INC and leads neither to an actual counterexample of $M_1 \times M_2 \preceq \varphi$, nor to a counterexample to the candidate query being solved. In accordance with the CEGAR terminology, we refer to such traces as *spurious* counterexamples and use them collectively to refine Σ_C as described next. In the rest of this section, all counterexamples we mention are spurious unless otherwise specified.

Refining the assumption alphabet A counterexample arising from Scenario 1 above is said to be negative. Otherwise, it arises from Scenario 2 and is said to be positive. Our description that follows unifies the treatment of these two types of counterexamples, with the help of a common notation for $M_1 \times \bar{\varphi}$ and M_2 . Specifically, let

$$M^{(\pi)} = \begin{cases} M_1 \times \bar{\varphi}, & \pi \text{ is positive,} \\ M_2, & \pi \text{ is negative.} \end{cases} \quad (7)$$

We say that an alphabet Σ' eliminates a counterexample π , and denote this with $\text{Elim}(\pi, \Sigma')$, if $\pi \upharpoonright \Sigma' \notin \mathcal{L}(M^{(\pi)} \upharpoonright \Sigma')$. Therefore, any counterexample π is eliminated if we choose Σ_C such that $\text{Elim}(\pi, \Sigma_C)$ holds since π no longer satisfies the condition INC. Our goal, however, is to find a minimal alphabet Σ_C with this property. It turns out that finding such an alphabet is computationally hard.

Theorem 2 *Finding a minimal eliminating alphabet is NP-hard in $|\Sigma|$.*

Proof The proof relies on a reduction from the minimal hitting set problem.

Minimal hitting set A Minimal Hitting Set (MHS) problem is a pair (U, T) where U is a finite set and $T \subseteq 2^U$ is a finite set of subsets of U . A solution to (U, T) is a minimal $X \subseteq U$ such that $\forall T' \in T \cdot X \cap T' \neq \emptyset$. It is well-known that MHS is NP-complete in $|U|$ (see [18] for a discussion on complexity and approximations to this problem).

Now we reduce MHS to finding a minimal eliminating alphabet. Let (U, T) be any MHS problem and let $<$ be a strict order imposed on the elements of U . Consider the following problem \mathcal{P} of finding a minimal eliminating alphabet. First, let $\Sigma = U$. Next, for each $T' \in T$ we introduce a counterexample $\pi(T')$ obtained by arranging the elements of U according to $<$, repeating each element of T' twice and the remaining elements of U just once. For example suppose $U = \{a, b, c, d, e\}$ such that $a < b < c < d < e$. Then for $T' = \{b, d, e\}$ we introduce the counterexample $\pi(T') = a \cdot b \cdot b \cdot c \cdot d \cdot d \cdot e \cdot e$. Also, for each counterexample

$\pi(T')$ introduced, let $M(\pi(T'))$ accept a single string obtained by arranging the elements of U according to $<$, repeating each element of U just once. Thus, for the example U above, $M(\pi(T'))$ accepts the single string $a \cdot b \cdot c \cdot d \cdot e$.

Let us first show the following result: for any $T' \in T$ and any $X \subseteq U$, $X \cap T' \neq \emptyset$ if and only if $\text{Elim}(\pi(T'), X)$. In other words, $X \cap T' \neq \emptyset$ if and only if $\pi(T')|_X \notin \mathcal{L}(M(\pi(T'))|_X)$. Indeed suppose that some $\alpha \in X \cap T'$. Then $\pi(T')|_X$ contains two consecutive occurrences of α and hence cannot be accepted by $M(\pi(T'))|_X$. By the converse implication, if $M(\pi(T'))|_X$ does not accept $\pi(T')|_X$, then $\pi(T')|_X$ must contain two consecutive occurrences of some action α . But then $\alpha \in X \cap T'$ and hence $X \cap T' \neq \emptyset$. The above result implies immediately that any solution to the MHS problem (U, T) is also a minimal eliminating alphabet for \mathcal{P} . Also, the reduction from (U, T) to \mathcal{P} described above can be performed using logarithmic space in $|U| + |T|$. Finally, $|\Sigma| = |U|$, which completes our proof. \square

As we just proved, finding the minimal eliminating alphabet is NP-hard in $|\Sigma|$. Yet, since $|\Sigma|$ is relatively small, this problem can still be feasible in practice (as our experiments have shown: see Sect. 6). We propose a solution based on a reduction to Pseudo-Boolean constraints. Pseudo-Boolean constraints have the same modeling power as 0–1 ILP, but solvers for this logic are typically based on adapting SAT engines for linear constraints over Boolean variables, and geared towards problems with relatively few linear constraints (and a linear objective function) and constraints in CNF.

