
Efficient MUS Extraction with Resolution
Alexander Nadel1, Vadim Ryvchin1,2, Ofer Strichman2

1Intel Corporation, P.O. Box 1659, Haifa 31015 Israel
{alexander.nadel, vadim.ryvchin}@intel.com

2Information Systems Engineering, Technion, Israel ofers@ie.technion.ac.il

Abstract—We report advances in state-of-the-art algorithms
for the problem of Minimal Unsatisfiable Subformula (MUS)
extraction. First, we demonstrate how to apply techniques used
in the past to speed up resolution-based Group MUS extraction
to plain MUS extraction. Second, we show that model rotation,
presented in the context of assumption-based MUS extraction,
can also be used with resolution-based MUS extraction. Third,
we introduce an improvement to rotation, called eager rotation.
Finally, we propose a new technique for speeding-up resolution-
based MUS extraction, called path strengthening. We integrated
the above techniques into the publicly available resolution-based
MUS extractor HaifaMUC, which, as a result, now outperforms
leading MUS extractors.

I. INTRODUCTION

Given an unsatisfiable formula in Conjunctive Normal Form
(CNF), an Unsatisfiable Subformula (or Unsatisfiable Core;
hereafter, US) is an unsatisfiable subset of its clauses. A
Minimal Unsatisfiable Subformula (MUS) is a US such that
removal of any of its clauses renders it satisfiable. The problem
of finding a MUS is an active area of research [1]–[6].

The basic algorithm used in modern MUS extractors such
as MUSer2 [7] and HaifaMUC [3] is as follows. In the initial
approximation stage the algorithm finds a not-necessarily-
minimal US S with one or more invocations of a SAT
solver [8], [9]. It then applies the following deletion-based
iterative process over S’s clauses until S becomes a MUS.
Each iteration removes a candidate clause c from S and
invokes a SAT solver. If the resulting formula is satisfiable,
c must belong to the MUS, so c is returned to S and marked
as necessary. Otherwise c is removed from S. In addition,
the following two optimizations are commonly applied. First,
incremental SAT solving [10], [11] is used across all SAT
invocations. Second, when a clause c is found to be not
necessary, one can remove from S not only c, but all the
clauses (if any) omitted from the new core found by the SAT
solver. This latter technique is called clause set refinement
in [6]. The algorithm we have described up to here was
introduced in [12] and improved in [2], while the idea of
removing constraints one by one in order to get a minimally
infeasible set can be traced back to [13], [14]. See [2] for
a more detailed presentation of the algorithm and [1] for an
overview of various approaches to MUS extraction.

It was demonstrated in [2] that the approach we have
described can be implemented using either a resolution-based
or an assumption-based algorithm. The former relies on the
resolution proof maintained by the SAT solver for detecting the
core at each step, while the latter adds a new assumption literal

to each clause and detects the core using these assumptions. It
was shown in [2] that the resolution-based approach to MUS
extraction is faster than the assumption-based approach mainly
because of the overhead of maintaining assumption literals.

Various applications require finding a MUS with respect
to user-given groups of clauses [2], [15], called interesting
constraints, while clauses that do not belong to any interesting
constraint are called the remainder. The resulting problem is
called Group MUS (GMUS) extraction (or high-level MUS
extraction). It was shown in [2] that the approach we described
for plain MUS extraction can be applied to GMUS extraction
as well. Furthermore, it was shown in [3] that the resolution-
based approach to GMUS extraction can be improved con-
siderably by directing the search to ignore the interesting
constraints and to use the remainder and the necessary clauses
instead whenever possible. We call the techniques of [3] MUS-
biased search.

The first contribution of this paper is in showing that MUS-
biased search can be applied to plain MUS extraction. The
key observation is that while there are no remainder clauses
in plain MUS extraction, necessary clauses can still be used
for MUS-biased search after the approximation stage.

A recent essential enhancement to the plain MUS extraction
algorithm we have described is model rotation (or, simply,
rotation) [4], [6], [16]. Rotation was proposed in the con-
text of assumption-based MUS extraction. After implement-
ing rotation, the resulting assumption-based MUS extractor
MUSer2 outperformed the state-of-the-art resolution-based
MUS extractor HaifaMUC. It is sometimes postulated that
rotation gives the assumption-based approach an edge over
the resolution-based approach (cf. [5]).