Optimal refinement Let Π be the set of all (positive and negative) counterexamples seen so far. We wish to find a minimal Σ_C such that: $\forall \pi \in \Pi. \text{Elim}(\pi, \Sigma_C)$. To this end, we formulate and solve a Pseudo-Boolean constraint problem with an objective function stating that we seek a solution which minimizes the chosen set of actions. The set of constraints of the problem is $\Phi = \bigcup_{\pi \in \Pi} \Phi(\pi)$. In essence, if $M^{[\pi]}$ is the minimal DFA accepting $\{\pi\}$, then $\Phi(\pi)$ represents symbolically the states reachable in $M^{[\pi]} \times M^{(\pi)}$, taking into account all possible values of Σ_C . Henceforth, we continue to use square brackets when referring to elements of $M^{[\pi]}$, and regular parenthesis when referring to elements of $M^{(\pi)}$.

We now define $\Phi(\pi)$ formally. Let

$$M^{[\pi]} = (S^{[\pi]}, \text{Init}^{[\pi]}, \Sigma^{[\pi]}, T^{[\pi]}, F^{[\pi]}) \quad (8)$$

and

$$M^{(\pi)} = (S^{(\pi)}, \text{Init}^{(\pi)}, \Sigma^{(\pi)}, T^{(\pi)}, F^{(\pi)}). \quad (9)$$

Let $\delta^{[\pi]}$ and $\delta^{(\pi)}$ be the δ functions of $M^{[\pi]}$ and $M^{(\pi)}$ respectively. We define a state variable of the form (s, t) for each $s \in S^{[\pi]}$ and $t \in S^{(\pi)}$. Intuitively, the variable (s, t) indicates whether the product state (s, t) is reachable in $M^{[\pi]} \times M^{(\pi)}$. We also define a choice variable $s(\alpha)$ for each action $\alpha \in \Sigma$, indicating whether α is selected to be included in Σ_C . Now, $\Phi(\pi)$ consists of the following clauses:

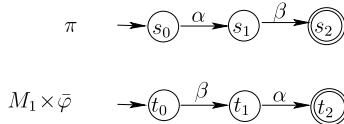
Initialization and acceptance: Every initial and no accepting state is reachable:

$$\forall s \in \text{Init}^{[\pi]}. \forall t \in \text{Init}^{(\pi)}. (s, t), \quad \forall s \in F^{[\pi]}. \forall t \in F^{(\pi)}. \neg(s, t). \quad (10)$$

Shared actions: Successors depend on whether an action is selected or not:

$$\begin{aligned} \forall \alpha \in \Sigma. \forall s \in S^{[\pi]}. \forall s' \in \delta^{[\pi]}(\alpha, s). \forall t \in S^{(\pi)}. \forall t' \in \delta^{(\pi)}(\alpha, t). (s, t) \Rightarrow (s', t') \\ \forall \alpha \in \Sigma. \forall s \in S^{[\pi]}. \forall s' \in \delta^{[\pi]}(\alpha, s). \forall t \in S^{(\pi)}. \neg s(\alpha) \wedge (s, t) \Rightarrow (s', t) \\ \forall \alpha \in \Sigma. \forall s \in S^{[\pi]}. \forall t \in S^{(\pi)}. \forall t' \in \delta^{(\pi)}(\alpha, t). \neg s(\alpha) \wedge (s, t) \Rightarrow (s, t') \end{aligned} \quad (11)$$

Fig. 6 A positive counterexample π and $M^{(\pi)} = M_1 \times \bar{\varphi}$



Local actions: Asynchronous interleaving:

$$\begin{aligned} \forall \alpha \in \Sigma^{[\pi]} - \Sigma. \forall s \in S^{[\pi]}. \forall s' \in \delta^{[\pi]}(\alpha, s). \forall t \in S^{(\pi)}. (s, t) \Rightarrow (s', t) \\ \forall \alpha \in \Sigma^{(\pi)} - \Sigma. \forall s \in S^{[\pi]}. \forall t \in S^{(\pi)}. \forall t' \in \delta^{(\pi)}(\alpha, t). (s, t) \Rightarrow (s, t') \end{aligned} \quad (12)$$

As mentioned before, the global set of constraints Φ is obtained by collecting together the constraints in each $\Phi(\pi)$. Observe that any solution v to Φ has the following property. Let $\Sigma_C = \{\alpha \mid v(s(\alpha)) = 1\}$. Then we have $\forall \pi \in \Pi. \mathcal{L}((M^{[\pi]})_{\Sigma_C}) \times (M^{(\pi)}|_{\Sigma_C})) = \emptyset$. But since $\mathcal{L}(M^{[\pi]}) = \{\pi\}$, the above statement is equivalent to $\forall \pi \in \Pi. (\pi|_{\Sigma_C}) \notin \mathcal{L}(M^{(\pi)}|_{\Sigma_C})$, which is further equivalent to $\forall \pi \in \Pi. \text{Elim}(\pi, \Sigma_C)$. Thus, Σ_C eliminates all counterexamples. Finally, since we want the minimal such Σ_C , we minimize the number of chosen actions via the following objective function:

$$\min \sum_{\alpha \in \Sigma} s(\alpha). \quad (13)$$

Example 2 Consider Fig. 6, in which there is one counterexample π , and an FA $M^{(\pi)} = M_1 \times \bar{\varphi}$ on which π can be simulated if $\Sigma_C = \emptyset$. The state variables are (s_i, t_j) for $i, j \in [0..2]$ and the choice variables are $s(\alpha), s(\beta)$. The constraints are:

$$\begin{aligned} \text{Initialization: } & (s_0, t_0) \\ \text{Acceptance: } & \neg(s_2, t_2) \\ \text{Shared Actions: } & (s_0, t_1) \rightarrow (s_1, t_2) \quad (s_1, t_0) \rightarrow (s_2, t_1) \\ & (s_0, t_0) \wedge \neg s(\alpha) \rightarrow (s_1, t_0) \quad (s_1, t_0) \wedge \neg s(\beta) \rightarrow (s_2, t_0) \\ & (s_0, t_1) \wedge \neg s(\alpha) \rightarrow (s_1, t_1) \quad (s_1, t_1) \wedge \neg s(\beta) \rightarrow (s_2, t_1) \\ & (s_0, t_2) \wedge \neg s(\alpha) \rightarrow (s_1, t_2) \quad (s_1, t_2) \wedge \neg s(\beta) \rightarrow (s_2, t_2) \\ & (s_0, t_0) \wedge \neg s(\beta) \rightarrow (s_0, t_1) \quad (s_0, t_1) \wedge \neg s(\alpha) \rightarrow (s_0, t_2) \\ & (s_1, t_0) \wedge \neg s(\beta) \rightarrow (s_1, t_1) \quad (s_1, t_1) \wedge \neg s(\alpha) \rightarrow (s_1, t_2) \\ & (s_2, t_0) \wedge \neg s(\beta) \rightarrow (s_2, t_1) \quad (s_2, t_1) \wedge \neg s(\alpha) \rightarrow (s_2, t_2) \end{aligned}$$

Since there are no local actions, these are all the constraints. The objective is to minimize $s(\alpha) + s(\beta)$. The optimal solution is $s(\alpha) = s(\beta) = 1$, corresponding to the fact that both actions need to be in Σ_C in order to eliminate π .

6 Experiments

We implemented our technique in COMFORT [8] and experimented with a set of benchmarks derived from real-life source code. All our experiments were carried out on quad 2.4 GHz machine with 4 GB RAM running RedHat Linux 9. We used PBS version 2.1 [1] to solve the Pseudo-Boolean constraints. The benchmarks were derived from the source code

of OpenSSL version 0.9.6c. Specifically, we used the code that implements the handshake between a client and a server at the beginning of an SSL session. The client and server each consists of about 2500 lines of C code. We designed a suite of 10 examples, each focusing on a different property (involving a sequence of message-passing events) that a correct handshake should exhibit. For instance, the first example (SSL-1) was aimed at verifying that a handshake is always initiated by a client and never by a server. Thus, the model is the same for each example, but the property is different.