The second contribution of this paper is thus in showing
that model rotation can be integrated into the resolution-based
approach. The paper’s third contribution is an improvement to
model rotation, called eager rotation, detailed in Sect. II-B.

The fourth contribution of our paper is called path strength-
ening. It is a generalization of a technique proposed in [17]
and later called redundancy removal in [6] and implemented
in MUSer2 [7]. Redundancy removal adds the literals of
¬c (where c is the candidate clause) as assumptions when
checking the satisfiability of S\c, because since S is known to
be unsatisfiable, then S \ c and (S \ c)∧¬c are equisatisfiable.
Path strengthening, on the other hand, adds as assumptions
the literals of ¬c,¬c1, . . . ,¬cm for some m ≥ 0, where
the sequence of clauses c, c1, . . . , cm constitutes the longest
common prefix of all paths in the resolution proof from c to



the empty clause. Further details about path strengthening are
provided in Sect. II-C.

We integrated our algorithms into the resolution-based MUS
extractor HaifaMUC. We show in Sect. III that, as a result,
HaifaMUC now outperforms the leading MUS extractors
MUSer2 and Minisatabb [18]. Minisatabb improves
MUSer2 considerably based on the idea of replacing blocks
of assumptions with new variables [18].

II. THE ALGORITHMS

A. MUS-Biased Search

We will now describe how we adapted optimizations A-
D of the GMUS-oriented techniques proposed in [3] to plain
MUS extraction (we also tried adapting optimizations E-G [3],
but their impact on plain MUS extraction was negligible). We
denote the set of necessary input clauses by M . We call an
input clause c interesting if it belongs to S\M (i.e., c can still
serve as a candidate). A learned clause is marked as interesting
if it is derived using at least one interesting clause; otherwise
it is marked as necessary. If an interesting learned clause
participates in the proof, then the core includes its interesting
roots; this is undesirable since we are trying to minimize the
core. Most of our techniques are therefore targeted at biasing
the solver towards learning necessary rather than interesting
clauses. This is the reason that we call them, jointly, MUS-
biased search. An exception is the first optimization below,
which is focused on reducing the amount of memory used to
store the proof.
A. Maintain partial resolution proofs. There is no need to

store in the proof any clauses identified as necessary,
since the algorithm does not need to work with these
clauses explicitly anymore. Hence, we discard from the
proof all the clauses that emanate exclusively from M .

B. Perform selective clause minimization. Clause minimiza-
tion [19] is a technique for shrinking conflict clauses.
Specifically, if a conflict clause c contains two literals
l1, l2 such that l1 → l2 because of the rest of the formula,
then l2 can be removed from c. The disadvantage of
this technique in our context is that it may reclassify
c from ‘necessary’ to ‘interesting’, if the implication
l1 → l2 depends on an interesting clause. This in turn
may increase the size of the core later on as explained
above. Hence our optimization does not apply clause
minimization if it leads to such a reclassification. In other
words we prefer a longer conflict clause if this enables
us to maintain its classification as a necessary clause.

C. Postpone propagation over interesting clauses. Perform
Boolean Constraint Propagation (BCP) on necessary
clauses first, with the aim of learning a necessary clause
when possible.

D. Reclassify interesting clauses. When an interesting clause
c becomes necessary, look for any clauses in the resolu-
tion derivation that were derived from c that also become
necessary (that is, were derived solely from necessary
clauses) and reclassify them.

Note that while these optimizations improve GMUS ex-
traction even during the approximation stage owing to the
availability of remainder clauses, their impact on plain MUS
extraction begins only during the minimization stage, when
there are enough necessary clauses (which, like remainder
clauses, must be in the proof). Indeed we demonstrate in
Sect. III that optimization B is not cost-effective before there is
a significant number of necessary clauses, which is the reason
that we invoke it starting from the 2nd satisfiable iteration.