The first set of experiments were aimed at evaluating our proposed improvements separately, and in conjunction with each other in the context of AG-NC. We also performed a second set of experiments using the same improvements and benchmarks set, but in the context of the circular AG rule AG-C (equation (2)). The results for the two rules are described in Tables 1 and 2 respectively.⁶ The columns labeled with T_i and $\neg T_i$ contain results with/without the i th improvement for $i \in \{1, 2, 3\}$. The row labeled “Avg.” contains the arithmetic mean for the rest of the column. Best figures are boldfaced. Note that entries under the Membership queries and Candidate queries are fractional since they represent the average over the four possible values of the remaining two improvements. Specifically, these are improvements 2 and 3 for Candidate queries, and improvements 1 and 3 for Membership queries. Similarly, the entries under “CE Reuse” denote the average for the four possible values of improvements 2 and 3 for the number of times a counterexample is reused via the application of the first improvement.⁷

We observe that the improvements lead to the expected results in terms of reducing the number of queries and the size of assumption alphabets. It turns out that with these benchmarks the time of each candidate query is a fraction of a second, and hence reducing the

Table 1 Experimental results for the non-circular rule AG-NC (see (1))

Name	Cand. queries	CE Reuse	Memb. queries	$ \Sigma $	(Time) $\neg T_1$				(Time) T_1						
					$\neg T_2$		T_2		$\neg T_2$		T_2				
					$\neg T_3$	T_3	$\neg T_3$	T_3	$\neg T_3$	T_3	$\neg T_3$	T_3			
SSL-1	2.0	2.0	0.0	37.5	4.0	12.0	1.0	27.2	23.7	23.2	23.4	27.8	24.0	23.4	24.6
SSL-2	5.8	5.2	0.5	99.2	13.0	12.0	4.0	38.5	45.4	25.5	35.6	37.1	43.6	25.7	38.3
SSL-3	7.5	6.5	1.0	163.0	22.0	12.0	4.0	52.3	56.2	27.3	40.8	50.2	55.6	27.4	41.8
SSL-4	12.5	8.5	3.0	265.2	44.5	12.0	4.0	71.0	96.6	30.2	63.2	69.2	77.3	29.1	66.5
SSL-5	3.0	2.5	0.5	73.0	7.5	12.0	1.0	40.0	26.8	27.1	25.9	39.5	26.6	25.3	26.6
SSL-6	6.5	4.5	2.0	252.0	26.0	12.0	2.0	113.0	49.1	33.2	34.1	110.7	35.5	31.8	44.2
SSL-7	8.0	5.0	2.5	331.5	34.8	12.0	2.0	155.3	59.1	39.2	45.7	151.4	42.2	35.8	51.5
SSL-8	12.0	8.5	3.5	448.5	52.0	12.0	3.0	202.6	102.7	44.1	70.8	197.8	83.5	41.6	87.0
SSL-9	14.2	10.2	4.2	562.5	64.8	12.0	3.0	258.3	125.6	50.7	102.4	254.4	127.0	47.0	106.0
SSL-10	16.8	13.2	4.0	676.8	77.8	12.0	3.0	325.0	182.6	58.0	155.3	319.4	189.9	51.8	161.4
Avg.	8.2	6.5	1.5	290.5	34.2	12.0	2.0	128.3	76.8	35.9	59.7	125.7	70.5	33.9	64.8

⁶These results are somewhat different than what we published in the early proceedings version [10], due to various changes in the code.

⁷This table is not always equivalent to the difference between the second and third columns, because reusing a counterexample possibly implies a different sequence of suffixes and consequently a different sequence of candidates. Since the final automaton is not fixed (due to early termination), it may even lead to a different automaton, although in our experiments it rarely happened.

Table 2 Experimental results for the circular rule AG-C (see (2))

Name	Cand.	CE	Memb.	Σ	(Time) $\neg T_1$				(Time) T_1						
					$\neg T_2$		T_2		$\neg T_2$		T_2				
					$\neg T_3$	T_3	$\neg T_3$	T_3	$\neg T_3$	T_3	$\neg T_3$	T_3			
SSL-1	3.0	3.0	0.0	84.0	6.0	12.0	1.0	19.5	12.0	12.9	12.1	20.0	12.2	13.9	12.4
SSL-2	3.0	2.5	0.5	90.0	7.0	12.0	4.0	29.7	14.0	14.9	13.6	29.1	13.7	14.6	14.3
SSL-3	3.5	2.5	1.0	143.0	10.5	12.0	4.0	45.9	14.2	16.6	14.3	43.8	14.6	16.4	15.1
SSL-4	4.0	2.5	1.5	209.0	15.0	12.0	4.0	67.7	16.1	20.2	14.7	66.6	15.1	19.0	15.1
SSL-5	4.0	3.0	1.0	164.0	11.0	12.0	1.0	35.6	12.6	15.2	12.9	34.9	12.2	14.3	13.1
SSL-6	7.0	3.0	4.0	560.0	38.0	12.0	2.0	141.8	15.9	26.2	16.0	138.2	15.4	24.6	16.4
SSL-7	9.0	3.0	6.0	954.0	66.0	12.0	2.0	265.5	17.6	38.9	17.0	262.0	16.9	34.1	16.9
SSL-8	10.0	3.0	7.0	1190.0	83.0	12.0	3.0	349.5	19.8	48.2	20.7	344.1	20.3	43.3	19.2
SSL-9	11.0	3.0	8.0	1452.0	102.0	12.0	3.0	445.1	21.1	58.1	21.0	439.4	21.0	51.3	21.4
SSL-10	7.0	2.5	4.5	878.0	63.0	12.0	3.0	448.6	21.3	57.8	21.9	441.9	21.5	50.7	21.0
Avg.	6.0	2.5	3.0	572.0	40.0	12.0	2.0	184.9	16.4	30.9	16.4	182.0	16.3	28.2	16.5

number of such queries has a small effect on the run-time. Not surprisingly, then, although the first improvement entails fewer candidate queries on average, it has only a negligible effect on run-times. The second and third improvements, on the other hand, lead to significant reductions in overall verification time, by a factor of over 4 (AG-NC) and 11 (AG-C) on average. Interestingly, the two improvements have different degrees of effectiveness for the two rules. While selective membership queries (the second optimization) is more beneficial for AG-NC, it is outclassed by assumption alphabet minimization (the third optimization) in the case of AG-C. In the case of AG-NC it is clear that both of these optimizations help separately, but almost cancel each other out when activated jointly. In this case the second optimization alone or with the first one is the best strategy. In the case of AG-C, on the other hand, the third optimization is more powerful than the second one. A more comprehensive set of experiments is required to know if this is a general phenomenon, or just a bias of our own benchmarks.

How do these results compare with a monolithic verification? The answer is that it depends on the other optimizations that are activated. Specifically, if a partial-order reduction is activated, then the problems become easy to solve and the learning scheme suggested here is not helpful: a monolithic verification completes successfully in less time. If it is turned off, then it runs out of memory when using the monolithic approach, whereas it terminates easily with decomposition and learning, as described in this article.

7 Conclusion

We presented three optimizations to the L*-based assume-guarantee reasoning framework, and showed their varying (positive) effect on real benchmarks, both in the context of a circular and a non-circular assume-guarantee rule. While the lack of a publicly available large set of benchmarks makes it hard to estimate the robustness of the results we achieved, the results seem to indicate that these optimizations consistently shorten the overall run time.