B. Eager Model Rotation

Model rotation can improve deletion-based MUS extraction
by searching for additional clauses that should be marked
as necessary without an additional SAT call. Suppose, for
example, that for an unsatisfiable set S, S \ c is satisfiable.
Consequently c is marked as necessary. Let h be the satisfying
assignment. Note that h(c) = false, because otherwise h(S)
would be true, which contradicts S’s unsatisfiability. Now,
suppose that an assignment h′ that is different than h in only
one literal l ∈ c satisfies all the clauses in S other than exactly
one clause c′ ∈ S. Hence h′(S \ c′) = true, which means that
like c, c′ must also be in any unsatisfiable subset of S, and can
therefore be marked as necessary as well. Rotation flips the
values of each of c’s literals one at a time in search of such
clauses. When one is found, rotation is called recursively with
c′. This algorithm is summarized in Fig. 1(a). We observe
that rotation, proposed in the context of assumption-based
MUS extraction, can be integrated into our resolution-based
algorithm without any changes.

Fig 1(b) shows ERMR (Eager Recursive Model Rotation) –
an improvement to rotation that weakens rotation’s terminating
condition. The reader may benefit from first reading the main
algorithm in Fig. 2(a), which calls ERMR. The only difference
between ERMR and RMR is that ERMR may call rotation with
a clause that is already in M , the reason being that it can lead
to additional marked clauses owing to the fact that the call is
with a different assignment. Clearly there is a tradeoff between
the time saved by detecting more clauses for M and the time
dedicated to the search. For example, one may run RMR with
more than one satisfying assignment as a starting point, but
this will require additional SAT calls to find extra satisfying
assignments. ERMR refrains from additional SAT calls. Rather
it changes the stopping criterion: instead of stopping when
c ∈ M (line 4 in Fig. 1(a)), it stops when c ∈ K, where K
holds the clauses that were discovered in the current call from
MUS. There are other variations on weakening the terminating
condition of rotation in the literature [5], [6]. We leave to
future study a detailed comparison of our algorithm to these
works.

C. Path Strengthening

Path strengthening relies on the following property, which
we call cut falsifiability (observed already in [12], [20]). Let
S be an unsatisfiable formula, π its resolution proof, and c
a candidate clause. Let ρc be the subgraph of π containing
all the clauses that appear on at least one path from c to the



empty clause � (including c and �). Then, any model h to
S \{c} must falsify at least one clause in any vertex cut of ρc
(since otherwise a satisfiable vertex cut in π would exist). An
immediate corollary is that all the clauses in some path from
c to � must be falsified by any model h to S \ {c}.

We use this property as follows. Let P =
[c0 = c, c1, . . . , cm] be a path in the resolution proof starting
from a candidate clause c. P is the longest unique prefix if it
is the longest path starting at c, such that each ci ∈ P has
only one child (that is, c participates in the derivation of one
clause only). Path strengthening is based on the following
property, induced by cut falsifiability: all the clauses of P
must be falsified in any model h to S \ {c}. Fig. 2(b) shows
a variant of the main algorithm in which path strengthening
has been applied: each invocation of the SAT solver is
carried out under the assumptions ¬P = {¬c0, . . . ,¬cm}.
Before each iteration our algorithm attempts to increase P
length by removing from the resolution proof clauses that
are not backward reachable from the empty clause. Note
that whenever P contains clauses which do not subsume
c, path strengthening will provide more assumptions to the
solver than redundancy removal; hence path strengthening is
expected to be more efficient than redundancy removal.

Cut falsifiability-based techniques are not immediately com-
pliant with clause set refinement, since clause set refine-
ment requires solving without assumptions. MUSer2 solves
this problem for redundancy removal by applying clause set
refinement only when the assumptions are not used in the
proof; otherwise it skips clause set refinement. Our path
strengthening algorithm applies clause set refinement when
either the assumptions are not used in the proof or whenever
the N latest iterations applied path strengthening and the result
was unsatisfiable, N being a user-given threshold.

III. EXPERIMENTAL RESULTS

We checked the impact of our algorithms when applied to
the 295 instances used for the MUS track of the SAT 2011
competition. For the experiments we used machines with 32Gb
of memory running Intelr Xeonr processors with 3Ghz CPU
frequency. The time-out was set to 1800 sec. The implemen-
tation was done in HaifaMUC. We refer to a configuration
of HaifaMUC that implements the deletion-based algorithm
with incremental SAT and clause set refinement as Base. We
compare our tool to the latest version of MUSer2 [7] and
Minisatabb [18]. Extended experimental data is available
from the second author’s home page.

Fig. 3 summarizes the main results. Several observations
are in order: 1) rotation is very useful; 2) eager rotation is
effective; 3) optimizations A and D are useful, while optimiza-
tion B is beneficial only if delayed until the second satisfiable
iteration (2 being the optimal value, based on experiments);
4) path strengthening (with N=20, 20 being the optimal value
experimentally) is more beneficial than redundancy removal,
and finally 5) HaifaMUC, enhanced by all our algorithms, is
2.18x faster than MUSer2 and solves 13 more instances, and is
48% faster than Minisatabb and solves 4 more instances.

HaifaMUC is faster than Minisatabb on 196 instances,
while Minisatabb is faster than HaifaMUC on 15 in-
stances. Fig. 5 shows a cactus plot comparing Base, MUSer2,
Minisatabb and the new best configuration of HaifaMUC,
while Fig. 4 compares HaifaMUC to Minisatabb.

IV. CONCLUSION

We proposed a number of algorithms for speeding up
MUS extraction. First, we adapted GMUS-oriented MUS-
biased search algorithms to plain MUS extraction. Second, we
integrated model rotation into resolution-based MUS extrac-
tion. Third, we introduced an enhancement to rotation, called
eager rotation. Finally, we introduced a new enhancement,
path strengthening, to resolution-based MUS extraction. We
implemented the algorithms in the resolution-based MUS
extractor HaifaMUC, which, as a result, outperformed the
leading MUS extractors MUSer2 and Minisatabb.

V. ACKNOWLEDGMENTS

The authors would like to thank Daher Kaiss for supporting
this work and Paul Inbar for editing the paper.

REFERENCES

[1] Silva, J.P.M.: Minimal unsatisfiability: Models, algorithms and applica-
tions (invited paper). In: ISMVL’10. (2010) 9–14

[2] Nadel, A.: Boosting minimal unsatisfiable core extraction. In: FM-
CAD’10. (2010) 221–229

[3] Ryvchin, V., Strichman, O.: Faster extraction of high-level minimal
unsatisfiable cores. In: SAT’11. (2011) 174–187

[4] Silva, J.P.M., Lynce, I.: On improving MUS extraction algorithms. In:
SAT’11. (2011) 159–173

[5] Wieringa, S.: Understanding, improving and parallelizing MUS finding
using model rotation. In: CP’12. (2012) 672–687

[6] Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extrac-
tion. AI Commun. 25(2) (2012) 97–116

[7] Belov, A., Marques-Silva, J.: MUSer2: An efficient MUS extractor.
JSAT 8(1/2) (2012) 123–128

[8] Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatis-
fiable Boolean formula. In: Preliminary Proceedings of SAT’03. (2003)

[9] Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for
CNF formulas. In: DATE’03. (2003) 886–891

[10] Strichman, O.: Pruning techniques for the SAT-based bounded model
checking problem. In: CHARME’01. (2001) 58–70

[11] Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving.
Electr. Notes Theor. Comput. Sci. 89(4) (2003)

[12] Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal
unsatisfiable core extraction. In: SAT’06. (2006) 36–41

[13] Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint
sets in linear programs. INFORMS Journal on Computing 3(2) (1991)
157–168

[14] Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing
and solving over-determined constraint satisfaction problems. In: IJ-
CAI’93. (1993) 276–281

[15] Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal
unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1) (2008)
1–33

[16] Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recur-
sive model rotation. In: FMCAD’11. (2011) 37–40

[17] van Maaren, H., Wieringa, S.: Finding guaranteed MUSes fast. In:
SAT’08. (2008) 291–304

[18] Lagniez, J.M., Biere, A.: Factoring out assumptions to speed up MUS
extraction. In: SAT’13. (2013) 276–292