References

1. Aloul F, Ramani A, Markov I, Sakallah K (2002) PBS: A backtrack search pseudo-boolean solver and optimizer. In: Proceedings of the 5th international symposium on the theory and applications of satisfiability testing (SAT '02), Cincinnati, OH, May 6–9, 2002. University of Cincinnati, Cincinnati, pp 346–353. <http://gauss.eecs.uc.edu/Conferences/SAT2002/sat2002list.html>
2. Alur R, Cerny P, Gupta G, Madhusudan P, Nam W, Srivastava A (2005) Synthesis of interface specifications for Java classes. In: Palsberg J, Abadi M (eds) Popl05, Long Beach, CA, January 12–14, 2005. Association for Computing Machinery, New York, pp 98–109
3. Alur R, Madhusudan P, Nam W (2005) Symbolic compositional verification by learning assumptions. In: Etessami K, Rajamani SK (eds) Proceedings of the 17th international conference on computer aided verification (CAV '05), Edinburgh, Scotland, July 6–10, 2005. Lecture notes in computer science, vol 3576. Springer, New York, pp 548–562
4. Angluin D (1987) Learning regular sets from queries and counterexamples. *Inf Comput* 75(2):87–106
5. Ball T, Rajamani SK (2002) Generating abstract explanations of spurious counterexamples in C programs. Technical report MSR-TR-2002-09, Microsoft Research, Redmond, Washington, USA, January 2002
6. Barringer H, Giannakopoulou D, Păsăreanu CS (2003) Proof rules for automated compositional verification. In: Proceedings of the 2nd workshop on specification and verification of component based systems (SAVCBS '03), Helsinki, Finland, September 1–2, 2003. Iowa State University, Ames, pp 14–21
7. Chaki S, Clarke EM, Sinha N, Thati P (2005) Automated Assume–Guarantee reasoning for simulation conformance. In: Etessami K, Rajamani SK (eds) Proceedings of the 17th international conference on computer aided verification (CAV '05), Edinburgh, Scotland, July 6–10, 2005. Lecture notes in computer science, vol 3576. Springer, Berlin, pp 534–547
8. Chaki S, Ivers J, Sharygina N, Wallnau K (2005) The ComFoRT reasoning framework. In: Etessami K, Rajamani SK (eds) Proceedings of the 17th international conference on computer aided verification (CAV '05), Edinburgh, Scotland, July 6–10, 2005. Lecture notes in computer science, vol 3576. Springer, New York, pp 164–169
9. Chaki S, Sinha N (2006) Assume–Guarantee reasoning for deadlock. In: Proc. of FMCAD, 2006
10. Chaki S, Strichman O (2006) Optimized L^* for Assume–Guarantee reasoning. In: Grumberg O, Huth M (eds) Proceedings of the 13th international conference on tools and algorithms for the construction and analysis of systems (TACAS '07), Braga, Portugal, March 24–April 1, 2007. Lecture notes in computer science, vol 4424. Springer, New York, pp 276–291
11. Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2003) Counterexample-guided abstraction refinement for symbolic model checking. *J Assoc Comput Mach* 50(5):752–794
12. Cobleigh JM, Giannakopoulou D, Păsăreanu CS (2003) Learning assumptions for compositional verification. In: Garavel H, Hatcliff J (eds) Proceedings of the 9th international conference on tools and algorithms for the construction and analysis of systems (TACAS '03), Warsaw, Poland, April 7–11, 2003. Lecture notes in computer science, vol 2619. Springer, New York, pp 331–346
13. Ernst MD, Cockrell J, Griswold WG, Notkin D (1999) Dynamically discovering likely program invariants to support program evolution. In: Proceedings of the 21st international conference on software engineering (ICSE '99), Los Angeles, CA, May 1999. IEEE Computer Society, Los Alamitos, pp 213–224
14. Gheorghiu M, Giannakopoulou D, Păsăreanu CS (2007) Refining interface alphabets for compositional verification. In: Grumberg O, Huth M (eds) Proceedings of the 13th international conference on tools and algorithms for the construction and analysis of systems (TACAS '07), Braga, Portugal, March 24–April 1, 2007. Lecture notes in computer science, vol 4424. Springer, New York, pp 292–307
15. Giannakopoulou D, Păsăreanu CS, Barringer H (2002) Assumption generation for software component verification. In: Proceedings of the 17th international conference on automated software engineering (ASE '02), Edinburgh, Scotland, September 23–27, 2002. IEEE Computer Society, Los Alamitos, pp 3–12
16. Groce A, Peled D, Yannakakis M (2002) Adaptive model checking. In: Katoen J-P, Stevens P (eds) Proceedings of the eighth international conference on tools and algorithms for the construction and analysis of systems (TACAS '02), Grenoble, France, April 8–12, 2002. Lecture notes in computer science, vol 2280. Springer, New York, pp 357–370
17. Habermehl P, Vojnar T (2005) Regular model checking using inference of regular languages. In: Proceedings of the 6th international workshop on verification of infinite-state systems (INFINITY '04). Electronic notes in theoretical computer science, vol 138(3), pp 21–36
18. Johnson D (1974) Approximation algorithms for combinatorial problems. *J Comput Syst Sci* 9(3):256–278

19. Jones CB (1983) Specification and design of (parallel) programs. In: Mason REA (ed) Proceedings of the 9th IFIP world congress. Information Processing, vol 83, Paris, France, September 1983, pp 321–332
20. Kurshan RP (1994) Computer-aided verification of coordinating processes: the automata-theoretic approach. Princeton University Press, Princeton
21. Misra J, Chandy KM (1981) Proofs of networks of processes. *IEEE Trans Soft Eng* 7(4):417–426
22. Peled D, Vardi MY, Yannakakis M (1999) Black box checking. In: Wu J, Chanson ST, Gao Q (eds) Proceedings of the joint international conference on formal description techniques for distributed systems and communication protocols (FORTE '99), Beijing, China, October 1999. IFIP conference proceedings, vol 156. Kluwer Academic, Dordrecht, pp 225–240
23. Pnueli A (1985) In transition from global to modular temporal reasoning about programs. *Logics Models Concurr Syst* 13:123–144
24. Rivest RL, Schapire RE (1993) Inference of finite automata using homing sequences. *Inf Comput* 103(2):299–347