[19] Sörensson, N., Biere, A.: Minimizing learned clauses. In: SAT’09.
(2009) 237–243

[20] Nadel, A.: Understanding and Improving a Modern SAT Solver. PhD
thesis, Tel Aviv University, Tel Aviv, Israel (August 2009)



1: function RMR(S,M, c, h) . recursive model rotation
2: for all x ∈ V ar(S) do
3: h′ = h[x← ¬x]; . swap assignment of x
4: if UnsatSet(S, h′) = {c′} and c′ 6∈ M then

5: M =M ∪ {c′};
6: RMR (S,M, c′, h′);

1: function ERMR(S,M,K, c, h) . Initially K = {c}
2: for all x ∈ V ar(S) do
3: h′ = h[x← ¬x];
4: if UnsatSet(S, h′) = {c′} and c′ 6∈ K then
5: K = K ∪ {c′};
6: if c′ 6∈M then M =M ∪ {c′};
7: ERMR (S,M,K, c′, h′);

(a) (b)

Fig. 1. (a) The recursive model rotation of [16], where UnsatSet(S, h′) is the subset of S’s clauses that are unsatisfied by the assignment h′, and (b) our
modified version. K is a set of clauses that is initialized to c before calling ERMR. K ⊆ M is an invariant, and hence ERMR is called at least as many
times as RMR in (a).

1: function MUS(unsatisfiable formula S)
2: M = ∅;
3: while true do
4: choose c ∈ S \M . If there is none, break;
5: if SAT(S \ {c}) then
6: K = {c};
7: M = ERMR (S, c,M,K, h)
8: else
9: S = core;

1: function MUS(unsatisfiable formula S)
2: M = ∅;
3: while true do
4: choose c ∈ S \M . If there is none, break;
5: let P be the longest unique prefix
6: discard clauses not backward reachable from �
7: if SAT(S \ {c}, {¬ci | ci ∈ P}) then
8: K = {c}; M = ERMR (S, c,M,K, h)
9: else

10: if ¬P not used in proof then S = core;
11: else
12: S = S \ {c}
13: if condition then . Heuristic. See text
14: SAT (S); . guaranteed unsat
15: S = core;

(a) (b)

Fig. 2. (a) Deletion-based MUS extraction enhanced by eager rotation and clause set refinement, where h is the satisfying assignment, and core is the
unsatisfiable core (b) an improvement based on path strengthening. In line 7 the literals defined by {¬ci | ci ∈ P} are assumptions.

Base rot erot erot AD erot ABD erot AB2D erot AB2CD erot AB2CD rr erot AB2CD ps20 MUSer2 Minisatabb
Time 93931 48018 44335 36295 37798 32968 32918 30800 27263 59502 40485
Unsolved 30 12 10 8 13 8 8 6 4 17 8

Fig. 3. Total run-time in sec. and number of unsolved instances for various solvers, when applied to the 295 instances from the 2011 MUS competition,
excluding 12 instances which were not solved by any of the solvers (the time-out value of 1800 sec. was added to the run-time when a memory-out occured).
Base is defined in Sect. III, rot = Base+rotation, erot = Base+eager rotation. A, B, C, and D correspond to the optimizations defined in Sect. II-A. ‘2’ in
AB2CD means that the optimization was invoked after the 2nd satisfiable result. ‘rr’ refers to redundancy removal combined with clause set refinement using
MUSer2’s scheme, described in Sect. II-C. ‘ps20’ means that path strengthening with N = 20 was applied as described in Sect. II-C.

Fig. 4. Direct comparison of the new best configuration of HaifaMUC
erot AB2CD ps20 (X-Axis) and Minisatabb (Y-Axis).

Fig. 5. Comparison of Base, MUSer2, Minisatabb, and the new
best configuration of HaifaMUC erot AB2CD ps20. The graph shows
the number of solved instances (X-Axis) per time-out in seconds (Y-Axis)
for each solver.


	Introduction
	The Algorithms
	MUS-Biased Search
	Eager Model Rotation
	Path Strengthening

	Experimental Results
	Conclusion
	Acknowledgments
	References

